Till innehåll på sidan
Till KTH:s startsida

Deep Learning for Wildfire Detection Using Multi-Sensor Multi-Resolution Satellite Images

Tid: Fr 2024-12-06 kl 09.00

Plats: Kollegiesalen, Brinellvägen 8, Stockholm

Videolänk: https://kth-se.zoom.us/j/62299317578

Språk: Engelska

Ämnesområde: Geodesi och geoinformatik, Geoinformatik

Respondent: Yu Zhao , Geoinformatik

Opponent: Professor Lorenzo Bruzzone, University of Trento, Italien

Handledare: Professor Yifang Ban, Geoinformatik; Universitetslektor Josephine Sullivan, Robotik, perception och lärande, RPL; Lektor Andrea Nascetti, Geoinformatik

Exportera till kalender

QC 20241118

Abstract

De senaste åren har klimatförändringar och mänskliga aktiviteter orsakat ett ökande antal skogsbränder. Jordobservationsdata med olika rumsliga och tidsmässiga upplösningar har visat stor potential för att upptäcka och övervaka skogsbränder. Sensorer med olika rumsliga och tidsmässiga upplösningar upptäcker skogsbränder i olika steg. För satelliter med låg rumslig upplösning och hög tidsupplösning används de mest i aktiv branddetektering och kartläggning av brända områden i ett tidigt skede på grund av deras frekventa återbesök. Även om dessa produkter är mycket användbara har de befintliga lösningarna brister, inklusive många falska larm på grund av molntäcke eller byggnader med tak i höga temperaturer. Den tröskelbaserade metoden med flera kriterier utnyttjar inte heller rik tidsinformation för varje pixel vid olika tidsstämplar och rik rumslig information mellan angränsande pixlar. Därför behövs avancerade bearbetningsalgoritmer för att upptäcka aktiva bränder. För satelliter med medium rumslig upplösning och låg tidsupplösning används de ofta för att upptäcka brända områden efter brand. Optiska sensorer som Sentinel-2 och Landsat-8/9 används ofta men deras låga tidsupplösning gör dem svåra att övervaka pågående löpeld eftersom de sannolikt kommer att påverkas av moln och rök. Synthetic Aperture Radar (SAR) satelliter som Sentinel-1, ALOS-2 och RADARSAR Constellation Mission (RCM) kan penetrera genom molnet och deras rumsliga upplösningar är cirka 30 meter. Emellertid har begränsade studier jämfört effektiviteten av C-bands- och L-bandsdata och undersökt användningen av kompakt polarisering på kartläggning av brända områden.

Huvudsyftet med detta examensarbete är att utveckla metoder för djupinlärning för förbättrad aktiv branddetektering, daglig kartläggning av brända områden och kartläggning av brända områden efter brand med hjälp av multi-sensor flerupplösta jordobservationsbilder.Temporala modeller såsom Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM) och Transformer-nätverk lovar att effektivt fånga tidsinformation inbäddad i bildtidsserierna som produceras av sensorer med hög tidsupplösning. Rumsliga modeller, inklusive ConvNet-baserade och Transformer-baserade arkitekturer, är väl lämpade för att utnyttja de rika rumsliga detaljerna i bilder från medelupplösningssensorer. Dessutom, när det handlar om bildtidsserier som innehåller både riklig tids- och rumsinformation, är rumsliga-temporala modeller som 3D ConvNet-baserade och Transformer-baserade modeller idealiska för att ta itu med uppgiften. 

I detta examensarbete består den GRU-baserade GOES-R tidig detekteringsmetoden av ett 5-lagers GRU-nätverk som använder GOES-R ABI-pixeltidsserier och klassificerar de aktiva brandpixlarna vid varje tidssteg. För 36 studieområden upptäcker den föreslagna metoden 26 skogsbränder tidigare än VIIRS aktiva brandprodukt. Dessutom mildrar metoden problemet med grov upplösning av GOES-R ABI-bilder genom uppsampling och resultaten visar mer tillförlitlig lokalisering av aktiv brand i tidigt skede och dämpar bruset jämfört med GOES-R aktiv brandprodukt.

Vidare undersöks VIIRS tidsseriebilder för både aktiv branddetektering och daglig kartläggning av brända områden. För aktiv branddetektering tokeniseras bildtidsserierna till vektorer av pixeltidsserier som indata till den föreslagna transformatormodellen. För daglig kartläggning av brända områden appliceras den 3-dimensionella Swin-Transformer-modellen direkt på bildtidsserien. Transformatorns uppmärksamhetsmekanism hjälper till att hitta pixelns rumsliga-temporala relationer. Genom att detektera variationen av pixelvärdena klassificerar den föreslagna modellen pixeln vid olika tidssteg som en aktiv brandpixel eller en icke-brandpixel. Den föreslagna metoden testas över 18 studieområden i olika regioner och ger en 0,804 F1-Score. Den överträffar VIIRS aktiva brandprodukter från NASA som har 0,663 F1-poäng. För daglig kartläggning av brända områden överträffar den också ackumuleringen av VIIRS aktiva brandhärdar i F1-poängen (0,811 mot 0,730). Transformer-modellen har också visat sig vara överlägsen för aktiv branddetektering jämfört med andra sekventiella GRU-modeller och rumsliga modeller som U-Net. Dessutom, för detektering av bränt område, visar den föreslagna AR-SwinUNETR också överlägsen prestanda jämfört med rumsliga modeller och andra baslinje-rums-temporala modeller.

För att komma till rätta med begränsningen av optiska bilder på grund av molntäcke utvärderas C-bBand-data från Sentinel-1 och RCM, samt L-bandsdata från ALOS-2 PALSAR-2, för detektering av bränt område efter brand. För att bedöma effektiviteten av SAR vid olika våglängder korsjämförs prestandan för samma djupinlärningsmodell på brända områden av varierande svårighetsgrad i löv- och barrskogar med hjälp av både Sentinel-1 SAR- och PALSAR-2 SAR-data. Resultaten indikerar att L-band SAR är känsligare för att detektera låga och medelhöga brännskador. Sammantaget uppnår modeller som använder L-bandsdata överlägsen prestanda, med ett F1-poäng på 0,840 och ett IoU-poäng på 0,729, jämfört med modeller som använder C-bandsdata, som fick 0,757 respektive 0,630 i 12 testskogsbränder. För RCM-data, som ger kompakt polarisering (compact-pol) vid C-bandet, förbättrar inkluderingen av funktioner genererade från m-$\chi$ kompakt polarisationsupplösning och radarvegetationsindex, i kombination med originalbilderna, prestandan ytterligare. Resultaten visar att utnyttjande av polarisationsnedbrytning och radarvegetationsindex förbättrar detekteringsnoggrannheten för baslinjemodeller för djupinlärning jämfört med att använda enbart kompakta polbilder. 

Sammanfattningsvis visar denna avhandling potentialen hos avancerade metoder för djupinlärning och jordobservationsdata med flera sensorer för att förbättra detektering av skogsbränder och kartläggning av brända områden, för att uppnå överlägsen prestanda över olika sensorer och metoder.

urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-356334