Formal Methods for Lab-Based MOOCs: Cyber-Physical Systems and Beyond

Sanjit A. Seshia
UC Berkeley

Joint work with:
Edward A. Lee, Jeff. C. Jensen, Alexandre Donzé, Garvit Juniwal, Andy Chang
UC Berkeley & NI

CPSGrader.org
CPS-Ed 2014
November 4, 2014
Massive Open Online Courses (MOOCs)

Courses from universities world-wide available to any one with an Internet connection
This course introduces the *modeling, design and analysis of computational systems that interact with physical processes*.
The Core Learning Experience: Exercises and Labs

• Textbook Exercises:
 – High-level modeling with FSMs, ODEs, temporal logic, etc.
 – Programming in various languages (C, LabVIEW, etc.)
 – Algorithm design and analysis (scheduling, verification, etc.)

• Laboratory (6 weeks)

• Capstone design project (12 weeks)

➤ How to extend this experience to a MOOC version of EECS 149?
EECS149.1x: Cyber-Physical Systems

- MOOC offering on edX: May 6 to June 24, 2014
- Berkeley-NI collaboration
- Virtual lab software for CPS: CyberSim
- First course to employ formal methods in auto-grader: CPSGrader
Roadmap for Rest of this Talk

• CyberSim + CPSGrader
 – NI Robotics Simulator + UC Berkeley Auto-Grader
 – Demo

• The EECS149.1x Experience
 – Statistics, Survey Results, Feedback

• Future Directions
On-Campus Lab Assignment: The “Hill-Climbing” Robot

Goal: Online Virtual Lab with learning experience “comparable” to On-Campus Real Lab
Virtual Lab Assignment (Demo)
Components

Student Solution

Simulator

Temporal Logic Monitors

Verifier & Feedback Generator

Input Stimuli

CyberSim

CPSGrader
CPSGrader: Auto-Grading and Feedback Generation

[Juniwal, Donze, Jensen, Seshia, EMSOFT 2014]

- **Auto-grading** = verification + debugging

- Employ *Simulation-based (run-time) verification*
 - get simulation trace
 - monitor *signal temporal logic* properties
 - localize *faulty* behavior
Fault Detection

- **Environment**: Arena composed of obstacles and hills
- **Monitor**: Signal Temporal Logic formula that captures presence of fault in a trace
- **Test**: Environment + Monitor

A test is "triggered" by a controller if the fault property holds on the simulation trace in the environment.

\[G_{[0,60]} \text{pos.}z < 0.4 \]
Technical Challenge

• Grading should be robust to variations in environment and student solutions.
 – Obstacle placement; hill incline & height
 – Different wheel speeds; strategies.

• Introduce parameters in environment and STL formula.

• Creating *temporal logic test benches* = solving a *parameter synthesis* problem.
Synthesis of Test Benches

- Need to synthesize subset of parameter space that ONLY matches faulty solutions
 - Tedious to do manually!
- Coming up with reference faulty/good solutions is easier

- Goal: Synthesize fault subspace from reference controllers
Roadmap for Rest of this Talk

• CyberSim + CPSGrader
 – NI Robotics Simulator + UC Berkeley Auto-Grader
 – Demo

• The EECS149.1x Experience
 – Statistics, Survey Results, Feedback

• Future Directions
EECS149.1x: Basic Statistics

- 6-7 weeks
- 49 lectures, 10 hours 50 minutes of video
- 6 weekly lab assignments
 - 1 LabVIEW and Dev Tools tutorial
 - 1 Memory Architectures “lab”
 - 4 Virtual Lab exercises:
 - Week 1: Navigation, programming in C
 - Week 2: Hill climb, programming in C
 - Week 3: Navigation, programming in LabVIEW
 - Week 4: Hill climb, programming in LabVIEW
 - Hardware track optional
EECS149.1x: Basic Statistics

- 6-7 weeks
- 49 lectures, 10 hours 50 minutes of video
- 6 weekly lab assignments

- Peak Enrollment: 8767
- Largest number submitting any lab: 2213
- Number scoring more than 0: 1543
- Number who passed: 342 (4% of peak enrollment)
54% of students had taken 3 or more (other) MOOCs already.
EECS149.1x: LabVIEW Stats

(About 200-300 survey respondents)

• Prior Experience: 59% NEW to LabVIEW

• LabVIEW vs. C for the labs:
 – LabVIEW was superior: 26%
 – LabVIEW was equally capable: 56%
 – LabVIEW was inferior: 18%

• Repeating lab in LabVIEW after doing it in C: 73% felt it is a good thing
 – teaches different concepts and skills
Hardware Track: When deploying to the *real robot*, did you modify your solution from the simulator?

>90% of controllers that passed the Virtual Lab auto-grader worked on the real robot with no or minor modifications.
Students Reporting Auto-grader Feedback as Useful:

86%
EECS149.1x: Lecture Modules

1. Introduction to CPS
2. Memory Architectures
3. Interrupts
4. Modeling Continuous Dynamics
5. Sensors and Actuators
6. Modeling Discrete Dynamics
7. Extended and Hybrid Automata
8. Composition of State Machines
9. Hierarchical State Machines
10. Specification & Temporal Logic
1. Introduction to CPS
2. Memory Architectures
3. Interrupts
4. Modeling Continuous Dynamics
5. Sensors and Actuators
6. Modeling Discrete Dynamics
7. Extended and Hybrid Automata
8. Composition of State Machines
9. Hierarchical State Machines
10. Specification & Temporal Logic
Conclusion

• EECS149.1x: A first step towards enabling Lab-based MOOCs
 – Useful for growing enrollments on campus too!

• CPSGrader architected to be reusable for other courses
 – Circuits
 – Robotics
 – Mechatronics
 – ...

• Formal Methods can offer much to Education in Science and Engineering
 – Virtual Science & Engineering Labs with built-in Auto-Grading can broaden participation
Future Directions

• Partial and Extra Credit
 – Quantitative semantics of Signal Temporal Logic
 – Quantitative satisfaction of temporal formulas

• Frequency-Domain Properties
 – Time Frequency Logic

• Online/Incremental Algos for Run-Time Verification

• Machine Learning for New “Unknown” Faults

• ...