

An introduction to Arm

Arm is the world's leading semiconductor intellectual
property supplier

We license to over 350 partners: present in 95% of smart phones,
80% of digital cameras, 35% of all electronic devices, and a total of
60 billion Arm cores have been shipped since 1990

Our CPU business model:

License technology to partners, who use it to create their own
system-on-chip (SoC) products

* We may license an instruction set architecture (ISA) such as
“Armv8-A”

e oraspecificimplementation, such as “Cortex-A72”

Partners who license an ISA can create their own implementation,
as long as it passes the compliance tests

2 © 2017 Arm Limited

...and our IP extends beyond the CPU
arm

Early HPC deployments

3

© 2017 Arm Limited

Bl University of
BRISTOL

@ Isombard GW/F

Isambard system specification (red = new info):

* Cray “Scout” system — XC50 series

* Aries interconnect
10,000+ Armv8 cores
« Cavium ThunderX2 processors
» 2x 32core @ >2GHz per node
Cray software tools
Technology comparison:
» x86, Xeon Phi, Pascal GPUs
Phase 1 installed March 2017
« The Arm part arrives early 2018

http://gw4.ac.uk/isambard 5 bl’lStOlaCUk

arm

4

Catalyst UK

Accelerating Arm adoption in the UK

Sites and Target HPC

Applications:

— EPCC: WRF, OpenFOAM, Rolls
Royce Hydra opt, 2 PhD
candidates

— Leicester: Data-intensive apps, UNIVERSITY OF
genomics, MOAB Torque, @ LEICESTER
DiRAC collab

— Bristol: VASP, CASTEP,
Gromacs, CP2K, Unified Model,
Hydra, NAMD, Oasis, NEMO,
OpenlFS, CASINO, LAMMPS

CSPCC

Elic University of
BRISTOL

© 2017 Arm Limited

Typical Cluster for each site:
= 64 x Apollo 70 Compute Nodes (2 racks):
= Dual socket Cavium 32c, 2.2 GHz
= 256GB memory (16GB DIMMSs)
= Mellanox IB EDR CX5 Clos
= 4096+ cores

Coordinated by:
Directors’ Forum
Digital Curation Centre & NeSC

e-Science Centres in the UK X

CCLRC Daresbury —
Birmingham
Oxford

S

Infrastructure Institute Southampton LeSC

s
Open Mlddlewlaé 2

Astra

Future

Manguard ASC
Platforms
Cavium

HPE/Comanche //

ThunderX
| Astra
|

Mayer ‘ @ = Retired

I Petascale ARM

‘ Platform
. Delivery Aug/Sep = 2015
Sullllvan Pre-GA 2018
l Cavium = 2017
. ThunderX2 HPE Apollo 70
Cavium 47 nodes Cavium ThunderX2 = 2018
ThunlderX Mellanox ConnectX-
5
Sept 2011 Applied Micro 32 nodes Switch-1B2
X-Gene-1 2592 nodes
47 nodes TODAY

Beskow 2.43 petaflops (source)
Astra 2.32 petaflops (source)

5 © 2017 Arm Limited q rm

https://www.pdc.kth.se/hpc-services/computing-systems/beskow-1.737436
https://share-ng.sandia.gov/news/resources/news_releases/arm_supercomputer/

Japan

Post-K: Fujitsu HPC CPU to Support ARMv8 ARM rujitsu

r e Post-K fully utilizes Fujitsu proven supercomputer microarchitecture

Fujitsu, as a lead partner of ARM HPC extension development, is
working to realize ARM Powered® supercomputer w/ high application
performance

ARM v8 brings out the real strength of Fujitsu’s microarchitecture

HPC apps acceleration feature Post-K FX100 FX10 | K computer
FMA: Floating Multiply and Add | v
Math. acceleration primitives* | v Enhanced

Inter core barrier v
Sector cache v Enhanced
Hardware prefetch assist v Enhanced v

Tofu interconnect vintegiated = ¢Integrated

* Mathematical acceleration primitives include trigonometric functions, sine & cosines, and exponential

6 © 2017 Arm Limited q rm

Conrad : Support Engineer - Arm Allinea Studio and Arm Forge

A quick glance at what is in Arm Allinea Studio

(£+

C/C++ Compiler
AArch64

oC++ 14 support
*OpenMP 4.5 without offloading
oSVE ready

7 © 2017 Arm Limited

Fortran

Fortran Compiler
AArch64

eFortran 2003 support
ePartial Fortran 2008 support
*OpenMP 3.1

*SVE ready

ooooo

Performance Libraries
AArch64

*Optimized math libraries
*BLAS, LAPACK and FFT
eThreaded parallelism with OpenMP

Forge (DDT and MAP)

Cross Platform

eProfile, Tune and Debug
eScalable debugging with DDT
eParallel Profiling with MAP

Performance Reports
Cross Platform

eAnalyze your application

eMemory, MPI, Threads, I/0O, CPU
metrics

arm

Conrad : Support Engineer - Arm Allinea Studio and Arm Forge

A quick glance at what is in Arm Allinea Studio

(£+

C/C++ Compiler
AArch64

oC++ 14 support
*OpenMP 4.5 without offloading
oSVE ready

8 © 2017 Arm Limited

Fortran

Fortran Compiler
AArch64

eFortran 2003 support
ePartial Fortran 2008 support
*OpenMP 3.1

*SVE ready

¢
)
)
O\ D)
o0
60
X0
L)
"
L

\

{}
0
BN
OO0
AN
AO08
O
X
&

)

Performance Libraries
AArch64

*Optimized math libraries
*BLAS, LAPACK and FFT

eThreaded parallelism with OpenMP

Forge (DDT and MAP)

Cross Platform

eProfile, Tune and Debug
eScalable debugging with DDT
eParallel Profiling with MAP

Performance Reports
Cross Platform

eAnalyze your application

eMemory, MPI, Threads, I/0O, CPU
metrics

arm

+ + + + + + * + *
+ + + + + + + + + + +
+ + + + + + + + + + +

2017 Arm Limited

arm

&+

Summary :

Overview

Introduction

Arm Performance Reports / \

Arm MAP Arm DDT

Hands - On : Launch MAP Hands - On : Launch DDT

Hands - On : Launch Perf-reports Hands - On : SIGFPE
Hands - On : Memory Debugging

Hands - On : Vectorization

Hands - On : Workload Imbalance \ /

10 © 2017 Arm Limited a rm

+ + + + + + + + + + +

verview

+ + + + + * + *
+ + + + + + + + + + +
+ + + + + + + + + + +

2017 Arm Limited

arm

&+

Extra documentation

PDC Documentation : https://www.pdc.kth.se/software/software/allinea-forge/index.html

Arm DDT User Guide : https://developer.arm.com/docs/101136/latest/ddt

Arm MAP User Guide : https://developer.arm.com/docs/101136/latest/map

Arm Performance Reports User Guide : https://developer.arm.com/docs/101137/latest/introduction

Arm Forge Webinars : https://developer.arm.com/products/software-development-
tools/hpc/training/arm-hpc-tools-webinars

12 © 2017 Arm Limited a rm

https://www.pdc.kth.se/software/software/allinea-forge/index.html
https://developer.arm.com/docs/101136/latest/ddt
https://developer.arm.com/docs/101136/latest/map
https://developer.arm.com/docs/101137/latest/introduction
https://developer.arm.com/products/software-development-tools/hpc/training/arm-hpc-tools-webinars

We do tools for a single reason:
help people save their time.

Bug
Resolution

Solver
tuning

Bottleneck
isolation

arm

Achieving performance portability

Turn

. informatio

T,lfm alot into better
of” data into code

‘ - meaningful
etrieve information

useful data

~ “Use powerful
/ tools easily

14 © 2017 Arm Limited a rm

Using powerful tools more easily

e Fast and easy
alternative to X-
Forwarding and
VNC

e Simplifies
Reverse integration with
Connect job submission
scripts

e Automation of

: debugging &
Continuous o
Integration profiling for

professional
workflows

15 © 2017 Arm Limited a rm

Generating useful and meaningful information

Scalable & e e
Portable ® 6 & & 0 o

Profiled: clover_leaf on 32 processes, 4 nodes, 32 cores (1 per process) Sampled from: for 408.1s

Application activity

Cross-Process Comparison View

Expression: [dynamicArray

CPU floating-point

o Mol Cloverleaf Metrics =

Lustre write transtfer

= sezMEs | Ouﬂfl Clowverleaf customm metrics

Data CO I I eCtI O n Lustre d perations M"I‘I";":t’e‘l Average lterations per second 3.88 iterations =
o o ::Zﬂ,,ea,, Maximum lterations per second 26.0 iterations /s [E__

L“s:::meomm Average Grind time per cell 17.0ns |
s, 115 o i) i thra S o Maximum Grind time per cell 17.5 ns N W

B !;'P_l Average Step time per cell ze1ns R

Maximum Step time per cell 1.25 s

D ata Profiled: mmuli4_sol_c.exe on 16 processes, 1 node, 272 cores (17 per process) Sampled from: for 48.1s Hide Metrics...

processing A e
Memory usage “‘— ‘

TCEME

o

18.428s, 38.3% of total: OpenMP 61.1 %, MPI 2.0 %, File I'0 13.7 %, Synchronisafion 0 & %, OpenMP overhead 13.5 %, Sleeping © % Zoom] 20

16 © 2017 Arm Limited

arm

Arm Forge

An interoperable toolkit for debugging and profiling

Commercially supported
by Arm

1

N B
Fully Scalable

° @
Very user-friendly

17 © 2017 Arm Limited

The de-facto standard for HPC development

- Most widely-used debugging and profiling suite in HPC
« Fully supported by Arm on Intel, AMD, Arm, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities

- Powerful and in-depth error detection mechanisms (including memory debugging)
- Sampling-based profiler to identify and understand bottlenecks
- Available at any scale (from serial to petaflopic applications)

Easy to use by everyone

- Unigue capabilities to simplify remote interactive sessions
- Innovative approach to present quintessential information to users

arm

Arm Performance Reports

Characterize and understand the performance of HPC application runs

vl Gathers a rich set of data
5," - Analyses metrics around CPU, memory, IO, hardware counters, etc.
- Possibility for users to add their own metrics
Commercially supported
by Arm
Build a culture of application performance & efficiency awareness
- Analyses data and reports the information that matters to users
@ - Provides simple guidance to help improve workloads’ efficiency
Accurait:;‘g”h‘ia““te Adds value to typical users’ workflows
- Define application behaviour and performance expectations
- Integrate outputs to various systems for validation (e.g. continuous integration)
? - Can be automated completely (no user intervention)
X

Relevant advice
to avoid pitfalls

18 © 2017 Arm Limited a rm

19

9 Step guide: optimizing high performance applications CQI'M

Improving the efficiency of your parallel software holds the key to solving more complex research problems faster.
This pragmatic, 9 Step best practice guide will help you identify and focus on application readiness, bottlenecks
and optimizations one step at a time.

re-—======"="

Iouo

«" Discover lines of code spending along
time in 1/0.
+" Trace and debug slow access patterns.

| © Buss | I I
I +" Correct application. I I +" Measure all performance aspects. I
L o— — — ——e——_———u You can't fix what you can't see.

I +" Prefer real workloads over artificial tests. I

Fr———————

@ Workload

+" Detect issues with balance.
+" Slow communication calls and processes. I
Dive into partitioning code.

——_—_1

| © Communication I

L——————————J

I +" Track communication performance. I
+" Discover which communication
I calls are slow and why. I

e —

L———————J

e —— [— = —— F—— —— —
re—hﬂ— — — — — — O I o Cores I I I I o Verification I
emor
| Y I - BFs A e T I I + Understand numerical intensity I 4/ Validate corrections
overhead and core utilization. and vectorization level. and optimal Performance.

+" Reveal lines of code bottlenecked

I by memory access times. I
+" Trace allocation and use of hot

I datastructures. I

I +" Synchronization-heavy code and I I + Hot loops, unvectorized code I I I
implicit barriers are revealed. and GPU performance revealed.

L———————J

4

Key:

+ QrMmPERFORMANCE REPORTS R

v ArMFORGE

+ + + + + + + + + + +
+ + + + + + + + + + +
rm
+ + + + + + + + * + *
+ + + + + + + + + + +
+ + + + + + + + + + +
+ ¢

2017 Arm Limited

arm

&+

9 Step guide: optimizing high performance applications CQI'M

Improving the efficiency of your parallel software holds the key to solving more complex research problems faster.

This pragmatic, 9 Step best practice guide will help you identify and focus on application readiness, bottlenecks
and optimizations one step at a time.

re-—======"="

Iouo

«" Discover lines of code spending along
time in 1/0.
+" Trace and debug slow access patterns.

r--—=—=—===-==""7

L—————————J

I +" Correct application. I +" Measure all performance aspects. I
L oe— — — —_——e—_——e——a You can't fix what you can't see.
I +" Prefer real workloads over artificial tests. I

Fr———————

@ Workload

+" Detect issues with balance.
+" Slow communication calls and processes. I
Dive into partitioning code.

——_—_1

L I N — — — — LI] J

| © Communication I

I +" Track communication performance. I
+" Discover which communication

I calls are slow and why. I

e —

L———————J

| e | ro. - - - =—=-=1

Cores
10 | |

I +" Discover synchonization I I v Underslan‘d nu_merical intensity I
overhead and core utilization. and vectorization level.
I +" Synchronization-heavy code and I I + Hot loops, unvectorized code I
implicit barriers are revealed. and GPU performance revealed.

L———————J

Fr————— —

| © Verification

%" Validate corrections
and optimal Performance.

r———————1

| © Memory

+" Reveal lines of code bottlenecked
I by memory access times. I
I +" Trace allocation and use of hot I

e ——— |

data structures.

L———————J
L———————J

LLLLI
7

Key:

+ QrMmPERFORMANCE REPORTS
v ArMFORGE

Migrate and debug application

Switch between
OpenMP threads 1

File Edit View Control Tools Window Help

|»[w B a0 BBl ElES

L BT

|| current Group: [l =

Focus on current: Group {~ Process

CIEIE]IE]

Sources

Project Files ex| ¢
[Search (Ctri+K) % 60
2 _ 61
File View Cg - & Application Code - 2:
-/ 63
L i H Headers G
65
66

main.c| | | £ hydro_godunov.e [|

000006000

int Hnxt,
int Hnyt,

& conservarc [] |

int Hoxyt,
const int slices,
real t uold[Hnvar * Hnxt * Hnj
[

~Current Grou & int 1, 3, ivar, s;
= £ cclock.c
B mpflx 2 Laccioo o . o
Al
Create Group
Project Files B® [‘= MpiEnvironment.cc 2 I o LatticeData.cc ¥ ‘ € xyzpart.c 3
Search (Ctrl+K)] € 346 if (allpicks[i].val = -1) . .
547 allpicks[ntsamples++] = allpicks[i];

[+ ™ template.cc - 548

[+ ™ template_annotator.cc 549

- template cache.cc 550 /* Sort all the picks */

Memory Leak Report

Al 8 ranks:

Rank 0: 583.11 kB
Rank 1: 58.71 «6 I I
Rank 2: 58.71 kB
Rank 3: 5871 «B [0 W
Rank 4: 56.71 k3 [l I
Rank 5: 58.71 kB
Rank 6: 5871 kB
Rank 7: 58.71 k& [W W

| This. raport shows unfreed meenory allocatians when the program fnished executing. Clicking an item in the bar

es, allpicks);

atianal dataits

Legend lal splitters. Set the
BN NN N main (mmutd.ci139) i++)
ompl_free_ist_orow picks[i*ntsamples/ng
- event_del_nternal (minheap-internal.h) = IDX MIN;
W ottr = IDX MAX;

e allpicks */

Integrate to
continuous
integration tools

22 © 2017 Arm Limited

™
EJ--E Vector3DHemeLb.cc 563 STOPTIMER(ctrl, ctrl-=AuxTmr2);
#- ' VelocityField.cc 564 STARTTIMER(ctrl, ctrl->AuxTmr3);
& Viewpoint.cc 565
] - ! [566 /* Compute the number of elements that

Input/Output | Breakpoints | Watchpoints | Stacks | T

I Tracepoint Output 1 Logbook 1

Stacks

Processes Threads Function

17220 117220 [|=main (main.cc:37)
17220]17220[] [SimulationMaster::
17220 17220] [SimulationMaster

imulationMaster (SimulationMaster.cc:63)
itialise (SimulationMaster.cc:154)

:OptimiseDomainDecomposition (Geometry|

dDecomposition::OptimisedDecom
dDecomposition::CallParmetis (Of

Display pending
communications

17220 J17220[] = hemelb::geometry::GeometryReader::LoadAndDecompose (GeometryReader.cc:1§
17220 17220] eometry::GeometryReader:

172200 117220 | g ry::dec iti p

17220 172200 = hemelb::g ry::dec -:0p

172200 117220 | =ParMETIS_V3_PartGeomKway (gkmetis.c:90)

Coordinate_Partition (.

const int

¥ Unexpected

<value optimized out>
——1065353216
<value optimized out>

L EFFE]

284 127 O Show local ranks
@® show global ranks
[] only ranks with messages
Select communicator
MPI_COMM_WORLD I
MPI_COMM_SELF
MPI_COMM_NULL
il 1[+]
256 [Show Diagram Key]
[Update]
Text Communicator Queue Pointer From (local) | From (global) o (local) To (glebal)
1 Receive: 0x8... MPI COMMUN... Receive 0x0 149 405 113 369
2 Receive: 0x8... MPI COMMUN... Receive 0x0 16 272 193 429
3 Receive: 0x8... MPI COMMUN... Receive 0x0 111 111 44 44
4 |Receive: 0x8... MPI COMMUN... Receive 0x0 174 430 252 508
§ —mcaiia LI COMLNfacsi e 130 e 151
1

Visualise data

structures

rm

Five great things to try with Arm DDT

23

upic | st | Vo | T | oo | swwon | f- T s

Tracepoini Output

TRl =@ ; 1< 5IZE N; i++)
AL

j -8
CLLI[]] = &:

Tracepoint Processes

ol =8 ;1% SIFE M) ivr]

976, ranks -
v e N s g M e

90, ranls.

vhone. 0 81 LARAN s — 1 kmax ez

for [j =@ ; s ; jrel

for [k = 8 ; k « SIZE 0; kel

CLLIE] 4= ali] k] = ELK[L1];

a4, ranks -ll i
™,
hone 085 . | ™ ARIY ol .H M8 mod

O ——

MFL 5 Process O:

929, ranks.
e BT e e
919, ranks

vhone 13085 DAIN mype ‘-ﬂ, AN38Y ol H_ 28 mad

'vhone {2081

MFT A i Frocess stopped st watchpoint “rank® in man [watchmatnc.cd51.

Odd vmkan: 0
Hew walua: LOTATOM00

~ AWayT show Ehis window for watchpoants

268, ranks
vheneSOEL s, | T T e

AncTey 142 = Continue || ¥ Pavase | Pause &l |

£84, ranks

The scalable print
alternative

[(arge
For It = @: i = GTPF H: d44)

£ hello.c ¥

M This file is newer than your program. Please recompile then restart yoi

else
A test=-1;

= void func3()

void* i = (void*) 1;
A while(i++ || ')
free((void*)i):
A portability Tis of type 'void *'. When using void pointers in calcula

Left click to add a breakpoint on line 50
55 {

SR tunaThrea tect .

Static analysis warnings
on code errors

© 2017 Arm Limited

&% !stremp(argv[i], "crash")) {

0;
s", *(char **)argv[il);

1
* Program Stopped
' Processes 0-3:

Memory error detected in main (hello.c:118):

null pointer dereference or unaligned memory access

Mote: the latter may sometimes occur spuriously if gual
enabled

Tip: Use the stack list and the local variables to explore
current state and identify the source of the error.

E- Continue

Detect read/write
beyond array bounds

Detect stale memory
allocations

arm

Arm DDT - The Debugger

Who had a rogue behavior ?

- Merges stacks from processes and threads
Where did it happen?

- leaps to source
How did it happen?

- Diagnostic messages

- Some faults evident instantly from source
Why did it happen?
- Unique “Smart Highlighting”

- Sparklines comparing data across processes

24 © 2017 Arm Limited

Run
with Arm tools

Identify
a problem

Locals Curreni Line(s) l Current Stack I

.-_.l Current Line(s)

Gather info

Who, Where, How,
Why

Fix

= X

Variable Name Value
mype W"L 2724

150120
150120
150119]

Zinitialize_pop (initial f90:119)
Zinit_communicate (communicate f90:87)
§--create_ocn_oommunicator (communicate f90:300)
create_ocn_communicator (communicate f90:303)

Hands - On:

+

Set up the Tools

+ + + +
+ + + +
KS

© 2017 Arm Limited
4

Fs

arm

Reverse-Connect — Client / Laptop side

kinit —-f <userName>@NADA.KTH.SE

klist —f

export PATH=SPATH:<pathToForgelnstall>/bin
export PATH=SPATH:/home/prace/arm/forge/bin
ddt --version

ddt

26 © 2017 Arm Limited q rm

Run and debug a program. PDC-PRACE - Tegner

/pdc/volfallinea-forge/18.1.1/amd&4_co7/

Attach to an already running program.
Open a core file from a previous run.

Manually launch the backend yourself.
OPTIONS

Remote Launch:
[Cunﬁgure...

QuIT

Duplicate
Remove
Move Up

Move Down

Close

Connection Name: [PDC-PRACE - Tegner

Host Name: [conhil01@tegner.pdc.kth.se

How do | connect via a gateway (multi-hop)?

Remote Installation Directory: [,.fpdcfvolfallinea—furgefl8.1.1,.famd54_cu?,.f

Remote Script [Optional

Always look for source files locally

e ['_I'est Remote Launch]

[OK

| concel |

27 © 2017 Arm Limited

: Test Remote Launch

Remote Launch test completed successfully.

Hostname: tegner-login-1.pdc.kth.se
05: CentOSs Linux release 7.5.1804 (Core)
Version: 18.1.1

<< Hide Terminal

/home/conhil01/DDT/18.1.1/1ibexec/remote—exec conhil0l@tegner.pdc.kth.se /Spdc/vo
l/allinea-forge/18.1.1/amdé4_co7//libexec/ddt-remoted

arm

Connect to Remote Host

Connecting to conhildl@tegner.pdc.kth.se ... PO p —_— U p

Wait

RUN
Run and debug a program. Run and debug a program.
| ATTACH
Attach to an already running program. Attach to an already running program.
OPEN CORE

Open a core file from a previous run. Open a core file from a previous run.

MANUAL LAUNCH (ADVANCED)

Manually launch the backend yourself Manually launch the backend yourself.

OFTIONS OPTIONS

Remote Launch: Remote Launch:

Off e | PDC-PRACE - Tegner :
a Configure...

PDC-PRACE - Tegner Reverse-Connect
Client ready

28 © 2017 Arm Limited a rm

Reverse-Connect — Server / Cluster side

ssh conhilOl@tegner.pdc.kth.se

module load i-compilers

module load intelmpi

module load allinea-forge

cd /cfs/klemming/nobackup/c/conhil0O1l

cp /afs/pdc.kth.se/home/c/conhil01l/Public/arm trial.tar.gz
tar —xvf arm trial.tar.gz

cp /afs/pdc.kth.se/home/c/conhil01l/Public/Licence kth
unset ALLINEA LICENSE FILE modshare

unset ALLINEA LICENSE FILE

export ALLINEA FORCE LICENCE FILE=$PWD/Licence kth

cd arm trial

cd 0 test reverse connect

make

salloc —nodes=1 -t 00:10:00 —-A pdc-test-2018

datrreEsnnect mpirun -n 2 ./hello c.exe arm

Reverse-Connect — Client / Laptop side

Run: mpirun -n 2 ./hello_c.exe

Details

® Reverse Connect Request Command: | mpirun -n 2 ./hello_c.exe

@ A new Reverse Connect request is available from tegner- OpenMP
login-1.pdc.kth.se for Arm DDT. —
Command Line: —connect mpirun -n 2 ./hello_c.exe Memory Debugging
Do you want to accept this request?

=3

Plugins: none

Details

l [Disconnect

Help] [Options a [

30 © 2017 Arm Limited

arm

User Interface

File Edit View Control Tools Window Hell

31

>l EH & S HEBLEE ! O-D-

Focus on current: @ Process () Thread | | Step Threads Together Step CUDA threads by: |Warp (default) ' %

Project Files @® N ¢ mmult2.c X Locals | Current Line(s) | Current Stack = GPU Devices
Search (CLri+K) l € 54 fprintf(f, "%g\t", A[i*size+i]); [« | Current Line(s)
53]
— nynny s Variable Name Value
=N | Appllcatlon Code g'? . fprintf (£, \n"); .
® / 58
— Ox7fffffff3ca8
' Sources 59 felose (f); x ca
@ mmu 60}
m t argc, char *arg gé
® m““!(!SE?'dOUbIe'A- 63 B int main(int argc, char *argv[])
& mwrite(int size, double * 64 W
& my_abort(int err) : void 63 int myrank, nproc, size, slicej
. m (1 double *mat_a, *mat_b, *mat_c; =
- xtl . rl;rél(;ldltz.(u &7 char filename'[EZ]; ’ ! 1
& Extemal Lode 68 MPI_Status st;
69 —
T0 MPI Tnit (&3argc, &arqv);
71 MPI_Comm_rank (MPI_COMM_WORLD, &myrank); /f my rank
T2 MPI_Comm_size (MPI_COMM _WORLD, &nproc); // number of processors
73
T4 B iffargc > 3)
T3
T6 B if(myrank == 0)
77 {
Kk printf("Usage: ./mmult2.exe SIZE FILENAME\n \
79 \tS : size of the matrix to compute (default is %d)\n \
80 NAME: output matrix file name (default is %s)‘\n", DEFAULT_SIZE, DEFAULT_FN);
81 }
82
83
84 3
85 & else ||
L
Input/Output | Breakpoints | Watchpoints | Stacks | Tracepoints | Tracepoint Qutput | Logbook | Evaluate
Stacks & Expression Value
Function hd

main (mmult

© 2017 Arm Limited

arm

User Interface — Source code viewer

fle Edit View Control Jools Window Help

»lE 4 S KB EIEE ! B-0 0O

Focus on current: @ Process () Thread | | Step Threads Together Step CUDA threads by: | Warp (default) &

Project Files

Locals | Current Line(s) | Current Stack | GPU Devices
search (Ctrl+K) gg fprintf(f, "%g\t", A[i*size+]]); @6
— " ; Value
= @ Application Code 27" § fprintf(f, "\n"); T
®m/ 58
= ¥ Sources 59 fclose (f); Ox7fiffiti3cad
60 }
® main(int argc, char *arg i
® m'mt.(m!:s'z?'doub'e'k 63 Bl int main(int argc, char *argv(])
® mwrite(int size, double * 64 | {
® my abort(int err) : void 65 int myrank, nproc, size, slice;
" > 66 double *mat_a, *mat_b, *mat_c;
- ?xt' ;"2::2'(" | N char filename'[32]; ! ‘
8 em e 68 MPI_Status st;
69
70 MPI_Init (Larac, &arav);
T1 MPI_Comm_rank (MPI_COMM_WORLD, &myrank); // my rank
72 MPI_Comm_size (MPI_COMM_WORLD, &nproc); // number of processors
73
74 8 if (argc > 3)
73 {
76 B8 if (myrank == 0)
77
78 printf("Usage: ./mmult2.exe SIZE FILENAME\n \
79 \tS size of the matrix to compute (default is %d)\n \
80 NAME: output matrix file name (default is %s)\n", DEFAULT_SIZE, DEFAULTI_FN);
81 }
82
B3
84
858
1l I D) e: none selected
Evaluate Be

Stacks
Function W
main (mmult2.c:70)

Expression Value

32 © 2017 Arm Limited a r m

User Interface — Play/ Pause / Step

Play : Run everything. Use typically at the beginning or after Pause
Pause : Stops running current kernel

Step In : Enter a function call and display source code of the function

Step Over : Execute current line of code
Step Out : Comes back one stage above current stack

File Edit View Control Tools Window Help

> [i] (B El ! -9 0 ©

s

Focus on current: @ Process () Thread | | Step Threads Together Step CUDA threads by: [Warp (default) <

Threads
Project Files £ mmult2.c X
54 fprintf (f, "%g\t", A[i*size+]]);

Search (Ctrl+K) = }
- @ Application Code g MRS, T 38
+ /

33 © 2017 Arm Limited

arm

User Interface — Add Break: oints — Waz 1

Location:
@ Line File: [5er5,fhcl-c:]E-,fDDT,.I'ExampIEEJCUDA_debuggingfmmultZ.cl

Line Number: E

") Function []
CHE CUIL ViCW SULUE UUiD wWiiiuuwe ey APPIIES-E]
> & 3 B Ee Bl Ef =)/ "o RS Thread: Al 3|

Hit Limits:

Start on the n-th pass: _E
Trigger every n-th pass: C@
Stop after n hits: E

Condition: [

L1

Language:

(o o |

34 © 2017 Arm Limited r m

User Interface — Add Breakpoints — Way 2

File Edit View Control Tools Window

B & 5 B B

> | i

In the source code viewer,
on the left, left click on the line
to add a Breakpoint

Project Files

Help

El Bt Bj !

Focus on current: @ Process () Thread | | Step Threads Together Step CUDA threads by: [Warp (default) <]

n-- 0 ©

-~

@® [£ mmult2.c X

Search (Ctrl+K)

Typical next action : Play

o« mmult2.cu X

= @ Application Code
-/
= ¥ Sources
= € mmult2.c

External Code

35 © 2017 Arm Limited

- ® main(int argc, char *arg
- ® minit(int size, double *A’
® mwrite(int size, double *
® my_abort(int err) : void

19

// CUDA version of mmult:
—global__ void mmult_kernel (int size, int nslices, double *A,

)

size, pitch_A_nbelem, pitch_B_nbelem,

// Set thread i
int 1 = bloc
int j = bl

double res

dx.y;
dIdx.x;

// Make sure we don't write any value out of C because the g:
if(1 < size/nslices && j < size)
{
for(int k=0; k<size; k++)
{
res += A[i*pitch_A_nbelem+k] * B[k*pitch_B_nbelem+j];
}

Cli*pitch_C_nbelem+j] += res;

arm

Reverse-Connect — Client / Laptop Side

e EQiL View Lontrol Jools Window Help

[EMNSPREEIEEERE ! A-9--0 © m_gdlt View Control Tools Window Helf
urrent Group: = Focus on current: @ Group () Process () Thread Step Threads Together uew Session... >
! &= Load Session...
eate Group
oject Files B® | € hello.c X _ 'c:‘:::t Lin;ﬁ(;;rent Line(s) | Current Stack = §ave SESSIOI:L..
arch (Cri+K] “ Bl : = Restart Session...
& Application Code
@/
= ¥ Sources
[Cenasessin
B Extem; cr;ja;n(mt arge. char**an 's? Every process in your praram has terminated - would you like to L
\) restart this session from the beginning? Open s°urce File ctr|+o
B
Process 0 has finished. tj
E3 Save Source File As.... Ctrl+Shift+S
essors\ne 8
Close Source File Ctrl+w
n Close All Source Files
) - 5a =
"pUt/OUtpUt | Breakpoints | Watchpoints | Stacks | Tracepoints | Tracepoint Output | Logbook | Evaluate & £+ Build Ctri+B
put/Output @ & | Expression Value C ﬁ B ld
Hello world from processor tB1n45.pdc.kth.se, rank @ out of 2 processors | o0 gure it
e i essor te1nas.pdc.kth.se, rank 1 out of 2 processors
Commit...
Options...
Import Configuration File...
lote: Arm DDT can only send input to the mpirun process with this MPI implementation It
¢pe here ("Enter’ to send): l More - gu

36 © 2017 Arm Limited a rm

Hands — On :

SIGFPE |

4

© 2017 Arm Limited
+

e

+ +
+ +
+ +

+

rithmetic

+

+

+

4

Fy

Xxception

+

arm

Matrix Multiplication Example

C=AxB+C

38 © 2017 Arm Limited a rm

Environment configuration (reminder)
ssh conhi110ldtegner.pdc.kth.se

module load i1-compilers
module load intelmpil
module load allinea-forge

cp /afs/pdc.kth.se/home/c/conhil0l/Public/arm trial.tar.gz
tar —xvf arm trial.tar.gz

cp /afs/pdc.kth.se/home/c/conhil0l/Public/Licence kth
unset ALLINEA LICENSE FILE modshare

unset ALLINEA LICENSE FILE

export ALLINEA FORCE LICENCE FILE=$PWD/Licence kth

39 © 2017 Arm Limited q rm

Hands — On : SIGFPE

1 interactive debugging

Compile the program

Run one of the bilnaries. What do you see °?

Let’s debug 1t then !

Recompile with DEBUG=1, launch DDT and .. debug !
Can you find where the problem comes from °?
Modify the code and recompile (in DDT)

Relaunch the program.

40 © 2017 Arm Limited q rm

Hands-On:
Memory Debuggin

© 2017 Arm Limited

arm

o

Heap debugging options available

42

© 2017 Arm Limited

basic

eDetect invalid pointers
passed to memory
functions
(e.g. mallog, free,
ALLOCATE,
DEALLOCATE,...)

check-fence

*Check the end of an
allocation has not been
overwritten when it is
freed.

free-protect

*Protect freed memory
(using hardware
memory protection) so
subsequent read/writes
cause a fatal error.

Added goodiness

*Memory usage,
statistics, etc.

free-blank

eOverwrite the bytes of
freed memory with a
known value.

alloc-blank

elnitialise the bytes of
new allocations with a
known value.

check-heap

eCheck for heap
corruption (e.g. due to
writes to invalid
memory addresses).

realloc-copy

eAlways copy data to a
new pointer when re-
allocating a memory
allocation (e.g. due to
realloc)

Thorough

check-blank

*Check to see if space
that was blanked when
a pointer was
allocated/freed has
been overwritten.

check-funcs

eCheck the arguments of
addition functions
(mostly string
operations) for invalid
pointers.

arm

Guard pages (aka “Electric Fences”)

| | | | | | |
4 kBytes MEMORY ALLOCATION G:AZRED G:A/Z?
(typically
) S I A
onoE | PaGE MEMORY ALLOCATION

* A powerful feature...:

* Forbids read/write on guard pages throughout the whole execution

(because it overrides C Standard Memory Management library)

e ...tobe used carefully:
» Kernel limitation: up to 32k guard pages max (“mprotect fails” error)

 Beware the additional memory usage cost

43 © 2017 Arm Limited a rm

Compilation flags for memory debugging

Compiler : -00 —-g

Linking: -L<path to DDT install>/1ib/64 -Wl,--allow-multiple-
definition, --undefined=malloc, --undefined= ZdaPv -
ldmallocthcxx

44 © 2017 Arm Limited a rm

Memory debugging

Memory Debugging Options
Preload the memory debugging library Language: =

B o i e ol st relmk i against e dmafoc s

your program is statically linked, you must relink it against the dmalloc library

Run and debug a program. Run: srun —reservation=hackathon -C gpu -n 1 ./mmult2.exe Details m:;::lgébuggmg
Attach to an already running program. Command: [srun —reservation=hackathon -C gpu -n 1 .fmmult2 .exe] FE.St . BE'?”CE‘J . Thuruulgh Custulm
OpenMP — I
Open a core file from a previous run. ~| CUDA: Track allocations: enabled, Detect invalid accesses: enabled Details Erabled Checks: [baskc.check Tonce Tee protect Hore piormation
Manually launch the backend yourself +| Track GPU allocations (also enables CPU memory debugging) Heap Overflow/Underflow Detection
T e e +| Add guard pages to detect out of bounds heap access
+| Memory Debugging: Fast / Balanced, 1 guard page after, Backtrac Details... Guard pages: Add guard pages:
Remote Launch: Plugins: none Details Advanced
+| Check heap consistency every | 100 E heap operations
| Store stack backtraces for memory allocations
et] [LI g l [LR Only enable for these processes:
[100% | Select All X2 x0.5 1%

o [o |

45 © 2017 Arm Limited q rm

Environment configuration (reminder)
ssh conhi110ldtegner.pdc.kth.se

module load i1-compilers
module load intelmpil
module load allinea-forge

cp /afs/pdc.kth.se/home/c/conhil0l/Public/arm trial.tar.gz
tar —xvf arm trial.tar.gz

cp /afs/pdc.kth.se/home/c/conhil0l/Public/Licence kth
unset ALLINEA LICENSE FILE modshare

unset ALLINEA LICENSE FILE

export ALLINEA FORCE LICENCE FILE=$PWD/Licence kth

46 © 2017 Arm Limited q rm

Hands — On : Memory debugging

3 offline debugging

Compile the program

Run one of the bilnaries. What do you see °?
No problem ? Are you sure ? Let’s launch DDT, just in case!
Recompile with DEBUG=1

Launch the application with DDT

Check memory debugging and guard-pages

Run the program .. Any problem °?

Can you resolve 1t 7

Modify the code and recompile (in DDT)
Relaunch the program.

47 © 2017 Arm Limited q rm

Hands — On : Memory debugging

Are you sure we are done with hidden 1ssues ?

Use DDT offline report with “--offline —--mem-debug” flags
Have a look to the report, anything suspicious °?

Do you see how to fix this 7

48 © 2017 Arm Limited q rm

+ + + + + + + + +

Arm Performance Reports

s
+ + + + + + + + +
+ + + + + + + + +

© 2017 Arm Limited

+ +

arm

50

9 Step guide: optimizing high performance applications CQI'M

Improving the efficiency of your parallel software holds the key to solving more complex research problems faster.
This pragmatic, 9 Step best practice guide will help you identify and focus on application readiness, bottlenecks
and optimizations one step at a time.

re-—======"="

Q0

«" Discover lines of code spending along
time in 1/0.
+" Trace and debug slow access patterns.

r—=—==-=-=="=" — T — — = /Y

I @ Bugs I I €) Analyze before you optimize I

L—————————J

I +" Correct application. I I +" Measure all performance aspects. I
You can't fix what you can't see.
I +" Prefer real workloads over artificial tests. I r — e e e E— —

| @ Workload

S S ——

——_—_1

| © Communication I

+" Detect issues with balance.
+" Slow communication calls and processes. I

+" Track communication performance. - e
I I Dive into partitioning code.

+" Discover which communication
I calls are slow and why. I

e]

L———————J

| e | ro. - - - =—=-=1 rg- - - - =

| © Cores | | | @ Verification

I +" Discover synchonization I o Underslan_d nu_merical intensity I vV‘\.'aIidall? corrections
overhead and core utilization. and vectorization level. and optimal Performance.

I +" Synchronization-heavy code and I + Hot loops, unvectorized code I I I
implicit barriers are revealed. and GPU performance revealed.

r———————1

| © Memory

+" Reveal lines of code bottlenecked

I by memory access times. I
+" Trace allocation and use of hot

I datastructures. I

_J

L———————J

Key:

+ QrMmPERFORMANCE REPORTS
v ArMFORGE

“Learn” with Arm Performance Reports

e MADbench2 cPy
a rm R urces 16 processes, 1 node
PERFORMANCE Machine sandybridge2
Start time Mon Nov 4 12:27:50 2013
RE PO RTS Total time 109 seconds (2 minutes)
Full path /tmp/MADbench2
Notes 12-core server / HDD / 16 readers + writers MPI l{e]
Summary: MADbench2 is |/O-bound in this configuration
The total wallclock time was spent as follows:
Time spent running application code. High values are usually good.
CPU 48% I This is low; it m i i
H ay be worth improving I/O performance first.
MPl 413 Time spentin MPI calls. High values are usually bad.
3% - This is average; check the MPI breakdown for advice on reducing it.
/O 53.9% - Time spent in filesystem 1/O. High values are usually bad.
b This is high; check the I/O breakdown section for optimization advice.

This application run was /O-bound. A breakdown of this time and advice for investigating furtheris in the /O section below.

CPU

A breakdown of how the 4 8% total CPU time was spent:
Scalar numericops 4.9% |

Vector numericops 0.1% |

Memory accesses 95.0% [N

Qther 0.0 |

The per-core performance is memory-bound. Use a profiler to
identify time-consuming loops and check their cache performance.

No time was spent in vectorized instructions. Check the compiler's
vectorization advice to see why key loops could not be vectorized.

fle}

A breakdown of how the 52 9% total I/O time was spent:

Time in reads 3.7% |

Time in writes 96.3% |]

Estimated read rate 272 Mb/s I

Estimated write rate 7.06 Mb/s |

Most of the time is spent in write operations, which have a very low
transfer rate. This may be caused by contention for the filesystem or

inefficient access patterns. Use an /O profiler to investigate which
write calls are affected.

51 © 2017 Arm Limited

MPI
Of the 41.3% total time spentin MPI calls:
Time in collective calls 100.0% |]

Time in point-to-point calls ~ 0.0% |

Estimated collective rate 4.07 bytes/s [N

Estimated point-to-point rate 0 bytes/s |

All of the time is spent in collective calls with a very low transfer rate.
This suggests a significant load imbalance is causing

synchronization overhead. You can investigate this further with an
MPI profiler.

Memory

Per-process memory usage may also affect scaling:
Mean process memory usage 160 Mb [N

Peak process memory usage 173 Mb [N

Peak node memory usage 17.2% N

The peak node memory usage is low. You may be able to reduce
the total number of CPU hours used by running with fewer MPI
processes and more data on each process.

Very simple start-up

arm

Metrics Overview

Multi-threaded

parallelism

52

T

© 2017 Arm Limited

CPU
A breakdown of the
Single-core code

OpenMP regions

Scalar numeric ops

91.2% CPU time:
30.6% H

% .
/ parallelism
9.5% |

SIMD

1/O

Time in reads

Time in writes

Vector numeric ops

Memory accesses

The per-core perfor:l
identify time-consu
performance.

No time is spent in ¥
compiler's vectorizat]
be vectorized.

MPI

Of the 41.3% total time spentin MPI calls:

Time in collective calls

Time in point-to-point calls

Estimated collective rate

Estimated point-to-pointrate 0 bytes/s |

All of the time is spent in co
This suggests a significant |
synchronization overhead. ¥

MPI profiler.

Estimated read rate
Estimated write rate|

Most of the time is
transfer rate. This
inefficient access p3
write calls are affec]

A breakdown of how the 52.9% total I/O time was spent:

Memory

Mean process memory usage

Per-process memory usage may also affect scaling:
160 Mb [

Peak process mem
Lustre

Peak node memory|

100.0% [|
0.0% |
4.07 bytes/s |1IIIEIN

3 Load
imbalance

. |

OpenMP

A breakdown of the 99.5% time in OpenMP regions:

Computation % «—
synchronization 41.1% 1R
Physical core utilization 100.0% [
system load 99.7% W e

Significant time is spent synchronizing threads in parallel regions.
Check the affected regions with a profiler.

This may be a sign of overly fine-grained parallelism (OpenMP
regions in tight loops) or workload imbalance.

The peak node mer| Lustre file operations (per node)

the total number of

processes and mord Mean write |

Peak write r

Mean file op)

Mean metad

~ OmP
efficiency

Energy

A breakdown of how the 32.3 Wh was used:
CPU 61.9% Il

System 38.1% W

Mean node power 94.1W [N

Peak node power 98.0 W [N

Significant time is spent waiting for memory accesses. Reducing
the CPU clock frequency could reduce overall energy usage.

_ System
usage

arm

+ * + * + * + + + + +
& * & * + * + & + * +
rm VIA
+ + + + + + + + + + +
+ * + * + * + + + + +
& * & * + * + o * o +
+ ¥

2017 Arm Limited

arm

&+

Six Great Things to Try with Arm MAP

38 ! late to the party
31 do j=1,28"nprocs; a
32 end if

33

34 = if {pe /= @) then

35 call MPI_SEND(a, si
36 else

37 a do from=1,nprocs-1

38 call MPI_RECV(b,

39 do j=1,38; b=sqrt
48 print *,"Answer T
41 end do

42 end if

43 end do

pUtE 76 %. MPI 24 %. File 44 T call WPT BARRIER(MPI CO
Find the peak memory
use

Hide Metrics...

Make sure OpenMP

: Improve memory access
regions make sense

54 © 2017 Arm Limited

Project Files | Main Thread Stacks | Functions
tacks

x ~ MPI Function(s) on line
CallActionsSeparatedConcerns [in

Call [inlined]
= hemelb:net:lteratedAction::Ce
hemelb::extraction::Property?
=hemelb::extraction::Property

PMPI_File_write_at

Remove 1/0 bottleneck

size, nproc, mat a
Ali*size+k]*B[k*s

nalize():

wifgi7e. mat ¢. file

Restructure for
vectorization

arm

Glean Deep Insight from our Source-Level Profiler

=0 Track memory usage across the
entire application over time

Memory usage (M)
61 - 62.6 {29.3 avg)

MPI call duration (ms)

;qpl_"’ui';:;tﬂ-Pui:':_;‘r:ig} o SpOt MPI and OpenMP

MPI collectives (/<)) imbalance and overhead
0 - 172 (0.6 avg) | . '

CPU memory access (%) ' - F - =% .

R ———————] Al o o Optimize CPU memory and

CPU floating-point (%:) LAAA AAAAR A v A J. 0 c c
o - 100 (10.9 avg) YYY WYY YV L = = i vectorization In |OO pS

CPU vector (%) SAAAAARAAAL, T T T
0 - 100 {37.6 avg) R A A A AL A AL

cPUbranch 0 Detect and diagnose 1/0O
- bottlenecks at real scale

55 © 2017 Arm Limited a rm

Allinea MAP - The Profiler

56

© 2017 Arm Limited

Small data files

File Edit View Window Help

Profiled: wave openmp on 1 process, 4 cores (4 per process)

Application activity

Started: Fri Nov 7 10:26:34 2014 Runtime: 30s

Hide Metrics...

CPU floating-point (%)

o - 70 (14.5 avg)
Memory usage (kB)
44,663 - 72,221 (68,908 avg)

10:26:34-10:27:04 (29.975s): Main thread compute 14 %, OpenMP 21 %, Overhead 64 %, Sleeping © % | CPU floating-point 14.5 %;: Memory usage 68,908 kB;

¢ wave_openmp.c £ |

Metrics,|_Select all |

=]

YN NN RN RN R R R R N R N

Position

JET |
Input/Output | Project Files ~ Stacks | OpenMP Regions |
Stacks
Time A | MPI Ioverhead I Function(s) on line
41.0% |[IHIINNN oy]
37.4% L] LTV TN UM AT
16.2% [[ILIITIIIE I 0 fIF [
as%/ll B (10| i 4.8%
0.5% 1
0.1%]|

wave_openmp [program]

#pragma omp
oldvall3] =
#pragma ome

update {left, right);

parallel shared{newval, oldwal, value.

walues[3]:

parallel shared{newwval, cldwval, value..

wave_openmp.
wave openmp.

wave_openmp.
wave_openmp.
wave_openmp.

c:213
c:229
c:213

[allinea Ultimate map-smoketest-scripts-5

.0 0a3f65bcf767

Nov. 7 2014

How Arm MAP is different

57

© 2017 Arm Limited

Thread

profiling

Integrated

Sample
frequency
decreases over
time

Same scalable
infrastructure as
Allinea DDT

Categorizes
instructions
sampled

Core-time not
thread-time
profiling

Part of Forge
tool suite

Data never
grows too much

Merges sample
data at end of
job

Knows where
processor
spends time

Identifies lost
compute time

Zoom and drill
into profile

Run for as long
as you want

Handles very
high core
counts, fast

Shows
vectorization
and memory

bandwidth

Detects
OpenMP issues

Profiling within
your code

arm

Preparing Code for Use with MAP

To see the source code, the application should be compiled with the debug flag typically —g

It is recommended to always keep optimization flags on when profiling

58 © 2017 Arm Limited q rm

+ + + + + + + + + + +

Hands — On :

+ + + + * + *
+ + + + + + + + + + +
+ + + + + + + + + + +

© 2017 Arm Limited

arm

&+

Reverse-Connect — Client / Laptop side

kinit —-f <userName>@NADA.KTH.SE
klist —f
export PATH=SPATH:<pathToForgelInstall>/bin

map

60 © 2017 Arm Limited a rm

Run and debug a program. PDC-PRACE - Tegner

/pdc/volfallinea-forge/18.1.1/amd&4_co7/

Attach to an already running program.
Open a core file from a previous run.

Manually launch the backend yourself.
OPTIONS

Remote Launch:
[Cunﬁgure...

QuIT

Duplicate
Remove
Move Up

Move Down

Close

Connection Name: [PDC-PRACE - Tegner

Host Name: [conhil01@tegner.pdc.kth.se

How do | connect via a gateway (multi-hop)?

Remote Installation Directory: [,.fpdcfvolfallinea—furgefl8.1.1,.famd54_cu?,.f

Remote Script [Optional

Always look for source files locally

e ['_I'est Remote Launch]

[OK

| concel |

61 © 2017 Arm Limited

: Test Remote Launch

Remote Launch test completed successfully.

Hostname: tegner-login-1.pdc.kth.se
05: CentOSs Linux release 7.5.1804 (Core)
Version: 18.1.1

<< Hide Terminal

/home/conhil01/DDT/18.1.1/1ibexec/remote—exec conhil0l@tegner.pdc.kth.se /Spdc/vo
l/allinea-forge/18.1.1/amdé4_co7//libexec/ddt-remoted

arm

Connect to Remote Host

Connecting to conhildl@tegner.pdc.kth.se ... PO p —_— U p

Wait

RUN
Run and debug a program. Run and debug a program.
| ATTACH
Attach to an already running program. Attach to an already running program.
OPEN CORE

Open a core file from a previous run. Open a core file from a previous run.

MANUAL LAUNCH (ADVANCED)

Manually launch the backend yourself Manually launch the backend yourself.

OFTIONS OPTIONS

Remote Launch: Remote Launch:

Off e | PDC-PRACE - Tegner :
a Configure...

PDC-PRACE - Tegner Reverse-Connect
Client ready

62 © 2017 Arm Limited a rm

Reverse-Connect — Server / Cluster side

ssh conhilOl@tegner.pdc.kth.se

module load i-compilers

module load intelmpi

module load allinea-forge

cp /afs/pdc.kth.se/home/c/conhil01l/Public/arm trial.tar.gz
tar —xvf arm trial.tar.gz

cp /afs/pdc.kth.se/home/c/conhil01l/Public/Licence kth
unset ALLINEA LICENSE FILE modshare

unset ALLINEA LICENSE FILE

export ALLINEA FORCE LICENCE FILE=$PWD/Licence kth

cd arm trial

cd 0 test reverse connect

make

salloc —nodes=1 -t 00:10:00 —-A pdc-test-2018

map —-connect mpirun -n 2 ./hello c.exe

63 © 2017 Arm Limited q rm

Reverse-Connect — Client / Laptop side

64

® Reverse Conneckt Request

A new Reverse Connect request is available from tegner-
login-1.pdc.kth.se for Arm DDT.

Command Line: —connect mpirun -n 2 ./hello_c.exe

Do you want to accept this request?

[)| et

© 2017 Arm Limited

Application: ./hello_c.exe Details
Application: [Jhello_c.exe w l
Arguments: [w l
stdin file: | | =
Working Directory: [w l
Duration: Sampling entire program Details
Metrics Details
CUDA Kernel analysis
Run: mpirun -n 4 .jhello_c.exe Details
Implementation: no MPI
Profile selected processes: | 100% | Select All
OpenMP
Submit to Queue
Environment Variables: none Details
Help l [Options Run] [Discunnect]

arm

Hands - On: |
Launch Perf-Reports

+ + + + + + + + + + +
+ + + + + + + - + - +
+ ¢

© 2017 Arm Limited

arm

o

Launch Performance Reports

ssh conhilOl@tegner.pdc.kth.se

module load i-compilers

module load intelmpi

module load allinea-reports

cp /afs/pdc.kth.se/home/c/conhil01l/Public/arm trial.tar.gz
tar —xvf arm trial.tar.gz

cp /afs/pdc.kth.se/home/c/conhil01l/Public/Licence kth
unset ALLINEA LICENSE FILE modshare

unset ALLINEA LICENSE FILE

export ALLINEA FORCE LICENCE FILE=$PWD/Licence kth

cd arm trial

cd 0 test reverse connect

make

salloc —nodes=1 -t 00:10:00 —-A pdc-test-2018
perf-report mpirun -n 2 ./hello c.exe

66 © 2017 Arm Limited q rm

Visualize Performance Reports outputs

Two files outputted : .txt and .html
.txt can be visualilized on the cluster with file editor
Use scp to copy the .html file back to your laptop

Open 1t with a Web Browser

67 © 2017 Arm Limited

arm

+ + + + + + + + + + +

andg. - On:

Vectorization

© 2017 Arm Limited

arm

&+

69

9 Step guide: optimizing high performance applications CQI'M

Improving the efficiency of your parallel software holds the key to solving more complex research problems faster.
This pragmatic, 9 Step best practice guide will help you identify and focus on application readiness, bottlenecks
and optimizations one step at a time.

re-—======"="

Iouo

«" Discover lines of code spending along
time in 1/0.
+" Trace and debug slow access patterns.

| © Buss | I I
I +" Correct application. I I +" Measure all performance aspects. I
L o— — — ——e——_———u You can't fix what you can't see.

I +" Prefer real workloads over artificial tests. I

Fr———————

@ Workload

+" Detect issues with balance.
+" Slow communication calls and processes. I
Dive into partitioning code.

——_—_1

| © Communication I

L——————————J

I +" Track communication performance. I
+" Discover which communication
I calls are slow and why. I

e —

L———————J

e —— [= = = = —— r————=—n
ro_M_ —_——_———— | © Cores | | | | @ Verification |
emor
I s I +" Discover synchonization I I +' Understand numerical intensity I %" Validate corrections
I +" Reveal lines of code bottlenecked I overhead and core utilization. and vectorization Iew_fel. and optimal Performance.
by memory access times. I + Synchronization-heavy code and I +' Hot loops, unvectorized code I I I
implicit barriers are revealed. and GPU performance revealed.

+" Trace allocation and use of hot
I datastructures. I

L———————J

Key:

+ QrMmPERFORMANCE REPORTS
v ArMFORGE

Computational Intensity

“My program is doing a lot of computation ... How do | make it go faster”

DO k=y_min-2,y _max+2
DO j=x_min-2,x_max+2
pre_vol(j,k)=volume(j,k)+(vol flux_x(j+1,k)-vol flux_x(j,k)+vol_flux_y(j ,k+1)-vol flux_vy(j,k))
post_vol(j,k)=pre_vol(j,k)-(vol_flux_x(j+1,k)-vol_flux_x(j,k))
ENDDO
ENDDO
Example with modified version of CloverLeaf

* non-threaded version without OpenMP
* MPI, nolO

70 © 2017 Arm Limited q rm

Vector Units

Vector Scalar
Unit Unit

71 © 2017 Arm Limited a r m

Vectorization / SIMD

b Instruction: sqrt

Vector Scalar
Unit Unit

BBk (o

CPU core

72 © 2017 Arm Limited a rm

Vectorization / SIMD

iter 1 iter 2
Scalar

Unit @

doi=1,n a
a(i) = sqrt(b(i)) Vector (16)
end do Unit (25)

ED

Intel® AVX2: 256-bit vector unit =» 8 SP /4 DP
Intel® AVX-512: 512-bit vector unit =» 16 SP / 8 DP
Arm® NEON: 128-bit vector unit =» 4 SP /2 DP

73 © 2017 Arm Limited

iter 3 iter 5

3G9

4x

Why? Performance lies in the software

Performance

Vector and parallel

©—® Parallel only
e—® \Vector only
e—o® No vector or parallel

—o

%—;_;
cores per
socket

arm

74 © 2017 Arm Limited

Identifying the amount of vectorized code

* Arm Performance Reports is an application reporting tool for HPC
- Easy to use: no re-compiling required
- Gives a comprehensible and readable summary of the application behavior

MADbench2
16 processes, 1 node

arm sandybridge2
PERFORMANCE Mon Nov 4 12:27:50 2013

Summary: MADbench2 is |/O-bound in this configuration

The total wallclock time was spent as follows:

Time spent running application code. High values are usually good.
This is low; it may be worth improving 1/O performance first.

CPU 48% |

VP 4139 Time spent in MPI calls. High values are usually bad.
3% - This is average; check the MPI breakdown for advice on reducing it. CPU
below.
1/O 5399 - Time spent in filesystem 1/O. High values are usually bad. A breakdown of how the 4.8% total CPU time was spent:
27 This is high; check the I/O breakdown section for optimization advice.

Scalar numericops 49% |
Vector numericops 0.1% |

This application run was |/O-bound. A breakdown of this time and advice for investigating furtheris in the |/O section below.
Memory accesses 95.0% [N

Is with @ very low transfer rate

o is

Ice IS memor und. Use a
identify time-consuming loops and check their cache performance. This suggests a significant load imbalance is causing Other 0.0 |
No time was spent in vectorized instructions. Check the compiler's ag;:hro?‘lzalmn e DT e g e the - with an
vectorization advice to see why key loops could not be vectorized. profiler. i
The per-core performance is memory-bound. Use a profiler to

/0 Memory . A . :

N) _ identify time-consuming loops and check their cache performance.
A breakdown of how the 53.9% total I/O time was spent: Per-process memory usage may also affect scaling:
Tima in resds | Mean process memory usage 160 Mb I No time was spent in vectorized instructions. Check the compiler's
Time in writes 96.3% | | Peak process memory usage 173 Mb [IEEEN . . . "
Eetimatod oot rte 272 bls EE Postnode mooryusge. 172% B vectorization advice to see why key loops could not be vectorized.

Estimated write rate 7.06 Mb/s | The peak node memory usage is low. You may be able to reduce

the total number of CPU hours used by running with fewer MPI

Most of the time is spent in write operations, which have a very low processes and more data on each process.

transfer rate. This may be caused by contention for the filesystem or
inefficient access patterns. Use an I/O profiler to investigate which
write calls are affected

75 © 2017 Arm Limited

arm

Analyze the results

Running Performance Reports

with CloverLeaf using 8 MPI tasks

indicates that:

- Time spent in scalar ops is 14.7%

- Time spent in vector ops 18.9%

76 © 2017 Arm Limited

Summary: clover_leaf is Compute-bound in this configuration

Time spent running application code. High values are usually good.
CUmDUte 93.4% _ This is very high; check the CPU performance section for advice
MPI 6.6% I Time spent in MPI calls. High values are usually bad.

This is very low; this code may benefit from a higher process count

Time spent in filesystem 1/0. High values are usually bad.

”O 0.0% ‘ This is negligible; there's no need to investigate 1/O performance

This application run was Compute-bound. A breakdown of this time and advice for investigating further is in the CPU
section below.

As very little time is spent in MPI calls, this code may also benefit from running at larger scales.

CPU < MPI

A breakdown of the 93.4% CPU time: A breakdown of the 6.6% MPI time:

Scalar numericops 14.7% [l Time in collective calls 20.9% M

Vector numeric ops 18.9% [<@ Time in point-to-point calls 79.1% 1N

Memory accesses 66.3% N Effective process collective rate 1.55 kB/s |
Effective process point-to-point rate 33.1 MB/s [N

The per-core performance is memory-bound. Use a profiler to

identify time-consuming loops and check their cacha parformancs. Most of the time is spent in point-to-point calls with a low transfer

Little time is spent in vectorized instructions. Check the compiler's rate. This can be caused by inefficient message sizes, such as many
vectorization advice to see why key loops could not be vectorized. small messages, or by imbalanced workloads causing processes to
walit.

arm

When? Time to use a profiler

| thamefpridley/Cloverteaf_ref-master/clover. jeaf_8p.1n_2018-05-10_09-41.map - Arm MAP - Arm Forge 18.1.3

Arm MAP is a lightweight multi-node e

profiling tool R T R

- Compiling with debugging flag required iy .
- Shows processes and threads activity over time

T T
- Source code is annotated o

- Information aggregated by stacks and function

Compute, 10 and MPI

77 © 2017 Arm Limited a rm

How much of the code is vectorized?

Profiled: clover leaf on 8 processes, 1 node, 8 cores (1 per process) Sampled from: Thu May 10 2018 10:05:51 (UTC+01) for|151.2s | €=

File Edit View Metrics Window Help

Profiled: clover leaf on 8 processes, 1 node, 8 cores (1 per process) Sampled from: Thu May 10 2018 10:05:51 (UTC+01) for 151.2s

Main thread activity

Hide Metrics...

CPU floating-point 100

330 %

CPU fp vector 100

ﬁ 19.0 %

Memory usage

763 MB

o
10:05:51-10:08:22 (151.229s): Main thread compute 93.8 %, MPl 6.2 %

Main Thread Stacks

Main Thread Stacks

Total core time

|Function(5} on line

Source

el 53 30

e T 209 |
16.5% |l sl ol Ol 2. 8%
10.2% gtttk i Lhad iy ©.5%

6.4% \II|||I|||\I|||I||||\Il..hl|||||||i.Ih|||||h||IIuilIhllu.IlIII]illmlll 0.7%
4.9% g e e P

4.2% wtpatian bl

3.4% Jnudoboatihd ol

2%l

78 © 2017 Arm Limited

= & clover_leaf [program]
B ¢ clover leaf

imestep_module:timestep
pdv_module::pdv
pdv_module::pdv
ccelerate_module::accelerate
eset_field_module:reset_field
ux_cale_module: flux_calc

4 others

CALL
CALL
CALL
CALL
CALL
CALL

PROGRAM clover_leaf

timestep()
PAV(.TRUE.)
pdv(.FRLEE.)
accelerate()
reset_field()
Flux_calc()

Total core time TIMP\ IFunchon(E) on line ISnurce
= & clover_leaf [program]
= # clover_leaf PROGRAM clowver_leaf
= hydro CALL hydro
= advection_module::advection CALL advecticon()
Eladvec_mom_driver module::advec... CALL advec_mom_driveritile,xvel,dirsction, swesp_numbser)
11.1% (W R (U |l
10.2% il Linl, T] dvec_mom_driver_module::advec CALL adwvec_mom_driver (tile, xvel,direction, sweep_number)
9.8% Luiillimml P (T i advec_cell_driver_module::advec_... CALL advec_cell_driver (tile, sweep_number,direction)
9.1% Wl T T advec_cell_driver_module::advec_... CALL advec_cell_driver (tile, sweep_number,direction)
T 1% bttt nldmntah advec_mom_driver_module::advec CALL adwvec_mom_driver (tile, yvel,direction, sweep_number)
B.B% il I Lottt il advec_mom_driver_module::advec CALL adwvec_mom_driver (tile, yvel,direction, sweep_number)
1.7% update_halo_module:update_halo CALL update_haloc(fieslds,2)
0.9% 2 others
12.2% I M EHtimestep_module: timestep CALL timestep()
10.2% . rath ool il 0.4% # pdv_module::pdv CALL PAV(.TRUE.}
6.5% p bbbt balbke, ©.7% #pdv_module:pdv CALL P4V ({.FALSE.}
4.8% bl hanLanliarduatldih k| tdaccelerate_module::accelerate CALL accelerate()
42% mEreset field_module::reset_field CALL reset_field()
4.2% 10l " @ flux_cale_module: flux_calc CALL flux_calci)
0.6% . | T 3 others
0.6%| B 1 other

Showing data from 8,000 samples taken over & processes (1000 per process)

arm

Where is the code vectorized?

1 x F advec_mom_driverfao F advec_mom_kernel fgo [] F— Time spent on line 159 5 >

dif=donor

Breakdown of the 0.1% time spent on this line:

upwind=i-1 Executing instructions 100 07 |

donor=3 Calling other functions 0.0%
downwind=j+1
dif=upwind Time in instructions executed:
S Scalar floating-point 63 6% I
1 sigma=ABS (node_flux(j,k))/ (node_mass_pre (donor, k catar uahgpum ;
158 width=celldx (]} Vector floating point 0.0% <
135 vdiffuw=vell (donor, k) —vell (upwind, k) @ ————— colar integer 12.2% I
1 £ vdiffdw=vell (downwind, k) -vell(donor,k) Vector integer 0.0% <
limiter=0.0 9 -
162 B [F (vdiffuw*vdiffdw.GT.0.0) THEN Memory access* 81 8% I

auw=ABS (vdiffuw)
adw=ABS (vdiffdw) . . _
wind=1.0 8 Other instructions

[F(vdiffdw.LE.0.0) wind=-1.0_8 *18.2% memory access instructions, 63.6% implicit memory accesses in other
limiter-wind*MIN (width* {(2.0_8-sigma) *adw/widt| instructions, also counted in their categories

Branch

advec_vel_s=vell(donor,k)+(l.0-sigma) *limiter
mom_flux(j,k)=advec_vel_s*node_flux({j, k)

79 © 2017 Arm Limited a rm

Follow Performance Reports advice

Main Thread Stacks

Total core time v | MPI | Functionis) on line

I Source

= & clover leaf [program]
= » clover leaf
B hydro
= advection_module::advection

10.2% itttk bl
9.8 % Rttt o
S.1 %yttt vt o

7.1% il bttt Bttt advec_mom_driver_module::advec...
8% ittty advec_mom_driver_module::advec...
1.7% N Y R Y Hupdate_hale_medule::update_halo
D'g%......ll......n...|........... TR TR A PR 2 OthErS
1222 %b |0k ol ol o o . 3.2 B timestep_module:timestep
10.2% i buthulbi itk iy ©- %% B pdv_module::pdy
B.5% |||.||||||||||.|||I]|||Iillll|||||l||||I|||I|JI|||IIL||I|I".II|I|||J||||.II.|.| 0.7% B pdv_module::pdv
4.8% it Ml Lt Ll Lol ol o # accelerate_module::accelerate
4.2% [*RTRTTAN .||u||i|l.|||.lllll|h|l|hI."..I‘.IIl."IlI-I"l.h.I.IIh EEI res Et_ﬁ e l d_m o d u I e.res Et_ﬁ e I d
4.2% .I|||||II||||I|II.||||I.I|J|..II|I|J.||||I||II||||II| ||II|.I.‘|I|".|||I|||]|I EEI ﬂ u X_C a l C_m o d u l e: :ﬂ u X_C a l c
L A N B | = 3 others
0.6%| 1 other

Showing data from 8,000 samples taken over 8 processes (1000 per process)

80 © 2017 Arm Limited

Bl advec_mom_driver_ module:advec...
el 1.1 1 %600 i o o, &2 advec_mom_kernel_mod::advec_..
advec_mom_driver_module::advec...
advec_cell_driver_module::advec_...
advec_cell_driver_module::advec_...

PROGEAM clowver_leaf

CARLL
CARLL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL

hydro

advectioni()

advec_cell_driwver(tile, sweep_number,direction)
advec_cell_driwver(tile, sweep_number,direction)

advec_mom_driver(tile, xvel,direction, sweep_number)

advec_mom_driwver(tile, xvel,direction, sweep_number)

advec_mom_driwver(tile,yvel,direction, sweep_number)

advec_mom_driwver(tile,yvel,direction, sweep_number)

update_halo(fields, 2)

timestep()
Pdv(. TRUE.)
pdvi .FALSE .)
accelerate()
reset__field()
fFlux calci)

arm

Follow Performance Reports advice

81

advec_mom_kernel.f90

144 DO k=y_min,y_max+1
145 DO j=x_min-1,x_max+1l C——
146 IF(node_flux(j,k).LT.0.0)THEN

147 upwind=j+2
148 donor=j+1

149 downwind=j
150 dif=donor

151 ELSE

152 upwind=j-1
153 donor=j

154 downwind=j+1
155 dif=upwind
156 ENDIF

157 sigma=ABS(node_flux(j,k))/(node_mass_pre(donor,k))
158 width=celldx(j)

159 vdiffuw=vell(donork)-vell(upwind, k) ———
160 vdiffdw=vell(downwind,k)-vell(donor,k)

© 2017 Arm Limited

-fopt-info-vec-missed

advec_mom_kernel.f90:145

note: not vectorized: control flow in loop

advec_mom_kernel.f90:145:

note: bad inner-loop form.

advec_mom_kernel.f90:145

note: not vectorized: Bad inner loop.

advec_mom_kernel.f90:145:

note: bad loop form.

Analyzing loop at advec_mom_kernel.f90:145

advec_mom_kernel.f90:145

note: not vectorized: control flow in loop

advec_mom_kernel.f90:145:

note: bad loop form.

arm

How well is the compiler vectorizing?

advec_mom_kernel.f90

144 DO k=y_min,y_max+1 -qopt-report=2

145 DO j=x_min-1,x_max+1l C——

146 IF(node_flux(j,k).LT.0.0)THEN LOOP BEGIN at advec_mom_kernel.f90(145,9)
147 upwind=j+2 <Peeled loop for vectorization>

148 donor=j+1 remark #25456: Number of Array Refs Scalar Replaced In Loop: 2
149 downwind=j LOOP END

150 dif=donor

151 ELSE LOOP BEGIN at advec_mom_kernel.f90(145,9)
152 upwind=j-1 remark #15300:|LOOP WAS VECTORIZED|
153 donor=j LOOP END

154 downwind=j+1

155 dif=upwind LOOP BEGIN at advec_mom_kernel.f90(145,9)
156 ENDIF <Remainder loop for vectorization>

157 sigma=ABS(node_flux(j,k))/(node_mass_pre(donor,k)) LOOP END

158 width=celldx(j)
159 vdiffuw=vell(donor,k)-vell(upwind,k)
160 vdiffdw=vell(downwind,k)-vell(donor,k)

82 © 2017 Arm Limited a rm

Analyze the results

Running Performance Reports
with CloverLeaf using 8 MPI tasks
indicates that:

- Time spent in scalar ops is 4.8%

- Time spent in vector ops 28.2%

83 © 2017 Arm Limited

Summary: clover_leaf is Compute-bound in this configuration

C 92.9% _ Time spent running application code. High values are usually good.
om DUte : This is very high; check the CPU performance section for advice

MPI 7 1% I Time spent in MPI calls. High values are usually bad.

) This is very low; this code may benefit from a higher process count
1/0 0.0% ‘ Time spent in filesystem /0. High values are usually bad.
lf) This is negligible; there's no need to investigate 1/0 performance

This application run was Compute-bound. A breakdown of this time and advice for investigating further is in the CPU
section below.

As very little time is spent in MPI calls, this code may also benefit from running at larger scales.

CPU MPI

A breakdown of the 92.9% CPU time: A breakdown of the 7.1% MPI time:

Scalar numericops 4.8% | Time in collective calls 24.4% B

Vector numeric ops 28.2% [l < Time in point-to-point calls 75.6% [N

Memory accesses 67.0% 1N Effective process collective rate 1.35 kB/s |
Effective process point-to-point rate 33.9 MB/s [N

The per-core performance is memory-bound. Use a profiler to

identify time-consuming loops and check their cache performance. Most of the time is spent in point-to-point calls with a low transfer

rate. This can be caused by inefficient message sizes, such as many
small messages, or by imbalanced workloads causing processes to
wait.

arm

Where is the code vectorized?

Profiled: clover leaf on 8 processes, 1 node, 8 cores (1 per process) Sampled from: Thu May 10 2018 09:41:23 (UTC+01) for 143.65 @

Time spent on line 159

0 | F advec_mom_driverfoo F advec_mom_kernel fao [£] |

upwind=j-1
donor=j
downwind=j+1
dif=upwind

sigma=ABS (node_flux(j,k))/ (node_mass_pre(donor,k))

width=celldx (i)

159 vdiffuw=vell (denor,k)-vell (upwind, k)

vdiffdw=vell (downwind,k)-vell (donor, k)
1 limiter=0.0
= [F{vdiffuw*vdiffdw.GT.0.0) THEN

auw=ABS iffuw)
adw=ABS (vdiffdw)
wind=1.0_8
[F(vdiffdw . LE.0.0) wind=-1.0_8
limiter=wind*MIN (width* ({2.0_8-sigma) *adw/width+ (1.0_S+sigma) *auw/celldx (dif)) /6.0_8, auw, adw)

vel _s=vell(donor,k)+(l.0-sigma})*limiter
mom_flux(]j,k)=advec_vel_s*node_flux(j, k)

END DO
1] i Do
= [k=y_min,y_max+l
= [j=x_min,x_max+1

vell (3,k)=(wvell (j,k)*node_mass_pre(j,k)+mom_f£flux{j-1,k)-mom_f£flux(j,k)) node_mass_post (i, k)

1 S0MF END DO

e
1 ELSEIF (direction.EQ.2) THEN
B [F{which_vel.EQ.1) THEN
1 30MF DO
i B DO k=y_min-2,y _max+2 Main Thread Stacks

= I J=x_min,x _max+l Total core time o | MPI

Wain Thread Stacks
Total core time

| Functionis) on line Source

B & clover leaf [program]
B ¢ clover leaf PROGRAM clover_leaf
B hydro CALL hydro
jvection_module::advection LL advecti
timestep_module:timestep CALL
pdv_module::pdv CALL PdV(.TRUE.)
[pdv_modulepdv CALL PdV(.FALSE.)

T [mp

1.0-9% btk |
9. 7% st am bl
8.9% wwluihl ool
8.5% g nac it ool
6.8% kbl ol

56.6%

L
12.2% gtk i i] 3-2%

10.2% y bl ol o 0.4%
6.5% |||.II||||||II.|||U||||iII|I|||||l||||I|||I|.|I|||IILlIlI".II:IuI.I||||.Ii.|.| 0.7%

A.8% 3yt b accelerate_module::accelerate CALL accelerate() 10.2% il kLl ©.5%
8.2% st 1 el ok L i eset_field_module:reset_field CALL reset_field() i ;2’; Wbt Kt kil dh 0.7 %
4.2% bl ot gl Tt dlhol ux_calc_module::flux_calc CALL flux ecalei) . "'mmmllh"mllltIi"hII"I:L':::II‘II:::II‘II‘II:;ﬂ:‘lﬂz‘:‘:‘x:ﬂl‘:{

6% [P N R R | 3 others Auans il oLl

o Jul
Showing data from 8,000 samples taken over 8 processes (1000 per process) el

84 © 2017 Arm Limited

timestep() 6.2% Lyttt 8 a1
5% 1.4%

28%

Breakdown of the 0.4% time spent on this line:
100.0% I

S
U U5

Executing instructions
Calling other functions
Time in instructions executed:

Scalar floating-point 0.0%

Vector floating point <
Scalar integer 0.0%

Vector integer

Memory access

Branch

Other instructions

advec_mom_driver module::advec_
dvec_mom_driver_mo cadvec_ 1
dvec_cell_driver_module::advec_ce L advec_cell dr
dvec_cell_driver_module::advec_ce BLL advec_cell dr
advec_mom_driver_module::advec_..
Hadvec_mom_driver_module::advec_..
B update_halo_module::update_halo CALL update_halo(fields,2)
12 others

vec_mom_ er(tile,xvel,direction, sueep_number)

rer {tile, susep_number,direction)

rer {tile, susep_number,direction)
ALL advec_mom_driver(tile,yvel,direction, sweep number)

ALL advec_mom_driver(tile,yvel,direction, sweep number)

Eltimestep_module:timestep timestep()

B pdv_module:pdv pAv (. TRUE.)
B pdv_module::pdy PdV(.FALSE.)
#accelerate_module::accelerate accelerate()
#reset field_module:reset_field reset_field()
@ flux_cale_module: flux_calc Flux_cale()
(4 others

arm

How?

Different compilers may have different capabilities, but here are guidelines

- Remove conditionals inside loop

- Make sure that loop size is known on entry

- Pay attention to work on contiguous, unit-stride arrays
- Remove data dependencies to enable vectorization

- Use compiler directives to force loop vectorization

85 © 2017 Arm Limited q rm

Conclusion

Vectorizing an application is a difficult task

Arm Performance Reports and Arm MAP make it easier
- Analyze application efficiency and get advices with Performance Reports
- [dentify bottlenecks and line by line performance with MAP

Figure out quickly if your application uses vectorization

Find candidates for vectorization

Inspect vectorization over time

86 © 2017 Arm Limited q rm

Hands — On

87

2_profiling_compute

Compile the code

Is the code well vectorized ? (with Arm Performance Reports)
ldentify where and how it can be improved (with Arm MAP)
Modify the code and recompile

Has vectorization increased ? Do you see any speed-up ? (with Arm Performance
Reports and Arm MAP)

© 2017 Arm Limited

arm

Hands-On:
Workload Imbalance

© 2017 Arm Limited

arm

o

arm

9 Step guide: optimizing high performance applications

Improving the efficiency of your parallel software holds the key to solving more complex research problems faster.
This pragmatic, 9 Step best practice guide will help you identify and focus on application readiness, bottlenecks

89

and optimizations one step at a time.

| e |
| © Bues I

I +" Correct application. I

S S ——

——_—_1

| © Communication I

I +" Track communication performance. I
+" Discover which communication
I calls are slow and why. I

L———————J

r———————1

| © Memory

+" Reveal lines of code bottlenecked

I by memory access times. I
+" Trace allocation and use of hot

I datastructures. I

L———————J

Key:
+ ArmPERFORMANCE REPORTS
+ AQrMFORGE

re-—======"="

Iouo

«" Discover lines of code spending along
time in 1/0.
+" Trace and debug slow access patterns.

r--—=—=—===-==""7

L—————————J

I +" Measure all performance aspects. I
You can't fix what you can't see.
I +" Prefer real workloads over artificial tests. I

r———————

@ Workload

+" Detect issues with balance.
+" Slow communication calls and processes. I
Dive into partitioning code.

L——————————J

e]

r "
| © Verification |

| e | ro. - - - =—=-=1
I

Cores
° || |

I +" Understand numerical intensity I %" Validate corrections
and vectorization level. and optimal Performance.
I +" Hot loops, unvectorized code I I I
and GPU performance revealed.

I +" Discover synchonization I
overhead and core utilization.

I +" Synchronization-heavy code and I
implicit barriers are revealed.

L———————J

i — |

L———————J

LLLLI
7

Workload balancing: definition

* “Aims to optimize resource use, maximize throughput, minimize response time, and

avoid overload of any single resource.”
(Wikipedia)

* In HPC, a well balanced workload across:
- Multiple nodes over a high-speed network,

Multiple sockets,

Multiple NUMA systems

Multiple cores,

Multiple accelerators,

Multiple disk drives,

* s critical for application performance

90 © 2017 Arm Limited

Identify workload imbalance

* Arm Performance Reports is an application reporting tool for HPC
- Easy to use: no re-compiling required
- Gives a comprehensible and readable summary of the application behavior

Summary: MADbench?2 is |/O-bound in this configuration

The total wallclock time was spent as follows:

CPU 8% ||

VPl sis [

This application run was |/O-bound. A breakdown of this time and advice for investigating furtheris in the |/O section below.

I/0

MADbench2
16 processes, 1 node
arm sandybridge2
PERFORMANCE Mon Nov 4 12:27:50 2013

REPORTS 109 seconds (2 minutes)

/tmp/MADbench2

12-core server / HDD / 16 readers + writers

Summary: MADbench2 is |/O-bound in t

The total wallclock time was spent as follows:

- Tima snant rinnin anplic

Time spent running application code. High values are usually good.
This is low; it may be worth improving I/O performance first.

Time spent in MPI calls. High values are usually bad.
This is average; check the MP| breakdown for advice on reducing it.

Time spent in filesystem I/O. High values are usually bad.
This is high; check the /O breakdown section for optimization advice.

worl

91

© 2017 Arm Limited

A breakdown of how the 53.9% total I/O time was spent:

Time in reads 3.7% |

Time in writes 9.3% NN

Estimated read rate 272 Mb/s [N

Estimated write rate 7.06 Mb/s |

Most of the time is spent in write operations, which have a very low
transfer rate. This may be caused by contention for the filesystem or

inefficient access patterns. Use an /O profiler to investigate which
write calls are affected

Per-pro
Mean pr
Peak prc
Peak no
The pea

the total
processt

CPU

A breakdown of how the 4.8% total CPU time was spent:
Scalar numericops 4.9% |

Vector numeric ops 0.1% |

Memory accesses 95.0% [N

Other 0.0 |

The per-core performance is memory-bound. Use a profiler to
identify ime-consuming loops and check their cache performance.

No time was spent in vectorized instructions. Check the compiler's
vectorization advice to see why key loops could not be vectorized.

I/O

A breakdown of how the 53.9% total I/O time was spent:

Time in reads 3.7% |

Time in writes 96.3% [|

Estimatedread rate 272 Mb/s [

Estimated write rate 7.06 Mb/s |

Most of the time is spent in write operations, which have a very low
transfer rate. This may be caused by contention for the filesystem or

inefficient access patterns. Use an I/O profiler to investigate which
write calls are affected.

MPI

Ofthe 41.3% total time spentin MPI calls:

Time in collective calls 100.0% [|
Time in point-to-point calls 0.0% |
Estimated collective rate 4.07 bytes/s I

Estimated point-to-point rate 0 bytes/s |

All of the time is spent in collective calls with a very low transfer rate.
This suggests a significant load imbalance is causing
synchronization overhead. You can investigate this further with an
MPI profiler.

Memory

Per-process memory usage may also affect scaling:
Mean process memory usage 160 Mb [N

Peak process memory usage 173 Mb [

Peak node memory usage 17.2% 1

The peak node memory usage is low. You may be able to reduce
the total number of CPU hours used by running with fewer MPI
processes and more data on each process.

arm

MPI and OpenMP imbalance

* Clues: excessive synchronization
- MPI collective calls with no actual data transfer
- Idle cores where threads are stuck in locks/mutexes

MPI
Of the 41.3% total time spentin MPI calls:
Time in collective calls 100.0% e

Time in point-to-point calls 0.0% |
Estimated collective rate 4.07 bytes/s 1IN <——
Estimated point-to-pointrate 0 bytes/s |

All of the time is spent in collective calls with a very low transfer rate.
This suggests a significant load imbalance is causing
synchronization overhead. You can investigate this further with an
MPI profiler.

92 © 2017 Arm Limited

OpenMP

A breakdown of the 74.5% time in OpenMP regions:
Computation 53.6% [

Synchronization 46.4% BB +—
Physical core utilization 100.0% [

System load 78.0% IR

Significant time is spent synchronizing threads in parallel
regions. Check the affected regions with a profiler.

This may be a sign of overly fine-grained parallelism (OpenMP
regions in tight loops) or workload imbalance.

arm

Locate imbalance in your code

arm mAP

File Edit View Metrics Window Help

Arm MARP is a lightweight multi-node st st St e 0 10520

Main thread activity

profiling tool s)

123 %

Memory usage

- Compiling with debugging flag required |
- Shows processes and threads activity over time ‘ _

» Source code is annotated : ??iilzss,z;%:m Lo e e

- Information aggregated by stacks and function :f';ﬁ“*”fﬁg?'ggd?"?“ R

cellpercycle = (double) (H.globnx * H.globny) / (end_iter - start_iter) / 1000000.0L;
avgCellPerCycle += cellPerCycle;
nbCycle+s;

H.nstep++;
B H.t += dt;
4

[Input/Qutput] Project Files | Main Thread Stacks | Functions I
Main Thread Stacks

Total core time A MPI Overhead = Function(s) on line Source
o m p u e’ a n = & hydro [program]

E # main main(int argc, char **argv) {
29.9%....- ik e 29.9% >-MPI7AHredUCE MPI_ARllreduce (sflopsAri, s&flopsAri_t, 1, MPI_LONG, MPI_SUM, MPI_COMM WORLD);
23.7% kol e 7.9% vikfile
13.3% e ., . 2.8% dro_godunov

sHvw_godun

- MPI_Allreduce MPI_Allreduce (sflopsSqr, sflopsSgr_t, 1, MPI_LONG, MPI_SUM, MPI_COMM WORLD);

- MPI_Allreduce MPI_Allreduce(sdt, &dtmin, 1, MPI_DOUBLE, MPI_MIN, MPI_COMM_WORLD);
>-MPI:AHreduce MPI_Allreduce (&4flopsMin, &flopsMin_t, 1, MPI_LONG, MPI_SUM, MPI_COMM WORLD);
- MPI_Allreduce MPI_Allreduce {sflopsTra, sflopsTra_t, 1, MPI_LONG, MPI_SUM, MPI_COMM_WORLD);
7 others

ing data from 16,000 samples taken over 16 processes (1000 per process)

93 © 2017 Arm Limited

MPI imbalance: barrier

File Edit View Metrics Window Help

Profiled: slow f on 8 processes, 1 node, 8 cores (1 per process) Sampled from: Tue Oct 2 2018 14:40:25 (UTC+01) for 51.7s Hide Metrics. ..

Main thread activity

CPU memory access
49.6 %

CPU fp vector
11.0 %

MPI call duration
5.78s

S
14:40:25-14:41:02 (37.372s, 72.3% of total): Main thread compute 60.7 %, MPI 39.3 %, File I/0 0.0 % Zoom '@é EE @

m Time spent on line 111
106 L [+] Breakdown of the 47.8% time spent on this line:
107 =& 1% (mod (pe, 2) - €q- 0) then Executing instructions 100.0%
108 8 do £=‘1_'i5 0 Calling other functions 0.0%
i?g E dudi_%ifoggoo Time in instructions executed:
= _ r . .
a7. 9 arr out(i,j) = sgrt(arr in(i,j) - arr in(i,j)) + sgrt(arr in(i,j) + arr in(i,q)) Scalar floating-point 0.0%
2 arr_out (i ,]) = arr_out (i ,]) * arr_out (i s]) Vector floating point 9.3% M
end do Scalar integer 0.0%
end do .
end do Memory access 90.7% I
else ! i
=] do 1=1,50 Other instructions 0.0%
B do j=1,7000
Bl do i=1,8000 I
=] arr_out (i, j) = sgrt(arr_in(i,j) - arr_in(i,Jj)) + sgrt(arr_in(i,]j) + arr_in(i,Jj))
2 arr_out(i,j) = arr_out(i,]j) * arr_out (i, j)
end do
end do
end do
endif m
! wait for everyone
39. call MPI_BARRIER (MPI_COMM_WORILD, ierr) «
if (pe == 0) print *,"stride answer",sum(arr_ out) L
121 L

Showing data from 5,784 samples taken over 8 processes (723 per process) Arm Forge 18.2.2 Connected to: mars & Main Thread View

94 © 2017 Arm Limited a rm

MPI imbalance: barrier

95

File Edit View Metrics Window Help

Profiled: slow f on 8 processes, 1 node, 8 cores (1 per process) Sampled from: Tue Oct 2 2018 14:40:25 (UTC+01) for 51.7s

Main thread activity

CPU memory access
49.6 %

CPU fp vector
11.0 %

MPI call duration
5.78s

Hide Metrics...

14:40:25-14:41:02 (37.372s, 72.3% of total): Main thread compute 60.7 %, MPI 39.3 %, File I/0 0.0 %

F slow.fo0 X

Time spent on line 120

——

zoom &1 = ®

B

39.3%

130

121

ODO0Om

if(mod(pe,2).eq.0) then

do 1=1,50
do i=1,8000
do j=1,7000
arr_out (i, j)
arr_out (i,)
end do
end do
end do

sqrt (arr_in (i, j)
arr_out (i, Jj)

- arr_in(i,j)) + sqgrtlarr_in(i,j) + arr_in(i,]j))
* arr_out (i, j)

else

do 1=1,50
do 3=1,7000
do i=1, 8000

[v]

—

arr_out (i,7) sgrt (arr in(i,j) — arr_in(i,j)) + sgrt(arr in(i,j) + arr _in(i,q))

arr_out (i, J)
end do

end do
end do

arr_out (i, j) * arr_out (i, j)

endif

wait for everyone

call MPI_BARRIER(MPI_COMM_WORLD, ierr}

(pe == 0) print *,"stride answer",sum(arr out)

(]

Breakdown of the 8.1% time spent on this line:

Executing instructions 100.0%
Calling other functions 0.0%

Time in instructions executed:

Scalar floating-point 0.0%
Vector floating point 38.4% I
0.0%

Scalar integer

Memory access 61.6% I

Other instructions 0.0%

Showing data from 5,784 samples taken over 8 processes (723 per process)

© 2017 Arm Limited

Arm Forge 18.2.2 Connected to: mars & Main Thread View

arm

MPI imbalance: all reduce

File Edit View Metrics Window Help

Profiled: slow fon 8 processes, 1 node, 8 cores (1 per process) Sampled from: Thu Oct 4 2018 23:27:47 (UTC+01) for 22.0s Hide Metrics...

Main thread activity

CPU memory access
31.6 %

CPU fp vector
47.1 %

MPI call duration

0.32s
23:27:55-23:28:04 (9.425s, 42.9% of total): Main thread compute 55.2 %. MPI 44.8 %, File 1/O 0.1 % Zoom @’\\“I EE @
F slow.fa0 X Time spent on line 88
84 = do iterations=1,4 Breakdown of the 55.2% time spent on this line:
85 a=1.1 + iterations Executing instructions 100.0%
86 B do :|=O ,pe Calling other functions 0.0%
87 = do i=1, size (a) Time in instructions executed:
_ r
. _ * = Scalar floating-point 0.0%
R %M 88 a=sqrt (a)+1.1*] Vector floating point £5.9% N —
89 end do | || scalarinteger 0.0%
90 end do Vector integer 0.0%
44.1% _‘ _‘ _‘ _‘ 91 call MPI_ALLREDUCE(a,b,size(a),MMPI_REAL,MPI SUM,MPI COMM_WORLD, ierr) LTE) EEERS 57.8% I
92 end do | Branch)
. —_— , L omas " Other instructions 0.0%
23 if (pe == 0) prlnt f imbalance answer . b (1) * 14.1% memory access instructions, 43.6% implicit
94 call MPI BARRIER (MPI_ COMM WORLD, ierr) memory accesses in other instructions, also counted in
95 - - - their categories
96 end subroutine imbalance
97
98 B subroutine stride
S
100 implicit none
101 real :: arr_in(8000,7000) -
| D

Showing data from 3,000 samples taken over 8 processes (375 per process) Arm Forge 18.2.2 Connected to: mars & Main Thread View

96 © 2017 Arm Limited a rm

IO imbalance

File Edit View Metrics Window Help
Profiled: slow fon 8 processes, 1 node, 8 cores (1 per process) Samp

Main thread activity

CPU floating-point o I
21.2 %
[}
Lustre write rate D
51.8 MB/s

Lustre metadata operations 2

0.65 k /s

Lustre file opens 200

0.06 /s

o

23:39:15-23:40:20 (65.989s): Main thread compute 46.6 %, MPI 47.8 %, File /0 5.7 %

F slow.fo0 X

163
lo4
165

0.1% . 166 OPEN (UNIT=13, FILE="mat.dat", ACTION="write", STATUS="replace", FORM="unformatted")
s.ss ___ __ __ 161 WRITE (13) mat «
<0.1% 168 CLOSE (UNIT=13)
169 endif
170
29.8% ||] [] | [kl call MPI BARRIER (MPI COMM WORLD, ierr)
172
173 end subroutine chkpt
174

real (8) I

if(pe == 0) then

mat (10000, 10000)

Showing data from 8,000 samples taken over 8 processes (1000 per process)

97 © 2017 Arm Limited

Arm Forge 18.2.2 Connected to: mars & Main Thread View

arm

Hands — On

* 4 profiling_imbalance

* Compile the code

* Are the MPI communications heavy ? (with Arm Performance Reports)
* Are the IOs efficient ? (with Arm Performance Reports)

* I|dentify where and how it can be improved (with Arm MAP)

* Modify the code and recompile

* Are the performances better ? (with Arm Performance Reports and Arm MAP)

98 © 2017 Arm Limited q rm

+ * + * + * + + + + +
& * & * + * + & + * +
Contact Support
+ + + + + + + + + + +
+ * + * + * + + + + +
& * & * + * + o * o +
+ ¥

© 2017 Arm Limited

arm

&+

Issues with Arm Forge ? Our support team is here to help !

For any questions :
support-hpc-sw@arm.com

CC : conrad.hillairet@arm.com

100 © 2017 Arm Limited a rm

mailto:support-hpc-sw@arm.com
mailto:conrad.hillairet@arm.com

Thank Youl!
ERI'EL
Merci
CILSL
HYMED!
Gracias!
Kiitos!

101 © 2017 Arm Limited

