Multiphase models for freeze-thaw actions and mass transport in concrete hydraulic structures
Time: Thu 2021-06-03 10.00
Subject area: Civil and Architectural Engineering, Concrete Structures
Doctoral student: Daniel Eriksson , Betongbyggnad
Opponent: Professor Stefan Jacobsen, NTNU Norwegian University of Science and Technology
Supervisor: Professor Anders Ansell, Betongbyggnad; Docent Richard Malm, Betongbyggnad; Adjunct Professor Erik Nordström, Betongbyggnad
Abstract
A crucial task for civil engineers is to make appropriate designs of new concrete structures and assessments of existing structures to ensure a long service life and sustainable use of the infrastructure. This doctoral thesis aims to increase the understanding of how advanced mathematical models can be used to describe phenomena and processes governing concrete degradation and thereby ultimately contribute to improving tools for design and assessments. The focus is on degradation processes that cause commonly observed concrete damage types in hydraulic structures exposed to cold climates and soft water. During a structure's service life, it is subjected to various deteriorating actions, but for the typical exposure conditions considered in this work, degradation due to freeze-thaw exposure and calcium leaching is of particular concern for the durability. Hence, the work related to improved modelling has been focused on phenomena related to these two degradation processes of concrete and how they may interact to produce damaging synergy effects.
All developed models in this doctoral project treat concrete as a multiphase porous medium and use poromechanics to describe the coupled hygro-thermo-mechanical behaviour of the material. Moreover, since the overall aim concerns degradation in hydraulic structures, the model development has focused on obtaining formulations applicable for structural-scale simulations. The models presented in this thesis describe long-term water absorption into air-entrained concrete and the response of partially saturated air-entrained concrete exposed to freeze-thaw conditions. In the latter models, the phase changes and the freeze-thaw hysteresis are explicitly considered in the formulations. The presented simulation examples are performed using the Finite Element Method (FEM), and the capabilities of the models are verified with experimental data from the literature. Additionally, accelerated leaching experiments on air-entrained concrete are presented, where the influence of leaching on the formation and melting of ice inside the pore space due to pore structure alternations are investigated.
The main research contribution of this work is the development and evaluation of advanced models applicable for structural-scale simulations that describe essential processes and phenomena related to freeze-thaw exposure of air-entrained concrete. The experimental work shows the significant influence of calcium leaching on the freeze-thaw processes, and the results can also facilitate future development of models considering some of the interactions causing damaging synergy effects. Adopting a multiphase modelling approach has been found suitable for describing the coupled processes and including interactions between different deterioration mechanisms. The theoretical models can also help gain further insights and improve the understanding of the phenomena, and thus, e.g. aid in developing more simplified models suited for daily engineering applications.