Multi-agent Plan Reconfiguration under Local LTL Specifications

Meng Guo

ACCESS Linnaeus Center, EES
Royal Institute of Technology, KTH, Sweden

January 9, 2014
Agent Model: FTS

- Abstraction as finite transition systems (FTS):

\[T_k^t = (\Pi, \rightarrow_k, \Pi_{k,0}, AP_k, L_k, W_k), \]

- \(\Pi_k \), regions or places. \(\Pi_{k,0} \), initial states.
- \(\rightarrow_k \subseteq \Pi_k \times \Pi_k \) transition relation.
- \(AP_k \), set of properties. addresses or general properties.
- \(L_k : \Pi \rightarrow 2^{AP_k} \), labelling function.
- \(W_k : \rightarrow_k \rightarrow \mathbb{R}^+ \), transition cost.

- Example:
Local Task Specifications

- Agent k’s local task specification φ_k, over AP_k as Linear Temporal Logic (LTL), syntax:

$$\varphi ::= \text{true} \mid a \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \Box \varphi \mid \varphi_1 \cup \varphi_2.$$

- To specify control tasks:
 - Safety: $\Box \neg \varphi_1$. Order: $\varphi_1 \cup (\varphi_2 \cup \varphi_3)$.
 - Response: $\varphi_1 \Rightarrow \varphi_2$. Liveness: $\Box \Diamond \varphi_1$.

- $\varphi_k = \varphi_k^{\text{soft}} \land \varphi_k^{\text{hard}}$, where φ_k^{hard} for safety. φ_k^{soft} for performance.

- Ex1: pass by ‘shop1’, ‘shop2’ and ‘shop3’, avoid toll and policeman as possible, then back home.

- Ex2: go to ‘room1’ and pickup a ball, then go to ‘room2’ and drop it.
Motivation

- \mathcal{T}_k^t, incomplete model of the actual workspace.
 - \mathcal{T}_k^t and \mathcal{W}_k may change, due to dynamic constraints or congestion.
 - L_k may change, due to partial or incorrect initial model.

- Agents are normally distributed at various locations within the workspace, with real-time/accurate observations.

- How could they ‘talk’ to each other and improve their own plan?
Model-checking-based motion and task planning:

- **Inputs:** φ_k, T^0_k;
- **Outputs:** initial plan τ^0_k.
- **Fully-automated process.**
- Nested-Dijkstra graph search.
- **Complexity:** $O(|\tilde{A}^t_{p,k}| \cdot \log |\tilde{A}^t_{p,k}| \cdot (|Q'_0| + |F'|))$.

Plan Structure

- Motion and task plan τ_k^t with **prefix-suffix** structure:

 $$\tau_k^t = \tau_{k,\text{pre}}^t \left(\tau_{k,\text{suf}}^t \right)^\omega$$

- an infinite sequence of **regions to visit**, and **actions to perform**.

- **Guarantee**: always $\tau_k^0 \models \varphi_k^{\text{hard}}$ for **safety**, and τ_k^0 satisfies φ_k^{soft} as much as possible under \mathcal{T}_k^0.

- **Ex1**: go to ‘shop1’ via ‘road1’, to ‘shop2’ via ‘road2-road3’, to ‘shop3’ via ‘road4’, **back home** via ‘road5’.

- **Ex2**: go to ‘room1’ via ‘room2-cor1’, **pickup** a ball, go to ‘room2’ via ‘cor2-cor3’, **drop** it.
Knowledge Update and Transfer

- **Knowledge Update** by means of
 - own sensing ability,
 - communication with others.

- Communication Network: $\mathcal{N}_k \in \mathcal{N}$. Static or dynamic.

- Protocol:
 - Request once: $\text{Request}_{k,g}^t = (k, \varphi_k|_{AP_k})$.
 - Sensing info.: $\text{Sense}_{k}^t = \{ (\pi, S, S_\neg), E, E_\neg \}$.
 - Event-based Reply: $\text{Reply}_{h,k}^t = (\pi, S', S'_\neg)$, where $S' = S \cap (\varphi_h|_{AP_h})$ and $S'_\neg = S_\neg \cap (\varphi_h|_{AP_h})$.

- Note: 1. reply only based on own actual sensing; 2. always contain useful info.
Plan Verification and Revising

- Update \mathcal{T}_k^t based on Sense_k^t and $\text{Reply}_{g,k}^t$.

- Given $\mathcal{T}_k^{t^+}$ and τ_k^t, two questions:

 - is τ_k^t still valid or safe for $\mathcal{T}_k^{t^+}$? (valid for \rightarrow_k^t and safe for φ_k^{safe}).

 > by verifying all transitions along τ_k^t, using $\mathcal{T}_k^{t^+}$.

 - if not, how to revise it?

 > full synthesis — slow, safe and cost optimal
 > local revising — fast, safe and not optimal
 > any-time solution — middle, safe and long-term optimal
Conclusion and Future Work

- Conclusion
 - cooperative motion and task planning.
 - de-centralized.
 - partially-known workspace.
 - guarantee safety.

- Future Work
 - dependent tasks.