Research within electromagnetic engineering

The main part of the research aims at developing theory, methods and models for the design and application of electrical components and systems for electric power and telecommunication. Most of the work is carried out in interaction with industry or is inspired by problems in real apparatuses.

Our research is divided into seven different areas. 

Antenna theory and design

Antenna theory and design

Electromagnetic waves are launched and received by antennas. In response to the needs created by the above-mentioned trends, antenna theory and design has become another main area of research.

Applied Physics and Multiphysics Modeling for Power Components

Applied physics in Electrotechnology

 The fast advance on material science in the last decades is opening great opportunities to develop and/or improve electrical power system components (e.g. transformers, insulators, breakers, cables, etc) with optimum performance.

RCAM

Asset management

The asset management research develops models and methods for electrical systems, which relates the physical power system to system availability and total cost, with the aim to reach an optimal asset performance.

Electrification of transportations

Coming Soon..

Electromagnetic compatibility (EMC)

The research on electromagnetic compatibility explores the mechanism by which various sources produce electromagnetic disturbances, how disturbances couple to and affect other systems, and how the systems can be protected against electromagnetic interference, and thereby enhance its reliability. The research is multidisciplinary where electrical engineering, electromagnetics and physics of materials come together

Novel electromagnetic metamaterials and photonics

Electromagnetic metamaterials and metasurfaces

Metamaterials are materials that possess unusual macroscopic electromagnetic behaviour created by their sub-wavelength periodic structure. This field of research began its life in the realms of theoretical physics, moving more recently into the engineering domain. The full opportunities offered by metamaterials were finally exploited when the concept of metasurfaces was recently introduced. Metasurfaces are thin metamaterial layers, which can be employed to produce unusual reflection and transmission properties of incident plane waves, to prevent the propagation of electromagnetic waves or to guide surface waves with a plasmonic response. These metasurfaces are used to control the propagation of electromagnetic surface waves by modulation of the surface impedance.

Energy storage for Smart grid

Energy storage systems (ESS) are needed in the grid both at the consumer level and at grid level. There uses are many and include facilitation of the introduction of renewable energy sources (that are inherently random) such as wind power, for load leveling and energy demand management, for improving power quality, for financial incitement and more. Different types of ESS have widely different characteristics and are suitable for different tasks and situations.

Insulation Diagnostics

Insulation diagnostics

The integrity of the electrical insulation is of greatest importance in the reliability of high voltage equipment. Failure of the insulation system may cause an interruption of service, or in worst case a complete damage of the equipment with a costly replacement.

Lightning and Lightning Protection

Lightning strikes to unprotected structures can lead to disastrous consequences due to loss of life and damage or destruction of property. The multidisciplinary work on this research area focuses on the study of fundamental physical aspects on lightning flashes and the usage of this knowledge to mitigate the effects of the high currents and electromagnetic fields generated during lightning strikes to structures.

Page responsible:Web editors at EECS
Belongs to: Electromagnetic Engineering
Last changed: Jan 24, 2019