

KTH Arkitektur
författare: David Olsson Jones 2014-06-03
E-post david-jones@telia.com

Walkability Index implementation and Analasys of Valhallavägen Stockholm, Sweden

Examinator/ handledare
Magnus Rönn, Docent
Arkitekturskolan
Table of contents
Factor H, K, Q 18
Factor I, J, P 19
Factor L, M, N, O 20
Results and Discussion 21
Results of the ground level transparency test 23
Discussion 24
Bibliography 25

Introduction and theory

Baseline

Within urban space physical elements in streets where different modes of transportation share space has a problematic relationship to how its form relates to human beings choice of mode of transportation between destination within a urban framework. As global warming and a energy scares future faces human civilisation the urban form of our cities particular transportation networks is a key factor in order to shift towards sustainable key factor in order to shift towards sustainable transportation. Sustainable transportation means more energy and space efficient as well as less
climate impact modes such as walking, bicycling and public transportation.
As urban space is always a large structure the form of its transportation networks is rarely constant as transportations start and destination overlaps different design configurations reliable quantitative evaluation methods is limited.
Therefore this paper will explain, implement and discuss the results of a case study based on Sungjin Parks Walkability checklist which is a quantitate study of urban design configuration and its impact on the choice of urban transportation.

Purpose

The purpose of this text is to examine Walkability through physical factors which is measurable and therefore can be implemented in a urban analysis. A case study of a Section of Valhallavägen in Stockholm Sweden will be used to show how the analysis can be conducted.

Method

First explain two researchers definition of the construct of Walkability and secondly connect the qualitative definition of Southworth and the Quantitative definition of Sungjin Park and why certain factors will not be implemented.
Third the factors which are to be implemented will be presented, how they are calculated within a illustrative diagram.
Fourth the checklist of Walkability will be implemented in a case study of Valhallavägen, Stockholm, Sweden of a 300 m section.
Fifth the results will be discussed on how they where examined and the limitations to the results and how the results should be interpreted.

Delimitation

This study will only examine physical elements which is measurable in urban space. The elements and measurements which will be used will directly be derived from Sungjin parks Walkability study as the objective of this project is to examine a the objective of this project is to examine a section of Vahallavagen on how likely a human
being will chose to walk as a transportation being will chose to walk as a transportation method through that street section. A street section will always be 300 m accordingly to fit the study of Walkability factors.

Theory

Walkability is a quality which is not well defined. But it has to to with how the built environmen encourages and supports walking through variables such as travel-time and qualities such as visual interest. Level service which is a community dedicated to gather information of Walkability defines it as following
"The extent to which the built
environment is friendly to the
presence of people living,
shopping, visiting, enjoying or Service 2014)

Important to achieve above stated construc seems to be visual quality through the pedestrian network. Where physical elements such as street trees could be a contributing factor to this quality. But also a variety in the environment but with a continuance parallel to what Kevin lynch stated for Strong paths". Safety is also important where crossings with other modes of transportation has o be safe for all citizens independent of age and degree of mobility(Southworth 2005, Lynch 1960).

Distance is another factor which has an mpact on the choice to walk. This does not relate to detailed spatial design but more configuration of the larger network of paths (in this case streets). Utilitarian access of walking and its length was ou the be afected and lengthened if the quality quality means a high segments was high. High qually means a igh level of alkabity factors (Park 2008).
As mentioned waking paths is set within a configuration which is often hard or slow changing
therefore the quality of the network can be more easily worked with. Below Southworth has stated some qualitative factors for walkability which will be explained and compared to Sungjin parks quantitative framework(Southworth 2005).

1-Connectivity of path network, both locally and in the larger urban setting;

2-Linkage with other modes: bus, streetcar subway, train;

3-Fine grained and varied land use patterns especially for local
serving uses;
4-Safety, both from traffic and social crime
5-Quality of path, including width, paving landscaping, sign
ing, and lighting; and
6-Path context, including street design, visua interest of the
built environment, transparency, spatia definition, landscape,
and overall
exploitability:"(Southworth 2005)

Connectivity

is determined by the amount of sidewalks but also continuance in the pathways without significant obstacles. Also the design of the grid pattern seems to be important where a small block size and high delty of connecting points in paths can put into reation with measuring distance with "as the crow flies": The finer the grid and connecting pathways, the . ioser is the and pand deys, the closer is the distance between star and destination. Ther measurement
Boundaries which lower connectivity can be dead end streets, cul-de-sacs, busy roads railroads, right of way rivers and powerlines(Southworth 2005).

Even if it is stated that walkability is something that is to be planned from the beginning of a new development it is possible to retrofit and make areas more walkable. This by overcoming barriers by traffic calming, overpasses
underpasses etc, depending on the barrier. Cul-de sac can be reconnected to surrounding areas and so forth(Southworth 2005)

Linkage

Linkage can be stated as linking the pathways regularly throughout the city to other modes of transportation such as trams, buses, trains or subway. This is to connect the local area to the larger city and region. Usually a distance of 200400 m and an estimated walk-time of $10-20$ minutes is acceptable between these linkage points. It is about creating easy transfers between different modes of transportation. For example a person should be able to go from bus to train to flight without any difficult changes. Important is also that the concept of pedestrian pockets has to be taken into account. Where a local area no matter how pedestrian friendly it is, it will not reduce car usage if it is not linked.to the city through the above mentioned modes of transport, but also if the area is located and possesses.a mix-usage of buildings. (Southworth 2005)

Variated land-use

Walkability is also determined by the accessibility of daily activity and services, serving daily needs. According to these needs this can include shops, bank, cafés, laundries, elementary grammar schools, libraries and fitness centres etc. A high level of accessibility of these services means they can be reached within 10-20 minutes walking time approximately within a distance of 800 meters(Southworth 2005) pp250.
An elementary school is a good example of a local service that is essential to be reached in walking distance. Especially considering safety which I will continue describing in the next category. For example elementary schools have been identiled as a general problem in the USA. Because of distance from the pupils homes, therefore favouring from huplis is favouring car-use. Even if his is not
necessanly applicablens it it interesting to not whices has on the chosen 2005).

Safety

Safety is perhaps one of the most developed and accepted factors regarding walkability (Southworth 2005). In the USA a term called Jaywalking was formed up until the 1930s when private vehicles increased and safety of pedestrians became an issue(Norton 2007). It basically means that pedestrians crossing any road, highway or street on non designated crossings is a Jaywalker. (Norton 2007)
"One who crosses a street without
observing the traffic regulations for
pedestrians."(Norton 2007, pp.358)
Since pedestrians runs 23 times more likelihood of getting killed than automobile passengers This lead to a debate whether it is the pedestrians or vehicles that have the responsibility in traffic situations especially crossings (Southworth 2005; Norton 2007).
To address safety issues a number of handbooks has been created regarding standardised crossing times, handicapped needs, traffic speeds and so on. But more recently so called traffic calming has been used to slow down traffic and thus making roads and streets more pedestrian friendly. These methods include narrowed streets, rough paving, chokers, chicanes, speed-bumpers, raised crosswalks, roundabout landscaping among others(Southworth 2005)

Path Quality

There are several factors determining the walkability of paths. Negative factors to path quality may include: polluted air, noisy traffic, few designated crosswalks, frontages of buildings are poorly defined, large parking lots in front of buildings, sidewalks which are constantly interrupted by driveways to parking(Southworth 2005, p.251).
2005, p.251).
Positive affects may include: continuance in path Positive affects may include: continuance in path
(less interruption), smooth surface, wide enough (less interruption), smooth surface, wide enough
for 2-3 people to be able to pass each-other or for 2-3 people to be able to pass each-other or
group walking. But also wider in more urban group walking. But also wider in more urban
situations. Terrain is also important for walkability situations. Terrain is also important for walkability
and needs to be address in certain way for and needs to be address in certain way for
example with hand rails. If the path is able to example with hand rails. If the path is able to
accommodate less mobile people then it is more accommodate less mobile people then it is more
walkable. It is also about channeling pedestrians by defining the path for example with trees, flowers
and verges. This together with adequate street lighting may improve sense of safety and induce walking even at night (Southworth 2005, p.251).

Path context

Monotonous paths will not induce walkability rather prevent it,

> If we wish to encourage walking we need to deal with more than connective- pity, land use patterns, safety, and quality of the path itself. A safe, continuous path network in a monotonous physical setting will not invite pedestrians. The path network must engage the interest of the user. Many aspects of the path context can contribute to a positive walking experience: visual interest of the built environ- meant, design of the street as a whole, transparency of fronting structures, visible activity, street trees and other landscape elements, lighting, and views(Southworth 2005, p. 251).

Shopping malls, large parking lots, office clusters and electronic communication has contribute to a less readable and transparent city. Transparency is described as most important for walkability. Where todays traffic analysis over large areas on a macro scale does not pay attention to characteristics on a smaller scale, which is important to evaluate and create strong walkability. I high value of path context is
dependant upon variation in architectural style, quality of path flooring, greenery such as bushes trees and plantations, small scale services along pathway, higher density of buildings, narrower less trafficked streets, straighter streets with a oversight of where the destination is. Transparency the ability for the pedestrian to have a sense of where it is heading is important(Southworth 2005, pp. 251-254).

Even though there is no such thing as applicable theories and templates that can be imposed on a standard basis. The stated physica properties seem to have a positive affect on walkability to an unstated degree. Social aspects are also important as such people prefer paths where other people are for example sitting on cafés, walking, or couples on benches(Southworth

2005, pp.254-255). But since I will not handle the social aspects in this project more then in relation to physical form I will not discuss this further.

Distance is also important for how walkable a path is, where some researchers argue that some of the stated properties above result in a perception of longer distance even though its not For example, more variety and features such as building styles, amount of furniture on path, greenery as such(Southworth 2005, pp.254-255).
is it possible to accommodate the abov stated features without cluttering the space? Pedestrians seem to want to view other people and value these paths higher, but also paths with greenery, direction and interesting features. One must try to create defined space within the paths that can accommodate transportation walking and people who wants to reside. Withou compromising interesting features, continuance in characteristics, greenery and other mentioned features.

Sungjin parks Walkability Index

Sungjin Park is an American Doctor in Philosophy in city and regional planning. His Phd project was conducted to test following hypothesis.

Hypothesis 1: A higher level of
path walkability will increase transit
users' likelihood of choosing
walking over driving to the transit
station
station.
Hypothesis 2: A higher level of
path walkability will increase the
distance transit users will walk to
the transit station. (Park 2008 pp4)

He first carried out a literature research abou which factors does matter for walkability. Thes was then tested within a case study of Mountain View, California. Three surveys was conducted one of 249 transit users by collecting socioeconomic data, trip origins and transit mod choice. The second was 68 transit users which evaluated their walking route to the station. The rout was evaluated through 30 Walkability indicators derived from the literature study and the 249 transit users. In total 370 segments of street was evaluated. (Park 2008)
A street segment is defined as:

Length of Segment: The surveyor

recorded the length between the
entre points of the two
intersections along the stree
segment." (Park 2008)pp44
41 Indicators of Walkability was discovered and proven through a comparative analysis of the conducted surveys. A Walkability Index is later produced in order to Quantify Walkability be presented on next page Maximum and be presented on next page. Maximum and minimum values extracted from street segments whin the case study, which scored highest in Walkable cond presented

I will first demonstrate the walkability indicators which he has found had an impact on the choice to walk over other transit options and walking distance, Also in which direction each value should go in order to be Walking conductive.
Second I will show a list of max/minimum values that is derived from the 270 observed street segments.
Third I will narrow down the amount of indicators which I will use in my proposal.

Identify Walkability

Walkability indicators from Sungjin

parks cases-study

The list Below shows the Walkability Indicator list. The values is max, minimum and average values of all the 270 observed street segment within the case study. The reason why this is showed is to extract the maximum and minimum values which was observed to segments.

Identified max/minimum values of

Walking conductive indicators

Walking conductive maximum and minimum values Walking conductive maximum and minimum values list on page 21. Walking conductive values goes in both direction which is stated below.

Below more specific explanation is showed how each indicator is calculated. Further info is needed on 5 indicators. These are marked in the list as FigA-E and can be viewed on page 23-24

To the far right the specific values are shown. They are not to be used fundamentally but are values which indicate walkable street -segments. (Park 2008)

Legend
Represents indicators which is hard to regulate through spatial planning
O
Indicators that can be implemented through spatial planning

(A) Walking conductive comercial services

Number of walking conductive commercial activities /tot number of comercial activities

Appendix 2. List of Walking-Conducive and Non-Walking-Conducive First-Floor Uses Appendix 2. List of Walking-Conducive and Nond -W My Study Site
Walking-Conducive Commercial Uses Found in

- Retail Offfices: (banks, Insurance agencies, travel agencies, law firms, real estate agencies)
- Non-Academic Classes: (aerobics, gymnastics, martial arts, ballet, yos
- Beauty \& Style: (hair salons, nails shops, skin cares, barber

Home improvement and house wares: (kitchenware, carpet, coin-laundry,

- Specialty Shops: (quilts, antiques, souvenir, gift shops, cigar shops, pet shops,
- Jewelers)

Health Services: (dentistry, acupunctures, fitness, opticians/eye clinics/ vision

- Restaurants: (fast foods, cafes, coffee shops, restaurants, pizzas, pubs)
- Food-related Retail. (liquor stores, convenient stores, groceries, supermarkets,
- Other Small Retail Stores:
computer stores, copy shops, book stores, cell phones)
Non-Walking-Conducive Commercial Uses Found in My Study Site
- Construction-Related Businesses: (building material
paint stores, glass shops, construction consultants)
- Auto-related businesses: (car washes, body shops, auto dealers, rental cars, oil
- Warehouses and Storage Buildings

(C) Sidewalk special paving

Percentage of sidewalk covered in special paving which means all other material then asphalt or sollid concreete

(B) Transparancy grading

Each facade is given a value regarding to the picture it most correspond.
$A-E$ is given a value of $A=5, B=4$ and so forth.
The added value is divided by the total number of facades

(D) Pedestrain crossing index

This is a standardised index over diffrent types of pedestrain crossings within a street segment. Each crossing is given a value regarding to the description that fits best with the description. The total value is added up and divided with the total ammount of crossings in the street-section.

Points

5

4

3

2

1

Description:

Crossing with traffic lights for pedestrains

Marked with stop signs
Marked with Zebra stripes
Marked with lines crossing traffic lanes

Stop-sign only
(E) Enclosure Index 1

This measures the avarage of building to building distance/ building height along segment. As shown below, a walking conductive value should be not to low nor high. 3,3 is recomendede.

Pros and cons of Walkability

Pros

Walkability promotes an urban environment which can accommodate less environmentally straining transport.

People will come closer together physically by concentrating them on less space. Thus giving a higher chance of encounters with others.
Promotes a denser urban environment which can accommodate more people on less space. Thus creating a higher level of demand for local services

Third party meeting point will increase with walkability. As discussed these can be for example Bars, Cafés or a gym. These places has been shown to be important for integration since they are both formal and informal.

A more walkable urban design can accommodate more green-space contributing to better air quality.

Daily exercise will be greater due to promotion of non motorised transportation. Thus contributing to better health within the community. People that live in more walkable neighbourhoods tended to conduct significantly more physical activities than car dependant areas. (Eriksson 2014)

Closer between goals and destinations because of mixed use development. Which means less transportation and less environmental impacts(Park 2008).

More space in the built environment will be left to use for recreational purposes such as parks. This because of less or limited traffic.

A safer traffic environment with lower speeds for motor-vehicles or none where its possible Street design will be conducted so that it physically design will be conducted so that it physically
states whom has priority. For example heighten crosswalks to the same hight as sidewalks. (Southworth 2005)

Cons

Walkability is hard to measure, there is no Walkability is hard to measure, there is no
universally proven method that can quantify actors. Thus only factors which has more or less actors. Thus only factorl which has more or less implemented.

It has been shown that certain factors of walkability differ in-between countries and ontinents. For rample vegetation and stre contins. For example vegetation and stres lill mak a mul lit maplion and instead its the life in the has lime thed
 promotes walkability. (Southworth 2005)

Walkability as a construct is wide and un precise and lacks a scientific unified definition. Therefore making it difficult to implement and reproduce.

Since a local area never on its own can be walkable without being a pedestrian Island, It will be hard to change already built environments. (Southworth 2005)

Climate does have an impact on Walkability where a colder climate makes people walk less.

Walkability originates from North America and such most of the recommendations of the construct. It is therefore uncertain if the same factors could be applied for example in Europe

Southworth

Sungjin Park

"1-Connectivity of path network,
both locally and in the larger urban
setting;
2-Linkage with other modes: bus,
streetcar, subway, train;
3-Fine grained and varied land use
patterns, especially for local serving
uses;

4-Safety, both from traffic and social
crime;
5-Quality of path, including width,
paving, landscaping, signing, and
lighting; and
6-Path context, including street
design, visual interest of the built
environment, transparency, spatial
definition, landscape, and overall
exploitability."(Southworth 2005)

Discussion

Walkability is uncertain as a planning construct to aid in urban planning and design schemes. Since researchers points towards strategic implementation from planning authorities without definition such strategies may vary over time. Thus creating uncertainty among authorities making it unappealing. A solution could be to quantify data both of peoples perception locally what they perceive what a walking friendly street or are consists of.
Walkability as a construct has its main focus on built design and does not involve much of socia factors such as age or income. This gives the concept both its limits and weak side. There might be other opinions on what is a walkable area within different communities locally. Researchers like Sungjin Park has proven that Walkability can be quantified at-least locally by comparing local preferences of walkable environments to academic research. By this he created a Walkability index which can quantify the built environment and certain factors. He proved that certain factors is more important than others in terms of physica elements. His research is particular interesting in my project because he examines choice of mode of transportation to and from a station. He found that Walkability indicators will be of significan importance for choice of transportation. Instead o uncertain claims he has proven these factors

But within a new development some of the indicators as shown are harder to implement. Since his walkability Index is first and foremost a analytic tool of street segments. (Park 2008).

What physical elements in urban environments makes walking more

 attractive as a mode of transportation?The indicators of walkable conductive measurements extracted from Sungjin Parks research is proven to affect mode of transpor within his Case study. As mentioned walking conductive elements are not universal but factors such as few designated crosswalks, frontages of buildings are poorly defined, large parking lots in front of buildings, sidewalks which are constantly interrupted by driveways to parking, has similarities to his indicators.

Transparency of buildings, speed-bumpers, raised crosswalks is also similarities stated by Southworth regarding element which improves walkability.
The question is broad which makes it hard to answer but strong similarities between Sungjin Park and Southworth exists. The only difference is that Sungjin Park has quantified the elements whereas Southworth gives a broader direction. The extracted indicators will therefor be viewed in this paper as physical elements which does make walkability more attractive as a mode of transportation.

Graphical walkability chart

Now the factors found with green indicators on page 5 are presented graphically to the left of this page together with related values.

The following pages will analyse each indicator named with letters. The equation used will be presented to the left of each chart related to the indicators. Within most of the equations its about finding the average value therefore some standard values will be presented below:

L=Section length $=300$

A=Area
$\mathrm{N}=$ which Number of polygons/Elements
W n=Average width= $(\mathrm{W}=\mathrm{A} / \mathrm{L}) / \mathrm{n}$
$\mathrm{Wd}=$ Average distance of curb to curb $=(\mathrm{W}=\mathrm{A} / \mathrm{L})$

Analyze a street section of Valhallavägen

Groundfigure and usage map

- Appartment buildnings

Traffic space
二 Parking

- Green space
© Tree
Refuges
- Space not included in analysis
\square Brick walls
Pedestrain paths
- Pavement
\square Analysis boundary
\square Street section boundary
Forecourt soil

Results and Discussion

Facade prefix:
2. Rathot

Facade prefix:
 A) Rating= C

Facade prefix: B, Rating $=\mathrm{C}$

Facade prefix: D, Rating= C

Fácade prefix:
G, Rating $=\mathrm{C}$
Facade prefix: F. H, Rating=B

Facade prefix: IT, 111 Rating $=C$

Results of the ground level transparency test

Accordingly to Transparency index the lower part of the section had a low transparency rating due to lack of buildings. The average transparency being the value of each building $=49 / 16=3$
This means that the analysed street section has a middle value of 3 which could be improved with more buildings with openings towards the street section. The north eastern buildings contributes mostly for the mediocre rate.

Results of factors

The meaning of each factor can be found on page 14 graphical diagram together with the further explanations on page $9-11$. Each factors equation for the results are showed next to each diagram on page 16-21.

$A=3,4$

The average with of the walking paths was fairly moderate where the sidewalks was narrow on the western side of the section and this is also where improvement might need to be done even though the results did achieve guideline.

$B=0,46 m$

Within this street section theres only one cycling path running in the middle section of the street. Bicycle paths counts only if they are directly adjacent to pedestrian paths accordingly to Sungjin Park. Surprisingly with it fails the guideline. with it fails the guideline.

$\mathrm{C}=1,21 \mathrm{~m}$

The traffic dividing elements in the section are composed of a green space between traffic with trees and bushes. This is complemented by smaller trees in the north eastern sidewalk while the northern section lacks traffic dividing elements. This indicator fails due to its number of different traffic dividing zones being high but fairly narrow on average.

$D=14,14 \mathrm{~m}$

Except for some sidewalk parking in the north east this section only has a large parking lot to the north it does meet the guideline limits. However accordingly to sungjin park for it to be walking conductive it has to function as a buffer-zone between pedestrians and traffic which it does not today.

$\mathrm{E}=9$

Fairly high number as such doesn't meet the guidelines. The section is heavily trafficked and functions as one of the main arteries to the city of Stockholm.
$F=1,7 m$

Buffer-zone does not meet guidelines this is due to the lack of protective space between Pedestrians and traffic. North eastern sidewalks are directly connected to heavy traffic which poses safety concerns.

$\mathrm{G}=19,51 \mathrm{~m}$

The average with of the motor-vehicle traffic zone within the segment extents greatly above the minimal value of $6,02 \mathrm{~m}$ due to the heavy traffic and amount of lanes in the segment. Quick turns and the speed of traffic requires more space. With a lower speed the space used could be limited together with the amount of lanes.

$\mathrm{H}=38,5 \mathrm{~m}$

Within the average curb to curb traffic zone distance the parking lot to the far north was included together with the inaccessible southern greenspace. The reason for this was that I found that the parking space has a flat paved surface not on pedestrian curb level with traffic that enters and exits on north and south ends making it a drive through. The greenspace to the south was also counted because it has little or nothing to do with the pedestrian paths adjacent to the buildings. However its hard to determine its role in the street section is it a part of buffer-zones or a part of traffic-zone. However this factor does not meet guidelines even if the greens-pace would be counted.

$\mathrm{I}=0,25$

The street enclosure index is low which means it does not meet the requirements. The distance between the north and south building facades are to great together with the gap of buildings to the north. The northern hotel is not counted as a facade due to its relative setback from the rectangular section of the street as showed on page 15.

J=68\%

Does correspond to guidelines but could improve if the north eastern section was developed with more buildings facing the street segment.

$K=1,57 \mathrm{~m}$

Setback of buildings does not correspond with guidelines due to the space between pedestrian paths in the northeast part of the section mainly as well as middle section.

L=300m

Length of section which is standard for Sungjin parks factors.

$\mathrm{M}=30 \mathrm{~m}$

Average building gap with is high but as mentioned before it has to do with the building gap to the north east and one small north-east.
$\mathrm{N}=27,8 \mathrm{~m}$
$N=t o t$ length of facades/ n of facades. Since theres is no particular length stated to be walking conductive Sungjin park has stated a lesser width is preferable. Variation in urban space is walking conductive as such are a higher volume of buildings which are smaller giving the pedestrian visual interest.
$\mathrm{O}=4,75 \%$
The amount of crossings does not correspond with the guidelines. The count has only been done for the crossings that lets the pedestrians cross the whole traffic space as defines on page 18. The north eastern section need more pedestrian crossings.

$\mathrm{P}=39,5$

Upper level amount of windows facing the street segment doesn't meet guidelines as such due to the building gap to north-east. There is also an issue with the concrete building facade showed on page 23 which poses $49,9 \mathrm{~m}$ of the total facade length of the segment but only has 3 windows.

$\mathrm{Q}=62$

Entrances towards the street segments are above guidelines even though theres a gap in the amount of buildings facing to the north-east.

Discussion

The results showed that there was a lack in buffer-zones between pedestrians and traffic.
Traffic area of the section is significantly wide compared to surfaces available to pedestrians.
Enclosure of the street section is low due to the lack of facades meeting the section at the Eastern part.
The neo-classical facades towards the street section has open ground floors with transparent above level arrangement of windows. It is the more modern development to the North-East that lacks entrances, windows and transparency. They are also characterised by large set-back from pedestrian paths.
Natural height differences in the northern part of the section does impose difficulties to develop close to the existing Valhallavägen therefore one can understand why the form is built as it is.
The parking loot could be developed with mixed use development and with the high land-value new parking could be arranged underground. Buffer-zones between Pedestrians has to be arranged together with widening of the north-west sidewalk to make more efficient use of the existing commercial ground-floor facilities.

Bibliography

Banister, D., 2008. The sustainable mobility paradigm. Transport Policy, 15(2), pp.73-80.

Burton, E., Jenks, M. \& Williams, K., 2004. The Compact City, Routledge.

Eriksson, U., Arvidsson, D. \& Gebel, K., Compact city development: High ideals and emerging practices Nordregio. Available at: http://
www.biomedcentral.com/content/pdf/ 1479-5868-9-123.pdf [Accessed April 11, 2014]

Hofstad, H., 2012. Compact city development: High ideals and emerging practices - Nordregio. European Journal of Spatial Development, p.23. Available at: http://www.nordregio.se/Global/EJSD/Refereed articles/refereed49.pdf.

Level of Service, Walkability. levelofservice.com. Available at: http://www.levelofservice.com [Accessed April 6, 2014].

Lynch, K., 1960. The Image of the City, MIT Press
Norton, P.D., 2007. Street Rivals: Jaywalking and the Invention of the Motor Age Street. Technology and Culture, 48(2), pp.331-359.

OECD, 2000. Urban Renaissance Belfast's Lessons for Policy and Partnership, OECD Publishing

Southworth, M., 2005. Designing the walkable city. Journal of urban planning and development, 131(4), pp.246257.

Park, S., 2008. Defining, Measuring, and Evaluating Path Walkability, and Testing Its ... - Sungjin Park - Google Books.

