Skip to main content

Search by tag

Number of hits: 3

  • HYBRIDplus: Advanced HYBRID solar plant with PCM storage solutions in sCO2 cycles

    HYBRIDplus aims to pioneer the next generation of CSP with an advanced high-density and high-temperature thermal energy storage (TES) system capable of providing a high degree of dispatchability at a low cost and with a much lower environmental burden than the State of the Art. This thermal storage is based on the Phase Change Material (PCM) technology in a cascade configuration that can reproduce the effect of a thermocline and integrates recycled metal wool in its nucleus. This enables hybridization with PV by acting as an electric heater transforming non-dispatchable renewable electricity into thermal stored energy ready to be dispatched when needed. HYBRIDplus proposes a novel concept to hybridize PV+Cascade PCM-TES with CSP configuration based on a high-temperature supercritical CO2 cycle working at 600 ºC. This new plant is called to form the backbone of the next-generation energy system thanks to higher efficiency and lower LCOE than state-of-the-art technology.

  • SHARP-SCO2 Solar Hybrid Air-sCO2 Power Plants

    SHARP-sCO2 addresses key technological challenges to enable the development of a new generation of highly efficient and flexible CSP plants. Keeping on working with CSP-sCO2 power cycles and investigating how to exploit air as operating fluid, SHARP-sCO2 will develop and validate novel enabling technologies in EU top level labs. SHARP-sCO2 will attain high temperatures and cycle efficiency, while guaranteeing reliable and flexible operation. Introducing a smart hybridization with PV by means of an innovative electric heaters, SHARP-sCO2 will maximize sCO2 operation and remuneration, exploiting PV affordability while counting on the unique energy storage capabilities of CSP.

  • SCO2OP-TES – sCO2 Operating Pumped Thermal Energy Storage for grid/industry cooperation

    SCO2OP-TES project aims to develop and validate up to TRL5, in UNIGE lab hosted in Tirreno Power (TP) Vado Ligure Combined Cycle power plant (CCGT), the next generation of Power-to-Heat-to-Power (P2H2P) energy storage solutions. SCO2OP-TES solution is able to guarantee affordable long duration (>10hrs) and large scale energy storage (multi MW/MWh) to facilitate bulky RES integration in EU energy systems as well as to facilitate large scale integration of RES and to convert traditional power plants (CCGT, CHP) – both standalone and those in industrial parks - into flexible renewable energy plants. This will be crucial particularly in a future scenario where their role will be more and more different and industrial process will be more and more electrified.

Belongs to: KTH Royal Institute of Technology
Last changed: Sep 22, 2020