Till innehåll på sidan

Over-the-Air Computation for Machine Learning: Model Aggregation via Retransmissions

Tid: Fr 2022-09-30 kl 09.30

Plats: Sten Veler, Teknikringen 33 Floor 4

Videolänk: for online defense

Språk: Engelska

Ämnesområde: Elektro- och systemteknik

Licentiand: Henrik Hellström , Nätverk och systemteknik

Granskare: Professor Kaibin Huang, The University of Hong Kong

Huvudhandledare: Professor Carlo Fischione, Nätverk och systemteknik, ACCESS Linnaeus Centre; Professor Viktória Fodor, Nätverk och systemteknik

QC 20220909

Abstract

Med Internet of Things (IoT)-paradigmen, kommer över en miljard sensorenheter att samla en mängd data som saknar motstycke. Samtidigt har dataanalys revolutionerats av moderna maskininlärningstekniker (ML) som möjliggör avancerad behandling av massiva dataset. Många forskare föreställer sig en kombination av dessa två two teknologier för att möjliggöra spännande applikationer som miljöövervakning, Industri 4.0, och fordonskommunikation. Tyvärr är traditionella kommunikationsprotokoll ineffektiva när det kommer till att stödja distribuerad maskininlärning, där data och beräkningar är utspridda över trådlösa nätverk. Detta motiverar behovet av nya trådlösa kommunikationsprotokoll. Ett protokoll, over-the-air computation (AirComp), lovar att kommunicera med enorma fördelar när det kommer till energieffektivitet, latens, and spektrumeffektivitet jämfört med traditionella protkoll.

AirComps effektivitet beror på den fullständiga spektrumdelningen mellan alla medverkande enheter. Till skillnad från traditionell ortogonal kommunikation, där interferens undviks genom att allokera ortogonala radioresurser, så uppmuntrar AirComp interferens och nyttjar den för att räkna ut en funktion av de kommunicerade meddelanderna. Dock kan inte AirComp rekonstruera funktioner perfekt, utan introducerar fel i processen vilket försämrar konvergensen av ML-algoritmer. Det huvudsakliga målet med den här avhandlingen är att utveckla metoder som minskar dessa fel och att analysera de effekter felen har på prestandan av distribuerade ML-algoritmer.

I den första delen av avhandlingen behandlar vi det allmänna problemet med att designa trådlösa nätverksprotokoll för att stödja ML. Specifikt så presenterar vi en utförlig kartläggning som delar upp fältet i två kategorier, digital kommunikation och analog AirComp. Digital kommunikation syftar på ortogonala kommunikationsprotokoll som är optimerade för ML-måttstockar, t.ex. klassifikationskapabilitet, integritet, och data-vikt (data-importance), snarare än traditionella kommunikationsmål såsom jämlikhet, datahastighet, och tillförlitlighet. Analog AirComp syftar till AirComps applicering till distribuerad ML, där kommunikationseffektivitet, funktionsestimering, och integritet är viktiga måttstockar.

I den andra delen av avhandlingen fokuserar vi på det analoga AirComp-problemet. Vi beaktar ett nätverk med flera enheter och en server som kan nås via en länk, där den trådlösa kanalen modelleras som en multiple-access kanal (MAC) med fädning och additivt brus. Över en sådan kanal så associeras AirComps funktionsestimat med två sorters fel: 1) felinställningsfel orsakade av fädning och 2) brusinducerade fel orsakade av det additiva bruset. För att mildra felen föreslår vi AirComp med återsändning och utvecklar den optimala "power control"-algoritmen för ett sådant system. Dessutom använder vi optimeringsteori för att härleda begränsningar på konvergensen av ett AirCompsystem för distribuerad ML som tydliggör ett förhållande mellan antalet återsändningar och förlustfunktionen för ML-modellen. Slutligen visar vi att återsändningar kan signifikant förbättra ML-prestanda genom numeriska resultat, särskilt när signal-till-brus ration är låg. 

urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-317315