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Abstract. According to the principles of compositional verification, ver-
ifying that lower-level components satisfy their specification will ensure
that the whole system satisfies its top-level specification. The key step is
to ensure that the lower-level specifications constitute a correct decom-
position of the top-level specification. In a non-stochastic context, such
decomposition can be analyzed using techniques of theorem proving. In
industrial applications, especially for safety-critical systems, specifica-
tions are often of stochastic nature, for example giving a bound on the
probability that system failure will occur before a given time. A decompo-
sition of such a specification requires techniques beyond traditional the-
orem proving. The first contribution of the paper is a theoretical frame-
work that allows the representation of, and reasoning about, stochastic
and timed behavior of systems as well as specifications for such behav-
iors. The framework is based on traces that describe the continuous-time
evolution of a system, and specifications are formulated using timed au-
tomata combined with probabilistic acceptance conditions. The second
contribution is a novel approach to verifying decomposition of such spec-
ifications by reducing the problem to checking emptiness of the solution
space for a system of linear inequalities.

Keywords: Specification Theory · Refinement · Contracts

1 Introduction

The principle of compositional verification [32] has been proposed as a solution
to verify large complex systems built up by smaller components. The key idea
is to verify that: (1) each component implements its specification, and (2) the
composition of these component specifications refines the top-level system spec-
ification. This will then ensure that the whole system implements its top-level
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specification. The key difficulty is (2), which can also be expressed as to en-
sure that the component specifications constitute a correct decomposition of the
top-level specification.

Although decomposition of specifications is in general difficult, its importance
is stressed by its role in recent industrial standards such as ISO 26262 [19]
and ISO 21434 [18]. In these standards, specifications in the form of safety and
cyber-security requirements are decomposed into lower-level specifications. The
standards also require these decompositions to be correct and complete.

In the present paper, we consider general cyber-physical systems, and have
therefore chosen a representation based on continuous time. Based upon logic
and various extensions to include time, a number of frameworks are available
to express specifications and to verify refinement between specifications, e.g.
[10, 26, 29, 34]. A limitation with these frameworks is that they do not consider
probabilistic or stochastic behaviors. On the other hand, from an industrial
standpoint, the ability to include stochastics is fundamentally important since
the exact purpose of many specifications, especially within safety, is to set limits
on the probability of undesired events to occur within certain time intervals.

In order to allow the study of stochastic specifications, the present paper pro-
poses, as its first contribution, a novel framework covering: syntax and semantics
of stochastic specifications, and composition and refinement of such specifica-
tions. To support the industrial applicability of the framework, as the second
contribution, the paper proposes also an algorithm for the analysis of whether a
composition of stochastic specifications refines another stochastic specification.

The approach taken in the paper is that behaviors of components and sys-
tems are characterized by traces and probability measures over sets of traces.
Rather than being expressed explicitly, behaviors are used as an abstract tool for
defining the semantics of specifications, as sets of behaviors. The syntax of spec-
ifications bears a resemblance to CSL [4, 5, 17] but views specifications generally
as a probabilistic extension to assume-guarantee contracts [7, 25, 36]. In such a
specification, denoted P<p(A,G), both the assumption A and the guarantee G
of the contract is represented by a deterministic timed automaton responding
to traces. The specification states that, given that the environment satisfies the
assumption, the probability that the guarantee is satisfied shall be less than p.

The literature contains some other proposed frameworks for defining stochas-
tic specifications and verifying properties such as refinement, e.g. [8, 13, 14, 16,
20, 21, 23, 28, 33]. However, in contrast to all of these previous works, the present
paper uses continuous time and considers component behaviors purely in terms
of traces—no particular modeling formalism for generating the traces is assumed.

The paper is organized as follows. Sec. 2 uses an example to illustrate the
problem and sketch the proposed solution. Sec. 3 and 4 describe the proposed
framework and algorithm. Sec. 5 applies the framework and the algorithm to an
extended version of the example studied in Sec. 2. Finally, Sec. 6 and 7 present
related work and conclusions.
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2 Problem Illustration

Consider a two-component system consisting of a main and backup power source.
The idea is that whenever there is a main power failure, the backup is activated.
The purpose of the backup is to prolong the duration of power output by the
system. However, in order for the backup to correctly do this, it needs to first be
charged by the main power source for a certain amount of time. Furthermore,
even if charged, there is a probability that it will fail prematurely. An example
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Fig. 4: Successful backup activation
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Fig. 5: Main power specification
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Fig. 6: Backup specification
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Fig. 7: Top-level specification

of such a system is depicted in Fig. 1 and 2. In these diagrams, main power
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failure occurs exponentially with rate 1
20 (per hour), while the backup component

responds to this failure probabilistically. More precisely, when main power failure
occurs, the backup is activated with 85% probability if it has finished charging
and 0% probability otherwise. This fact is represented in Fig. 2 by the edges
labeled failure. The required charging time for this specific backup is 2 hours.
Once turned on, the backup will output power also for 2 hours, until entering a
discharged state.

Assume the top-level specification to be: “the system shall output power con-
tinuously during the first 7 hours with over 50% probability”. Instead of merely
verifying that the system composed of the components in Fig. 1 and 2 implements
the top-level specification, we want to formulate two component specifications
and verify that any system composed of a main and backup implementing its
component specification is sure to implement the top-level specification. As our
attempt for doing so, let the main power source specification be: “main power
failure shall occur before 6 hours with at most 30% probability”. Meanwhile,
the backup specification will be an assume-guarantee contract: “assuming main
power failure occurs after at least 3 hours, then with at least 80% probability,
the backup shall output power continuously for at least 2 hours starting at this
time”. Note that, since the main power specification only concerns the first 6
hours, it does not refine the top-level specification by itself and needs to be
supplemented by the backup specification to extend this time interval.

As a sketch of what refinement means, we first observe that the outcomes,
i.e. the traces, of the components are generated stochastically. Fig. 3 and 4 show
two possible traces of a main and backup power source. In both traces, main
power failure occurs at exactly 3 hours. However, backup power activation fails
in Fig. 3 while succeeding in Fig. 4. Once activated, it manages to prolong power
output by 2 hours, resulting in the system continuously outputting power for 5
hours instead of 3, as would be the case without the backup.

We can view these traces as samples drawn from some underlying probability
distribution. For example, the main power trace might be drawn from the pro-
cess of Fig. 1 and the backup trace from Fig. 2. Such an underlying probability
distribution is referred to as a behavior. As a result, specifying the two compo-
nents corresponds to specifying two sets of behaviors; thus, we must translate
the natural language specifications to sets of “allowed” probability distributions.

Fig. 5 depicts the specification for the main power source in terms of the
behaviors it contains, represented by the gray region. The convention used here
is that a behavior, represented by the cumulative distribution function (CDF) of
the time to failure, implements the specification if it lies completely within the
gray region. Note that the region extends to positive infinity along the horizontal
axis. To better understand this graphical representation of the specification, an
example behavior, drawn as a CDF, is included inside the region. Note that this
CDF in fact represents the behavior generated by the process of Fig. 1, following
the exponential distribution exp( 1

20 ).

The backup specification is depicted in Fig. 6 using a similar approach. How-
ever, this region does not represent a set of failure CDFs, but instead a set of
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success probabilities, given as functions of the time when main power failure
occurs. Here, success means that the backup is able to output power for at least
2 hours. The example behavior shown within the region corresponds to a backup
power source that needs 2 hours to charge, and, once charged, has a success rate
of 85% regardless of when main power fails. Note that whenever the assumption
is unfulfilled, nothing is required of the backup. That is, within the first 3 hours,
all success rates from 0% to 100% are allowed.

Lastly, the top-level specification is depicted in Fig. 7, showing a region of
allowed failure CDFs of total power output, ignoring whether the main or backup
is responsible for outputting it. The question now is this: does the composition of
the two component specifications refine the top-level specification? The purpose
of the rest of the paper is to formalise these notions of traces, behaviors, and
specifications, and to provide an algorithm for verifying refinement.

3 A Theory for Specifying Stochastic Behavior

3.1 Traces and Behaviors

A behavior is meant to represent the possible executions, or traces, of a com-
ponent, as well as how likely they are. In short, we represent a trace as an
assignment of values to variables at each point in time, and a behavior as a
distribution over traces. We will also extend behaviors to incorporate input as
well as output, calling them input/output behaviors.

We consider a universal set of variables X = {x1, x2, . . . , xn}, n ≥ 1, each
xi ∈ X ranging over a non-empty countable set Vxi

of values. Given a non-empty
set of variables E ⊆ X, a valuation for E is a function ν : E →

⋃
xi∈X Vxi

associating each xi ∈ E with a value in its range Vxi . The set of all possible
valuations for a non-empty set E ⊆ X is denoted val(E).

Definition 1 (Trace). Given a non-empty set of variables E ⊆ X, a trace over
E is a right-continuous function θ : R≥0 → val(E) defined on the timeline. ⊓⊔

Let tr(E) denote the set of all possible traces over E. By convention, let
tr(∅) = ∅, i.e. the set of all possible traces over the empty set of variables is ∅.
Furthermore, for any trace θ ∈ tr(E) and set E′ of variables, let θ|E′ denote the
projection θ′ : R≥0 → val(E′) such that ∀t ∈ R≥0 .∀x ∈ E′ . θ′(t)(x) = θ(t)(x).

Definition 2 (Behavior). Given a non-empty set of variables E ⊆ X, a be-
havior over E is a probability measure defined on a sigma algebra on the set tr(E).

⊓⊔

Let beh(E) denote the set of all possible behaviors over a non-empty E ⊆ X.
We will now extend behaviors into input/output behaviors, which intuitively

have control over output variables while being dependent on input variables.

Definition 3 (Input/Output Behavior). Given two disjoint sets of variables
I ⊆ X and O ⊆ X, where O is non-empty, an input/output behavior from I to O
is a function β : tr(I) → beh(O) such that for any pair of traces θ1, θ2 ∈ tr(I),
the behaviors β(θ1) and β(θ2) share the same sigma algebra denoted σβ. ⊓⊔
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Given a possibly empty I ⊆ X and a non-empty O ⊆ X, let beh(I,O) denote
the set of all possible input/output behaviors from I to O. Furthermore, for an
input/output behavior β from I to O, let in(β) and out(β) denote the sets I
and O of input and output variables, respectively. From now on, “input/output”
will often be abbreviated as I/O.

Example 1. Consider I = ∅ and O = {x}. Then an I/O behavior from I to O is
a function β : ∅ → beh({x}). Thus, the I/O behavior from I to O reduces to a
behavior over {x}, i.e. β ∈ beh({x}).

Composition of Behaviors When composing two behaviors β1 and β2, for the
sake of simplicity, we restrict ourselves to the case where β1 has no input, and
its output is exactly the input of β2, i.e. in(β1) = ∅ and out(β1) = in(β2). The
implication of this is that composing β1 with β2 results in yet another behavior
without input. The composition of β1 and β2, denoted β1∥β2, is the I/O behavior
from in(β1) = ∅ to out(β1) ∪ out(β2) formed as follows.

We assume that β2(·)(Θ2), for any fixed Θ2, is a measurable function from
the measurable space (out(β1), σβ1

) to the measurable space ([0, 1],B([0, 1])).
Then according to [31] (Thm. 5.8.1 and Thm. 2.4.3), β1∥β2(·) defined as
β1∥β2(Θ1×Θ2) =

∫
Θ1

β2(θ1)(Θ2)β1(dθ1) is a probability of Θ1×Θ2 ∈ σβ1
×σβ2

and its unique extension a probability measure on the product sigma algebra
σβ1 × σβ2 . This result is the basis for the following definition.

Definition 4 (Composition of I/O Behaviors). Let β1 and β2 be two I/O
behaviors such that in(β1) = ∅, in(β2) = out(β1), and β2(·)(Θ2) is a measurable
function from (out(β1), σβ1) to ([0, 1],B([0, 1])). The composition of β1 and β2,
denoted β1∥β2, is an I/O behavior from ∅ to out(β1)∪out(β2), i.e. a probability
measure

β1∥β2 ∈ beh(out(β1) ∪ out(β2)) ,

defined by

β1∥β2(Θ1 ×Θ2) =

∫
Θ1

β2(θ1)(Θ2)β1(dθ1)

and its unique extension, and defined on σβ1 × σβ2 . ⊓⊔

Note that according to this definition, we only obtain a measure on the sigma
algebra σβ1

×σβ2
. As a consequence, we assume that any subset of tr(out(β1))×

tr(in(β2)) that we want to measure the probability of, and that is not an element
of the cartesian product σβ1 × σβ2 , can be approximated to arbitrary precision
by some countable disjoint union of elements in the cartesian product σβ1

×σβ2
.

Note further that the output of the composition β1∥β2 simply becomes the union
of β1 and β2 and it is presumed that in(β2) = out(β1) and in(β1) = ∅. Clearly,
a less restrictive definition can be created, but for the sake of simplicity, these
generalizations are left out of scope of the current paper.
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3.2 Specifications

In short, we view a specification simply as the set of behaviors that implement it.
A specification refines another if each behavior implementing it also implements
the other. This is captured by the following three definitions.

Definition 5 (Specification). Given two disjoint sets of variables I ⊆ X and
O ⊆ X such that O is non-empty, a specification Σ from I to O is a subset of
the I/O behaviors beh(I,O), i.e. Σ ⊆ beh(I,O). ⊓⊔

Definition 6 (Implements). An I/O behavior β from I to O implements a
specification Σ from I to O if β ∈ Σ. ⊓⊔

Definition 7 (Refines). A specification Σ1 from I to O refines a specification
Σ2 from I to O if Σ1 ⊆ Σ2. ⊓⊔

Given a possibly empty set I ⊆ X and non-empty set O ⊆ X, let spec(I,O)
denote the set of all possible specifications from I to O. Given a specification Σ,
in(Σ) and out(Σ) are defined in a similar manner as with I/O behaviors.

Note that, according to Def. 4, β1∥β2 is only defined for cases where in(β1) =
∅, in(β2) = out(β1), and β2(·)(Θ2) is a measurable function from (out(β1), σβ1

)
to ([0, 1],B([0, 1])). Behaviors fulfilling these conditions will be called compatible.

In analogy with the notion of compatible behaviors, we say that two specifica-
tions Σ1 and Σ2 are compatible if each β1 ∈ Σ1 is compatible with each β2 ∈ Σ2.
Note that a prerequisite for this is that in(Σ1) = ∅ and in(Σ2) = out(Σ1).

Definition 8 (Parallel Composition of Specifications). Given two com-
patible specifications Σ1 and Σ2, the parallel composition of Σ1 and Σ2, denoted
Σ1∥Σ2, is the specification Σ1∥Σ2 = {β1∥β2 | β1 ∈ Σ1, β2 ∈ Σ2}. ⊓⊔

The essence of this definition is that we can take any pair β1 ∈ Σ1 and β2 ∈ Σ2,
and be sure that β1∥β2 ∈ Σ1∥Σ2.

3.3 Trace Automata

The specification language presented in this paper, as well as its semantics and
the verification method, are based on timed automata, as introduced by Alur
and Dill [2, 3]. The following definitions follow closely this literature, except that
traces are assumed as input, rather than timed words, to fit the current setting.

Let a clock be a variable ranging over the entire timeline R≥0. We will often
use the notation νC for a valuation over clocks, as opposed to ν, which is used
for a valuation over variables in X. For t ∈ R≥0, let νC + t denote the clock
valuation {c 7→ νC(c) + t | c ∈ C}. Given a set C = {c1, . . . , cm} of clocks, a
clock constraint δ on C is defined inductively by the grammar

δ ::= c < k | c ≥ k | δ ∧ δ,

where c ranges over clocks C and k ranges over constant real numbers R. A
clock valuation νC for C is said to satisfy a clock constraint δ on C if δ[c1 7→
νC(c1), . . . , cm 7→ νC(cm)] evaluates to true. Given a set C of clocks, let ∆(C)
denote the set of all possible clock constraints on C.
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Definition 9 (Timed Automaton). A timed automaton is a tuple A = ⟨V,L,
l0, C,→, F ⟩ where V is a countable alphabet, L is a countable set of locations,
l0 ∈ L is a start location, C is a countable set of clocks, → ⊆ L×V×2C×∆(C)×L
is a transition relation, and F ⊆ L is a set of accepting locations. ⊓⊔

For a timed automaton A = ⟨V,L, l0, C,→, F ⟩, we denote by VA, LA, l0A ,
CA, →A, and FA the elements V , L, l0, C, →, and F , respectively. A timed
automaton is said to be deterministic if, for each pair of distinct transitions
originating from the same location and sharing the same alphabet symbol, there
exists no clock valuation satisfying both clock constraints.

In what follows, only a special class of timed automata, called trace automata,
will be considered. These are characterized by the fact that their alphabets
consist of variable valuations, resulting in the ability to read traces as input.
This leads us to use the letter ν to denote an input symbol.

Given a timed automaton A = ⟨V,L, l0, C,→, F ⟩, locations l, l′ ∈ L, clock
valuations νC , ν

′
C for C, and an alphabet symbol ν ∈ V , we will denote by

(l, νC)
ν−→A (l′, ν′C) the logical statement that→ contains a transition ⟨l, ν, r, δ, l′⟩

with r = {c1, . . . , cm} such that νC satisfies δ and ν′C = νC [c1 7→ 0, . . . , cm 7→ 0].
In order to give a concise and well-defined semantics for trace automata, we

require that only a finite number of transitions are possible within 0 time. This
fact is captured in the following definition.

Definition 10 (Trace Automaton). Given a non-empty set E ⊆ X of vari-
ables, a deterministic timed automaton A = ⟨V,L, l0, C,→, F ⟩ is a trace au-
tomaton for E if V = val(E) and, for each l ∈ L and νC ∈ val(C), there exists

no infinite sequence (l, νC)
ν−→A (l1, νC1

)
ν−→A (l2, νC2

)
ν−→A . . . . ⊓⊔

Note from Def. 10 that the condition about infinite transition sequences ap-
plies both to loops, including self loops, as well as to infinite location spaces with
an infinite number of transitions. For instance, trace automata never allow self
loops ⟨l, ν, r, δ, l⟩ in which the set r of clocks to reset is empty.

The semantics of a trace automaton A = ⟨V,L, l0, C,→, F ⟩ for a non-empty
E is defined as follows. Consider a trace θ ∈ tr(E) to be given. A configuration
is a tuple µi = (li, νCi

, ti) ∈ L × val(C) × R≥0, containing a location, clock
configuration and time value. Initially, µ0 = (l0, 0̄, 0), where 0̄ denotes the clock
valuation {c 7→ 0 | c ∈ C}. Inductively, consider a configuration µi = (li, νCi , ti)
and the smallest time increment t+ causing the automaton to transition. That is,
t+ = min{t ∈ R≥0 | ∃⟨li, θ(ti+ t), r, δ, l′i⟩ ∈ → . νCi

+ t satisfies δ}. The successor
of µi becomes µi+1 = (li+1, νCi+1

, ti+1) such that ti+1 = ti + t+ and there exists

a maximal transition sequence (li, νCi
+ t+)

θ(ti+1)−−−−→ . . .
θ(ti+1)−−−−→ (li+1, νCi+1

).
Note that the sequence µ0, µ1, . . . generated in this way is unique since A is
deterministic. Thus, we can define the execution of A on θ, denoted A(θ), as
this sequence µ0, µ1, . . . . Let furthermore A(θ)|L denote the sequence l0, l1, . . .
of locations visited along the execution. In the following definition, let ∗ denote
Kleene star, i.e. the operator that, when applied to a set L, generates the set L∗

of all strings over elements in L.
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Definition 11 (Path). Given a set E ⊆ X of variables, a trace automaton
A = ⟨V,L, l0, C,→, F ⟩ for E, and a location sequence π ∈ L∗, the sequence π is
a path of A if there exists a trace θ ∈ tr(E) such that π = A(θ)|L. ⊓⊔

Given a trace automaton A for E, the set of all possible paths of A is denoted
paths(A). Furthermore, given an infinite path l0, l1, . . . of A, the limit limi→∞ li
exists if and only if there exists an index a ∈ N such that for each b ≥ a,
lb = la. In that case, we define limi→∞ li = la. For finite paths l0, l1, . . . , lk, we
use the convention that limi→∞ li = lk. If for each trace θ ∈ tr(E) the path
A(θ)|L = l0, l1, . . . has a limit limi→∞ li, then A is said to be terminating.

Henceforth, we will only consider terminating trace automata. This is done
both for the sake of simplicity and to provide a refinement verification algorithm
that is guaranteed to terminate. Note that terminating automata still allow us
to express safety properties over infinite traces, such as “the system shall never
crash”. Furthermore, although some types of liveness properties are not possible
to expresss, such as “at all times, each request shall be followed by an answer”,
we can still express liveness properties such as “the system eventually finishes”,
or liveness within bounded time, such as “during the system lifetime of 10,000
hours, each request shall be followed by an answer”. Let AE denote the set of
all terminating trace automata for any non-empty set of variables E ⊆ X, and
let A∅ = ∅ by convention. For a path π = l0, l1, . . . of an automaton A ∈ AE ,
let last(π) denote the last visited location limi→∞ li. We also extend last(·) to
executions, so that if ω is an execution, then last(ω) = last(ω|L). Furthermore,
if π is a path of A ∈ AE , then ΘA(π) will denote the set of all traces θ ∈ tr(E)
corresponding to π, i.e. the set {θ ∈ tr(E) | A(θ)|L = π}. As an extension, if Π
is a set of paths of A, then ΘA(Π) = {ΘA(π) | π ∈ Π}. Given trace automata
A1 ∈ AE1

and A2 ∈ AE2
, the composition of A1 and A2, denoted A1∥A2, is

the trace automaton giving their joint execution. This is captured in the next
definition.

Definition 12 (Composition of Trace Automata). Let A1 = ⟨V1, L1, l01 , C1,→1

⟩ ∈ AE1 be a trace automaton for E1 and A2 = ⟨V2, L2, l02 , C2,→2⟩ ∈ AE2 be a
trace automaton for E2. Then the composition of A1 and A2, denoted A1∥A2,
is the trace automaton A1∥A2 = ⟨val(E1 ∪E2), L1 × L2, (l01 , l02), C1 ∪ C2,→1∥
→2⟩ ∈ AE1∪E2

where →1∥→2 is constructed as follows:

1. For each location pair (l1, l2) ∈ L1×L2, each transition ⟨l1, ν1, r1, δ1, l′1⟩ ∈→1

and each valuation ν ∈ val(E1 ∪ E2) such that ν|E1 = ν1, let T
ν
2 be the set

of transitions of A2 coherent with ν, i.e.

T ν
2 = {⟨l2, ν2, r2, δ2, l′2⟩ ∈→2 | ν|E2

= ν2}

and let T ν
2 be the subset that is mutually executable with ⟨l1, ν1, r1, δ1, l′1⟩, i.e.

T ν
2 = {⟨l2, ν2, r2, δ2, l′2⟩ ∈ T ν

2 | ∃νC ∈ val(C1∪C2) s.t. νC satisfies both δ1 and δ2} .

– If T ν
2 = ∅, then →1∥→2 contains the transition ⟨(l1, l2), ν, r1, δ1, (l′1, l2)⟩.
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– Otherwise, for each ⟨l2, ν2, r2, δ2, l′2⟩ ∈ T ν
2 , →1∥→2 contains the transi-

tions ⟨(l1, l2), ν, r1∪r2, δ1∧δ2, (l
′
1, l

′
2)⟩ and ⟨(l1, l2), ν, r1, δ1∧¬δ2, (l′1, l2)⟩.

2. Repeat step 1 but with the indices 1 and 2 interchanged, i.e. iterating over
→2 instead of →1. ⊓⊔

Given a joint location l = (l1, l2) ∈ LA1∥A2
, we denote by l|A1 and l|A2 the

individual locations l1 and l2, respectively.

3.4 Probabilistic Automaton Contracts

For specifying I/O behaviors in practice, we will use a contract-based approach.
A contract consists of an assumption and a guarantee together with a probabil-
ity bound. Intuitively, an I/O behavior implements a contract if, for each input
trace satisfying the assumption, the probability over all output traces satisfying
the guarantee respects the probability bound. Both the assumption and guar-
antee are specified using terminating trace automata. For convenience, we will
also allow a special non-assumption ⊤ that carries the meaning of always being
satisfied. We use the convention that composing any automaton A with ⊤ results
in A itself, so that A∥⊤ = ⊤∥A = A.

The choice of using automata for specifying system properties is motivated
by their flexibility—while temporal logics offer their own advantages, it may be
difficult, or even impossible, to specify some complex systems using them [9]. In
general, it is always possible to construct some automaton corresponding to a
given temporal logic formula.

Definition 13 (Accepts). Given a non-empty set E ⊆ X of variables, an
automaton A ∈ AE, and a trace θ ∈ tr(E), A accepts θ if last(A(θ)) ∈ F . ⊓⊔

We also extend the notion of acceptance to the non-assumption ⊤, so that ⊤
is considered to accept each possible trace θ ∈

⋃
E⊆X tr(E). For an automaton

A ∈ AE ∪ {⊤}, let acc(A) denote the set of all traces that A accepts.

Definition 14 (Probabilistic Automaton Contract). Given a set of vari-
ables I ⊆ X, a non-empty set of variables O ⊆ X disjoint from I, an assumption
A ∈ AI ∪ {⊤}, a guarantee G ∈ AI∪O, a probability value p ∈ [0, 1] and a com-
parison operator ▷◁ ∈ {<,≤,≥, >}, a formula ϕ = P▷◁ p(A,G) is a probabilistic
automaton contract (PAC) from I to O. ⊓⊔

Once again, in(ϕ) and out(ϕ) are defined for PACs ϕ in a similar manner as
for I/O behaviors and specifications. For a PAC ϕ = P▷◁ p(A,G), we will denote
its assumption A, guarantee G, probability value p and comparison operator ▷◁
by Aϕ, Gϕ, pϕ, and ▷◁ϕ, respectively.

To understand trace composition in the following definition of PAC interpre-
tation, consider two traces θ1 and θ2 over disjoint sets of variables E1 and E2, re-
spectively. The composition of θ1 and θ2 is the trace θ1∥θ2 : R≥0 → val(E1∪E2)
such that (θ1∥θ2)(t)(x) equals θ1(t)(x) if x ∈ E1 and θ2(t)(x) if x ∈ E2.

In the next definition of PAC interpretation, given a set O ⊆ X of variables,
we will make use of a particular σ-algebra σO that, for each automaton A ∈ AO

and each path π ∈ paths(A), contains the set ΘA(π).



Formally Verifying Decompositions of Stochastic Specifications (w. Proofs) 11

Definition 15 (PAC Interpretation). Given a set of variables I ⊆ X, a
non-empty set of variables O ⊆ X, and a PAC ϕ = P▷◁ p(A,G) from I to O, the
interpretation of ϕ, written JϕK, is the specification, i.e. the set of I/O behaviors
from I to O, with the σ-algebra σO such that for each β ∈ JϕK, it holds:

1. in the case I = ∅, β()(acc(G)) ▷◁ p,
2. in the case I ̸= ∅, for each trace θI ∈ tr(I), if θI ∈ acc(A), then β(θI)({θO ∈

tr(O) | θI∥θO ∈ acc(G)}) ▷◁ p. ⊓⊔

Note that the choice of σO guarantees the values β()(acc(G)) and β(θI)({θO ∈
tr(O) | θI ∥ θO ∈ acc(G)}) in the above definition to be defined. For a PAC
ϕ = P▷◁ p(A,G), we denote by ϕc the PAC P▷◁c p(A,G) in which the comparison
operator has been complemented. For instance, the complement of < is ≥. The
PAC ϕc is called the complement of ϕ.

Of course, one could imagine the possibility of creating more complex, even
nested, contract-based formulae following a recursively defined grammar. For
instance, combining PACs using negation, conjunction and disjunction as well
as defining an until operator and nesting PACs within PACs. Although this
possibility is interesting, it lies outside the scope of the present paper. Instead,
as will be introduced in the next definition, we will work with composite PACs,
which consist of multiple PACs and represent their parallel composition. As with
composition of behaviors and specifications, in the next definition, we consider
only the case of in(ϕ1) = ∅ and in(ϕ2) = out(ϕ1).

Definition 16 (Composite Probabilistic Automaton Contract). Given
two PACs ϕ1 and ϕ2 with compatible interpretations, the term ϕ1∥ϕ2 is a com-
posite probabilistic automaton contract (cPAC) with interpretation Jϕ1∥ϕ2K =
Jϕ1K∥Jϕ2K. Inductively, if ϕ1 is a PAC or cPAC and ϕ2 is a PAC or cPAC such
that Jϕ1K and Jϕ2K are compatible, then the term ϕ1∥ϕ2 is a cPAC. ⊓⊔

The notation in(ϕ) and out(ϕ) is extended also to cPACs ϕ, and the notions
of implement and refine are extended to PACs and cPACs by defining that: β
implements ϕ if β ∈ JϕK, and ϕ1 refines ϕ2 if Jϕ1K ⊆ Jϕ2K.

4 Verification of Refinement

A common technique for formal verification found throughout literature is to
formulate specifications using automata and then solve the language inclusion
problem using automata theory [9, 22]. This is also the foundation for the method
developed in this paper, except here, languages are sets of I/O behaviors instead
of strings. The intuition for verifying that a composition ϕ = ϕ1 ∥ . . . ∥ ϕk of

component specifications refines a top-level specification ϕ̂ is as follows. We want
to verify that the set JϕK is a subset of Jϕ̂K. The strategy is to check emptiness of

the specification JϕK∩ Jϕ̂cK. To do so, we will compose all automata found in the
two specifications and map each joint path to the assumptions and guarantees
that it satisfies. From this, a set of linear inequalities can be generated, each
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representing a conditional probability of a guarantee given an assumption. If
this system of inequalities has no solutions, it means that no valid probability
measure can possibly exist in JϕK ∩ Jϕ̂cK, thereby proving emptiness. The last
step can be calculated using e.g. the simplex method [11, 27].

Although this method is a semi-decision procedure, i.e. is not guaranteed to
return true if refinement holds and false otherwise, it is sound in the sense
that refinement does indeed hold whenever the algorithm returns true.

To verify refinement, the restrictions imposed on the specifications are as
follows. While the component specification ϕ can be either a single PAC or a
cPAC consisting of multiple PACs ϕ1, . . . , ϕm, the top-level specificaion ϕ̂ must
be a single PAC. Moreover, we require that in(ϕ) = in(ϕ̂) = ∅ and out(ϕ) =

out(ϕ̂) ̸= ∅. Each ▷◁ϕi must be one of ≤ or ≥, and ▷◁ϕ̂ must be either < or >.

Lastly, given that ϕ is the PAC or cPAC ϕ = ϕ1∥. . .∥ϕm for some m ≥ 1 and
denoting A = Aϕ1

∥ Gϕ1
∥ . . .∥Aϕm

∥ Gϕm
∥Aϕ̂ ∥ Gϕ̂, we assume that paths(A) is

finite and can be found in finite time. This should be the case for many industrial
applications, for instance when the number of transitions is finite.

The algorithm works as follows. Let ϕ = ϕ1 ∥ . . .∥ ϕm, m ≥ 1, be a PAC

or cPAC and ϕ̂ be a PAC. The problem is to decide whether ϕ refines ϕ̂. We
construct the composition A = Aϕ1

∥ Gϕ1
∥ . . .∥ Aϕm

∥ Gϕm
∥ Aϕ̂ ∥ Gϕ̂ and, from

that, a system of linear inequalities as follows. For each ϕi ∈ {ϕ1, . . . , ϕm}, let
{π1, . . . , πq} be the set of paths of A accepted by the assumption Aϕi

and let
{πj1 , . . . , πjs} ⊆ {π1, . . . , πq} be the set of paths of A accepted by both the
guarantee Gϕi

and assumption Aϕi
. Then we add an inequality

πj1 + · · ·+ πjs

π1 + · · ·+ πq
▷◁ϕi

pϕi
.

Do the same for ϕ̂ except with ▷◁ϕ̂c substituted for ▷◁ϕ̂. To ensure that the

probabilities sum to 1, add the equality 1 =
∑

π∈paths(A) π. Lastly, if the solution

space for this system of inequalities is empty, we conclude that ϕ refines ϕ̂.

Pseudocode for this procedure is presented in Algorithm 1. Here, the variable
ineqs stores the set of linear inequalities, which is incrementally updated to
contain the inequality generated from each conditional probability.
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Algorithm 1 Verify that a PAC or cPAC refines a PAC.

1: function Refines(ϕ1∥ . . .∥ϕm, ϕ̂)
2: A = Aϕ1 ∥Gϕ1 ∥ . . .∥Aϕm ∥Gϕm ∥Aϕ̂∥Gϕ̂
3: ineqs←

{
1 =

∑
π∈paths(A) π

}
4: for ϕ ∈ {ϕ1, . . . , ϕm, ϕ̂c} do
5: ΠA ← {π ∈ paths(A) | last(π)|Aϕ ∈ FAϕ}
6: ΠG ← {π ∈ paths(A) | last(π)|Gϕ ∈ FGϕ}
7: ΠG∧A ← ΠG ∩ΠA

8: ineqs← ineqs ∪
{(∑

π∈ΠG∧A
π
)
/
(∑

π∈ΠA
π
)
▷◁ϕ pϕ

}
9: end for
10: return true if the solution space for ineqs is empty; unknown otherwise
11: end function

Due to the assumption of finitely many paths, the algorithm will terminate
in finite time. However, time complexity depends on operations for enumerat-
ing these paths. Therefore, practical implementations call for efficient search
algorithms and data structures for this. The following theorem states that Al-
gorithm 1 is sound. To make the proof more readable, the lemmas are given
separately below.

Theorem 1. A PAC or cPAC ϕ1 ∥ . . . ∥ ϕm refines a PAC ϕ̂ if the procedure

Refines(ϕ1∥ . . .∥ϕm, ϕ̂) given by Algorithm 1 returns true. ⊓⊔

Proof. By contraposition. We want to prove that whenever ϕ1 ∥ . . . ∥ ϕm does

not refine ϕ̂, Refines(ϕ1∥ . . .∥ϕm, ϕ̂) does not answer true. To do this, assume
there is a behavior β ∈ beh(out(ϕ1 ∥ . . . ∥ ϕm)) such that β ∈ Jϕ1 ∥ . . . ∥ ϕmK
and β /∈ Jϕ̂K. First, denote for each i ∈ {1, . . . ,m} out(ϕi) by Oi, Aϕi

by Ai,
Gϕi

by Gi, ▷◁ϕi
by ▷◁i, and pϕi

by pi. Furthermore, denote the composition

A1∥G1∥ . . .∥Am∥Gm∥Aϕ̂∥Gϕ̂ by A, and the set out(ϕ1∥ . . .∥ϕm) = out(ϕ̂) by
O.

Since in(ϕ1) = ∅ and out(ϕ1) = in(ϕ2), Lemma 1 implies that, for each β1 ∈
Jϕ1K, there exists a β1..2 ∈ Jϕ1 ∥ ϕ2K such that β1(acc(G1)) = β1..2({θ | θ|O1 ∈
acc(G1)}). Note that acc(G1) is measurable w.r.t. the σ-algebra σout(ϕ1) of β1

from Def. 15. Because also each β1 ∈ Jϕ1K satisfies β1(acc(G1)) ▷◁1 p1 as per
Def. 15, it follows that each β1..2 ∈ Jϕ1∥ϕ2K satisfies β1..2{θ | θ|O1

∈ acc(G1)} ▷◁1
p1. Furthermore, since in(ϕ2) = out(ϕ1), it follows from Lemma 2 that, for each
β1..2 ∈ Jϕ1∥ϕ2K,

β1..2{θ | θ|O1∪O2
∈ acc(G2) and θ|O1

∈ acc(A2)}
β1..2{θ | θ|O1 ∈ acc(A2)}

▷◁2 p2 .

Because once again in(β1..2) = ∅, we can repeat this procedure, starting from
ϕ1∥ϕ2, until covering all of ϕ1∥ . . .∥ϕm, preserving, for each i ∈ {1, . . . ,m},

β{θ | θ|O1∪···∪Oi ∈ acc(Gi) and θ|O1∪···∪Oi−1 ∈ acc(Ai)}
β{θ | θ|O1∪···∪Oi−1 ∈ acc(Ai)}

▷◁i pi . (1)
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Note that in the special case of ϕ1, we could rewrite

β{θ | θ|O1 ∈ acc(G1)} =
β{θ | θ|O1

∈ acc(G1) and θ|∅ ∈ acc(A1)}
β{θ | θ|∅ ∈ acc(A1)}

▷◁1 p1

to treat it in the same way as ϕ2, . . . , ϕm. This comes from the fact that in(ϕ1) =
∅ and, due to Def. 14, A1 must therefore equal ⊤. Since acc(⊤) is a superset
of acc(G1), acc(G1) ∩ acc(A1) is simply acc(G1). Furthermore, because β is
a probability measure over the space {θ | θ|∅ ∈ acc(A1)}, the denominator
β{θ | θ|∅ ∈ acc(A1)}, i.e. the measure of the entire space, is equal to 1.

Using the definition of acc(·) together with first Lemma 3 and then Lemma 4,
we see that for i ∈ {1, . . . ,m},

{θ | θ|O1∪···∪Oi−1 ∈ acc(Ai)} = ΘA(ΠAi) . (2)

Using a similar reasoning, we see that also

{θ | θ|O1∪···∪Oi ∈ acc(Gi) and θ|O1∪···∪Oi−1 ∈ acc(Ai)} = ΘA(ΠGi ∩ΠAi) . (3)

Thus, we can rewrite Inequality (1) to get

β(ΘA(ΠGi
∩ΠAi

))

β(ΘA(ΠGi
))

▷◁i pi . (4)

In order to construct a similar inequality for ϕ̂, first note that because β /∈ Jϕ̂K,
case 1 of Def. 15 tells us that β(Gϕ̂) ▷◁ϕ̂ pϕ̂ does not hold. This means that

the complement β(acc(Gϕ̂)) ▷◁c
ϕ̂
pϕ̂ holds. From the definition of complement

of PAC, together with case 1 of Def. 15, this can be stated equivalently as
β(acc(Gϕ̂c)) ▷◁ϕ̂c pϕ̂c .

Once again, using the definition of acc(·) together with Lemma 3 and Lemma 4,

acc(Gϕ̂c) = ΘA(ΠG
ϕ̂c
) ,

which implies
β(ΘA(ΠG

ϕ̂c
)) ▷◁ϕ̂c pϕ̂c . (5)

We now want to show that, given that such a β exists, Algorithm 1 does not
return true, or in other words, that the solution space for the system of linear
inequalities generated by the algorithm is non-empty. This is the case if and
only if there exists an assignment V : paths(A) → R satisfying all generated
inequalities. First, given any individual automaton M being a member of the
composition A, let ΠM denote the set of paths of A ending in an accepting
location of M, i.e. ΠM = {π ∈ paths(A) | last(π)|M ∈ FM}. For the non-
assumption ⊤, let Π⊤ denote the set paths(A) of all paths of A. Consider now
an arbitrary PAC ϕi, i ∈ {1, . . . ,m}. For this ϕi, the algorithm adds a single
inequality ∑

π∈ΠGi
∩ΠAi

π∑
π∈ΠAi

π
▷◁i pi .
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Note that the paths π used in this generated inequality are purely syntactical.
They are used merely to represent variables, and the inequality is satisfied by a
solution V if ∑

π∈ΠGi
∩ΠAi

V (π)∑
π∈ΠAi

V (π)
▷◁i pi . (6)

Using the fact that the traces of different paths are disjoint, together with
the fact that probability measures are σ-additive, we can choose V such that,
for each i ∈ {1, . . . ,m}, ∑

π∈ΠAi

V (π) = β(ΘA(ΠAi
)) , (7)

∑
π∈ΠGi

∩ΠAi

V (π) = β(ΘA(ΠGi
∩ΠAi

)) , (8)

and ∑
π∈ΠG

ϕ̂c

V (π) = β(ΘA(ΠG
ϕ̂c
)) . (9)

To see that such a choice is possible, let Π be the collection of all sets of paths
used in (7), (8) and (9), i.e. Π = {ΠAi | i ∈ {1, . . . ,m}} ∪ {ΠGi ∩ ΠAi | i ∈
{1, . . . ,m}} ∪ΠG

ϕ̂c
. Partition the set paths(A) into the set of subsets

P =


( ⋂

m∈C

mc

)
∩

 ⋂
m∈Π\C

m

 ∣∣∣ C ⊆ Π

 ,

where mc denotes the complement paths(A)\m. The elements of P are pairwise
disjoint sets of paths, and, because σ-algebrae are closed under intersection and
complement, correspond to measurable sets of traces. To choose V as above,
all we need to do is to ensure that, for each element Π ∈ P of the partition,∑

π∈Π V (π) = ΘA(Π). Because the elements Π ∈ P are pairwise disjoint sets,
we can distribute the value ΘA(Π) however we want among the paths π ∈ Π
without interfering with any other element Π ′ ̸= Π in the partition P.

Choosing V according to (7), (8) and (9) gives∑
π∈ΠGi

∩ΠAi

V (π)∑
π∈ΠAi

V (π)
=

β(ΘA(ΠGi ∩ΠAi))

β(ΘA(ΠGi
))

,

whereby Inequality (6) follows immediately from Inequality (4).
Because paths(A) constitues a partition of the entire trace space tr(O) due

to Lemma 5, and β is a probability measure such that β(tr(O)) = 1, it follows
that any such assignment V also satisfies

∑
π∈paths(A) V (π) = 1, fulfilling the

equality that the algorithm adds to ensure that the probabilities sum to 1. Note
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that here, the value
∑

π∈paths(A) V (π) is uniquely determined by Equation (7)

for the case i = 1, since A1 = ⊤ and thus ΠA1 = Π⊤ = paths(A).

Lastly, when it comes to ϕ̂c, the single inequality∑
π∈ΠG

ϕ̂c
∩ΠA

ϕ̂c

V (π)∑
π∈ΠA

ϕ̂c

V (π)
▷◁ϕ̂c pϕ̂c

is satisfied since∑
π∈ΠG

ϕ̂c
∩ΠA

ϕ̂c

V (π)∑
π∈ΠA

ϕ̂c

V (π)
=

∑
π∈ΠG

ϕ̂c

V (π)∑
π∈paths(A)

V (π)
=

∑
π∈ΠG

ϕ̂c

V (π)

1
= β(ΘA(ΠG

ϕ̂c
)) ▷◁ϕ̂c pϕ̂c ,

where the last inequality is Inequality (5) and the first equality comes from the
fact that Aϕ̂c = ⊤ which implies that ΠA

ϕ̂c
= paths(A) and, in turn, that

ΠG
ϕ̂c

∩ΠA
ϕ̂c

= ΠG
ϕ̂c
.

Thus, there exists an assignment V satisfying all inequalities generated by
Algorithm 1, implying that Refines(ϕ1∥ . . .∥ϕm, ϕ̂) does not return true. This
concludes our proof. ⊓⊔

Lemma 1. Consider compatible specifications Σ1 and Σ2 and denote out(Σ1) =
O1 and out(Σ2) = O2. Then, for each β1 ∈ Σ1, there exists a β ∈ Σ1∥Σ2 such
that for any set of traces Θ1 ∈ σβ1

, it holds that β1(Θ1) = β({θ ∈ tr(O1 ∪
O2) | θ|O1

∈ Θ1}). ⊓⊔

Proof. Pick arbitrary behaviors β1 ∈ Σ1 and β2 ∈ Σ2. Since Σ1 and Σ2 are
compatible, also β1 and β2 are compatible. We will prove that β1(Θ1) = β1∥
β2({θ ∈ tr(O1 ∪ O2) | θ|O1

∈ Θ1}), or equivalently β1(Θ1) = β1∥β2(Θ1 × Ω2),
where Ω2 = tr(O2). Note that according to Def. 4, it holds that

β1∥β2(Θ1 ×Θ2) =

∫
Θ1

β2(θ1)(Θ2)β1(dθ1) .

Thus,

β1∥β2(Θ1 ×Ω2) =

∫
Θ1

β2(θ1)(Ω2)β1(dθ1) =

∫
Θ1

1β1(dθ1) = β1(Θ1) . (10)

⊓⊔



Formally Verifying Decompositions of Stochastic Specifications (w. Proofs) 17

Lemma 2. Consider a cPAC or PAC ϕ1 and a PAC ϕ2 such that in(ϕ1) = ∅
and out(ϕ1) = in(ϕ2), and denote out(ϕ1) = O1 and out(ϕ2) = O2. Then, for
each β ∈ Jϕ1∥ϕ2K, it holds that

β({θ ∈ tr(O1 ∪O2) | θ ∈ acc(Gϕ2
) and θ|O1

∈ acc(Aϕ2
)})

β({θ ∈ tr(O1 ∪O2) | θ|O1 ∈ acc(Aϕ2)})
▷◁ϕ2

pϕ2
.

⊓⊔

Proof. Pick an arbitrary β ∈ Jϕ1 ∥ ϕ2K. From Def. 16, it holds that β ∈ Jϕ1 ∥
ϕ2K = Jϕ1K∥Jϕ2K. Then, from Def. 8, it holds that there are behaviors β1 ∈ Jϕ1K
and β2 ∈ Jϕ2K such that β = β1 ∥ β2. For any such β2, it holds that β2 ∈
JP▷◁ϕ2

pϕ2
(Aϕ2

,Gϕ2
)K.

According to the assumption stated below Def. 4, the set

{θ ∈ tr(O1 ∪O2) | θ ∈ acc(Gϕ2
) and θ|O1

∈ acc(Aϕ2
)} (11)

can be approximated to arbitrary precision by a countable disjoint union of sets
in σβ1

× σβ2
. Consider such approximations, and in particular over-estimations.

Such an approximation means that

{θ ∈ tr(O1 ∪O2) | θ ∈ acc(Gϕ2
) and θ|O1

∈ acc(Aϕ2
)} ∪ Ψ =

⋃
j

Θj
1 ×Θj

2

for some set Ψ ⊆ tr(O1 ∪ O2) of traces, where all Θj
1 ⊆ tr(O1) are disjoint, all

Θj
2 ⊆ tr(O2) are disjoint, and Ψ is disjoint with the set (11). Because these sets

are disjoint, and because β is σ-additive, we have

β
(
{θ ∈ tr(O1∪O2) | θ ∈ acc(Gϕ2

) and θ|O1
∈ acc(Aϕ2

)}
)
+β(Ψ) = β

(⋃
j

Θj
1×Θj

2

)
.

Due to the assumption of approximation to arbitrary precision, we know that
for any arbitrary small ϵ, we can find a partitioning

⋃
j Θ

j
1 ×Θj

2 such that

0 ≤ β
(⋃

j

Θj
1×Θj

2

)
−β
(
{θ ∈ tr(O1∪O2) | θ ∈ acc(Gϕ2

) and θ|O1
∈ acc(Aϕ2

)}
)
< ϵ .

(12)
We will now consider a more specific partitioning

⋃
j Θ

j
1×Θj

2 constructed as fol-

lows. LetΘA2
= acc(Aϕ2

). We then partitionΘA2
into n setsΘi

A2
, i ∈ {1, . . . , n}.

Let Θ̂G2(Θ
i
A2

) = min{Θ2 ⊆ tr(O2) | acc(Gϕ2) ∩ (Θi
A2

× tr(O2)) ⊆ Θi
A2

× Θ2}.
This means that the sets {Θi

A2
× Θ̂G2

(Θi
A2

)}i are disjoint and thereby constitute
a partition. Furthermore, its union is an over-estimation of the set (11).

Now, note that any given considered partition {Θj
1×Θj

2}j can be replaced by

a partition of the kind {Θi
A2

× Θ̂G2
(Θi

A2
)}i, where

⋃
i

(
Θi

A2
× Θ̂G2

(Θi
A2

)
)
will be

an over-estimation of (11), and at least as tight as
⋃

j(Θ
j
1 × Θj

2). Furthermore,
the result (12) will still hold. Another way of writing this is by using the notation
of limit, i.e.

β({θ ∈ tr(O1 ∪O2) | θ ∈ acc(Gϕ2
) and θ|O1

∈ acc(Aϕ2
)}) = lim

n→∞
Rn ,
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where

Rn =

n∑
i=1

∫
Θi

A2

β2(θ1)(Θ̂G2
(Θi

A2
))β1(dθ1) , (13)

for some sequence
(
{Θi

A2
}ni=1

)
n≥1

of partitions.

Now, first consider the case where ▷◁ϕ2
is the operator ≥. For each θ1 ∈

acc(Aϕ2), letΘG2(θ1) denote the setΘG2(θ1) = {θ2 ∈ tr(O2)| θ1∥θ2 ∈ acc(Gϕ2)}.
Note that for each θ1 ∈ Θi

A2
, i ∈ {1, . . . , n}, it holds that Θ̂G2

(Θi
A2

) ⊇ ΘG2
(θ1),

and consequently, β2(θ1)(Θ̂G2
(Θi

A2
)) ≥ β2(θ1)(ΘG2

(θ1)). From Def. 15, and since
β2 ∈ JP▷◁ϕ2

pϕ2
(Aϕ2 ,Gϕ2)K and θ1 ∈ acc(Aϕ2), it follows that β2(θ1)(ΘG2(θ1)) ≥

pϕ2 .

Therefore, for any partition Θi
A2

, i ∈ {1, . . . , n},

n∑
i=1

∫
Θi

A2

β2(θ1)(Θ̂G2(Θ
i
A2

))β1(dθ1) ≥
n∑

i=1

∫
Θi

A2

β2(θ1)(ΘG2(θ1))β1(dθ1) ≥

≥
n∑

i=1

∫
Θi

A2

pϕ2
β1(dθ1) = pϕ2

n∑
i=1

∫
Θi

A2

β1(dθ1) . (14)

Since
∫
Θi

A2

β1(dθ1) = β1(Θ
i
A2

), it holds that

n∑
i=1

∫
Θi

A2

β1(dθ1) =

n∑
i=1

β1(Θ
i
A2

) = β1(ΘA2
) .

By combining these results, we obtain Rn ≥ pϕ2
β1(ΘA2

), and further on,

β({θ ∈ tr(O1 ∪O2) | θ ∈ acc(Gϕ2
) and θ|O1

∈ acc(Aϕ2
)}) =

= lim
n→∞

Rn ≥ pϕ2
β1(ΘA2

) . (15)

Next, note that {θ ∈ tr(O1 ∪ O2) | θ|O1
∈ acc(Aϕ2

)} = ΘA2
× Ω2, where

Ω2 = tr(O2). Thus, β({θ ∈ tr(O1 ∪ O2) | θ|O1 ∈ acc(Aϕ2)}) = β(ΘA2 × Ω2).
Note that β(ΘA2 ×Ω2) = β1∥β2(ΘA2 ×Ω2) = β1(ΘA2) due to (10).

The lemma, for the case where ▷◁ϕ2 is the operator ≥, then follows from

β({θ ∈ tr(O1 ∪O2) | θ ∈ acc(Gϕ2) and θ|O1 ∈ acc(Aϕ2)})
β({θ ∈ tr(O1 ∪O2) | θ|O1

∈ acc(Aϕ2
)})

≥ pϕ2β1(ΘA2)

β1(ΘA2
)

= pϕ2
.

The case where ▷◁ϕ2 is the operator≤ is proven similarly but by using Θ̌G2(Θ
i
A2

) =

max{Θ2 ⊆ tr(O2) | acc(Gϕ2
) ⊇ Θi

A2
×Θ2} instead of Θ̂G2

(Θi
A2

) in (13) and (14).
⊓⊔

The following lemma states that automaton composition preserves the last
location of execution.
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Lemma 3. Consider a set of terminating trace automata {Ai}ki=1, each automa-
ton defined for a corresponding variable set Ei, and denote by A the composition
automaton A1 ∥ . . . ∥ Ak being defined for E = E1 ∪ · · · ∪ Ek. Then, for each
index i ∈ {1, . . . , k} and trace θ ∈ tr(E), last(Ai(θ|Ei)) = last(A(θ))|Ai . ⊓⊔

Proof. Because parallel composition of trace automata preserves determinism,
and the executions of the composed automata are independent given an input
trace, it follows that each transition of the composition is equivalent to each
individual automaton taking any possible transitions, respectively. Thus, indi-
vidual executions are preserved in executions of the composition. ⊓⊔

Lemma 4. Consider a set of terminating trace automata {Ai}ki=1, each au-
tomaton defined for a corresponding variable set Ei, and denote by A the com-
position automaton A1 ∥ . . . ∥ Ak defined for E = E1 ∪ · · · ∪ Ek. Then, for
each individual automaton Ai, i ∈ {1, . . . , k}, and each of its locations l ∈ LAi ,
{θ ∈ tr(A) | last(A(θ))|Ai = l} = ΘA({π ∈ paths(A) | last(π)|Ai = l}). ⊓⊔

Proof. Follows from the fact that each trace θ ∈ tr(A) has a corresponding
execution A(θ) and, from Def. 11, a corresponding path π = A(θ)|L with
last(A(θ)) = last(π) and, therefore, last(A(θ))|Ai

= last(π)|Ai
. In the

reverse direction, each path π has a corresponding set Θ of traces such that
∀θ ∈ Θ .A(θ)|L = π and, once again, last(A(θ))|Ai = last(π)|Ai . ⊓⊔

The following lemma states that the possible paths of an automaton is a
partition of the trace space.

Lemma 5. Given a set of variables E ⊆ X and a deterministic terminating
trace automaton A ∈ AE, the collection {ΘA(π) | π ∈ paths(A)} consisting of
sets of traces corresponding to each path is a partition of tr(E). ⊓⊔

Proof. We need to prove that: (1) the set of traces ∪π∈paths(A)ΘA(π) equals
tr(E) and (2) the sets ΘA(π) s.t. π ∈ paths(A) are disjoint. Consider an arbi-
trary trace θ ∈ tr(E). Using the fact that A is deterministic, there exists exactly
one execution A(θ) of A on θ. According to Def. 11, it follows that A(θ)|LA is
a path of A. Thus, θ ∈ ∪π∈paths(A)ΘA(π), and, because θ was arbitrarily cho-
sen from tr(E), it follows that tr(E) ⊆ ∪π∈paths(A)ΘA(π). Because also each
θπ ∈ ΘA(π) for π ∈ paths(A) is a trace, ∪π∈paths(A)ΘA(π) ⊆ tr(E), implying
(1). Furthermore, the location sequence A(θ)|LA is a unique path, i.e. each trace
corresponds to no more than one path, implying (2). ⊓⊔

5 Case Study

Recall the two-component system from Sec. 2 consisting of a main and backup
power source. The purpose of this section is to solve the refinement verification
problem for the specifications presented there, using the algorithm from Sec. 4.
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Once again, the natural language top-level specification is: “the system shall
output power continuously during the first 7 hours with over 50% probability”.
To represent this specification, we can define the PAC

ok preϕ̂ = P>0.5

(
⊤,

)
.

{pM 7→ 0, pB 7→ 0}
cM < 7

Here, the non-assumption is used together with a guarantee automaton over
the considered variables pM and pB , denoting main power and backup power,
respectively. Each variable is boolean, where 1 corresponds to power output and
0 corresponds to no power output. The guarantee accepts all traces for which the
location ok is never left. Looking at the only outgoing transition, this captures
the traces such that there exists no time before 7 hours with neither main nor
backup power. The probability bound put on the guarantee is > 0.5.

Likewise, the natural language specification for the main power source is
stated as: “main power failure shall occur before 6 hours with at most 30%
probability”, and for the backup power source as: “assuming main power failure
occurs after at least 3 hours, then with at least 80% probability, the backup
shall output power continuously for at least 2 hours starting at this time”. These
natural language specifications can be represented by the two PACs

ok preϕM = P≥0.7

(
⊤,

)
,

{pM 7→ 0}
cM < 6

wait

fail

ok

)
,T

F

U ,ϕB = P≥0.8

( {pM 7→ 0, pB 7→ 1}
cB := 0

{pB 7→ 0}
cB < 2

{pM 7→ 0, pB 7→ 0}

{pM 7→ 0}
cM ≥ 3

{pM 7→ 0}
cM < 3

respectively. Because an assumption is present in the natural language backup
specification, the PAC ϕB must include a corresponding assumption automa-
ton. Here, the assumption location U denotes undecided, T denotes true and F
denotes false. The assumption automaton accepts traces in which main power
failure occurs at some time after 3 hours. Meanwhile, the guarantee waits for this
occurrence, after which failure to turn on the backup results in entering the fail
location; otherwise the ok location is entered. Now, in order for the guarantee
to accept the trace, backup power must be held for at least 2 hours. After that,
the accepting location ok can never be left.

Following Algorithm 1, we first construct the composition A = Aϕ̂ ∥ Gϕ̂ ∥
AϕM

∥GϕM
∥AϕB

∥GϕB
. The resulting automaton is shown in Fig. 8, where only

the reachable part is included. Next to each location, there is a tuple giving the
initials of the corresponding component automaton locations, where e.g. (p,p,f,f)
refers to locations pre, pre, F, and fail of Gϕ̂, GϕM

, AϕB
, and GϕB

, respectively.

Dashed arrows denote transitions on the valuation {pM 7→ 0, pB 7→ 1} in which
the backup correctly responds to main power failure. Solid lines originating from
location a denote transitions on the valuation {pM 7→ 0, pB 7→ 0} in which none
of the power sources output power, and solid lines originating from any other
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location denote transitions on valuations in which the backup does not output
power, i.e. both {pM 7→ 0, pB 7→ 0} and {pM 7→ 1, pB 7→ 0}. Lastly, note that the
clock constraints of transitions sharing the same source location and valuation
are disjoint, so that e.g. cM < 6 is shorthand for cM < 6 ∧ ¬(cM < 3).

a (o,o,u,w)h(o,o,t,o) d (o,p,t,f)

f(p,p,t,f)g

(p,o,t,f)

e

(o,p,t,o)

b

(p,p,f,f)

i

(o,o,t,f)

c

(o,p,f,o)

cM < 3

cM < 6

cM ≥ 0

cB < 2

cB < 2
∧ cM < 7

cB < 2
∧ cM ≥ 7

cB < 2
∧ cM ≥ 7

cB < 2
∧ cM < 7

cM ≥ 7

cM < 7 cM < 6

cM < 3

Fig. 8: The composition A = Aϕ̂∥Gϕ̂∥AϕM
∥GϕM

∥AϕB
∥GϕB

Identifying the paths ending in accepting locations of each automaton results
in the sets ΠA

ϕ̂
= ΠAϕM

= paths(A) = {a, ab, ac, acb, ae, aed, aef, af, ag, ah,
ahg, ahi, ai}, ΠG

ϕ̂
∧A

ϕ̂
= {a, ac, ae, aed, ah, ahi}, ΠGϕM

∧AϕM
= {a, ag, ah, ahg,

ahi, ai}, ΠAϕB
= {ae, aed, aef, ag, ah, ahg, ahi, ai}, and ΠGϕB

∧AϕB
= {ae, ah}.

This results in the following system of linear inequalities:
a+ ag + ah+ ahg + ahi+ ai ≥ 0.7

ae+ ah

ae+ aed+ aef + ag + ah+ ahg + ahi+ ai
≥ 0.8

a+ ac+ ae+ aed+ ah+ ahi ≤ 0.5

a+ ab+ ac+ acb+ ae+ aed+ aef + af + ag + ah+ ahg + ahi+ ai = 1 .

Running a linear optimization solver, e.g. [1], on this instance shows that the
solution space is empty. Thus, we have verified that the composition of ϕM and
ϕB refines ϕ̂. Or, in other words, combining any main power source and any
backup power source implementing its corresponding specification will surely
implement the top-level specification.

6 Related Work

A related field is the area of model checking. In contrast to the present paper,
which treats refinement of specifications, the goal of model checking is to verify
that a given model implements a given specification, see e.g. [24, 30].

The literature contains various proposed specification theories for stochastic
systems, supporting for instance constraint Markov chains [8], abstract proba-
bilistic automata [14], interactive Markov chains [16], and a variety of proba-
bilistic transition systems [20, 21, 23, 33]. In the contract context, Nuzzo et al.
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[28] present a specification theory for probabilistic assume-guarantee contracts.
While these previous theories are based on discrete time, the present paper gives
explicit support for continuous time. Also in the continuous setting, simulation
and bisimulation have been studied for continuous-time Markov chains (CTMCs)
[6]. However, this theory assumes that systems follow a particular stochastic pro-
cess. Similarly, the rest of the papers above assume a particular formalism or
system structure, in contrast to the purely trace-based approach of the present
paper. The contract theory of [13] is also trace-based, but in discrete time.

Both automata and temporal logics can be used for specifying properties
of systems. For specifying stochastic systems in continuous time, Continuous
Stochastic Logic (CSL) is commonly used [17]. The extension CSLTA allows
specifying properties through single-clock automata and has been used for model
checking CTMCs [15]. A specification theory allowing compositional reasoning
has been developed for timed I/O automata [12]; however, this framework gives
no explicit support for probabilities. In a discrete-time setting, temporal oper-
ators defined by finite automata are included in a temporal logic presented by
[35], and in an extension to computation tree logic, called ECTL [9].

7 Conclusions

In industrial applications, especially for safety-critical systems, specifications
are often of stochastic nature, for example giving a bound on the probability
that system failure will occur before a given time. A decomposition of such a
specification requires techniques beyond traditional theorem proving.

As presented in Sec. 3, the first contribution of the paper is a theoretical
framework that allows the representation of, and reasoning about, stochastic and
continuous-time behaviors of systems as well as specifications for such behaviors.
The main goal has been to provide a framework that can handle reasoning of
refinement between specifications in the form of assume-guarantee contracts.
This is needed to support compositional verification, which in turn is a key
solution to specify and verify large-scale complex systems. A main goal has
also been to approach the problem from a general perspective, leading to our
choice of representing behaviors of components as probability measures on sets
of traces. The second contribution, presented in Sec. 4, is an algorithm for the
verification of stochastic specification refinement by reducing the problem to
checking emptiness of the solution space for a system of linear inequalities. Future
work includes investigating more efficient implementations of the algorithm, e.g.
by replacing explicit path enumeration, and experimental evaluation using larger
and more realistic case studies motivated by industry.
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30. Paolieri, M., Horváth, A., Vicario, E.: Probabilistic model checking of regenerative
concurrent systems. IEEE Transactions on Software Engineering 42(2), 153–169
(2015)

31. Resnick, S.: A Probability Path. Birkhäuser Boston (2019)
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