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Abstract. Compositional verification allows a system to be verified indi-
rectly by verifying the individual components of the system. The key step is
to ensure that the decomposition of the system specification into component
specifications is correct. That is, it needs to be verified that the composition
of the component specifications refines the system specification. In many
cyber-physical systems, specifications are stochastic in nature. For instance,
a specification might state that the probability of reaching an unsafe state
within 10.000 hours shall be less than 0.05. Verifying refinement under such
assumptions requires techniques beyond traditional theorem proving. The
paper presents a solution where specifications are built up by probabilistic
contracts based upon timed automata. In particular, the main contribution
is an algorithm for verifying refinement between such specifications. The
algorithm utilizes a reduction to the language emptiness problem, making
the algorithm terminate after a finite number of computations.
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1 Introduction

Given a top-level specification ϕ and a system S made up of components S1, . . . Sm,
the goal is to verify that S satisfies ϕ. For a scalable solution to this problem, the
principle of compositional verification [28] has been proposed. The top-level specifi-
cation ϕ is first decomposed into component specifications ϕ1, . . . ϕm. Applying the
principle compositional verification then consists of verifying that (1) each compo-
nent Si implements its specification ϕi, and (2) the composition of the component
specifications ϕ1, . . . ϕm refines the top-level specification ϕ. The key difficulty, and
the topic of the present paper, is (2).

We consider the scope of general cyber-physical systems, which encapsulates
both safety and cyber-security aspects. To accurately represent and reason about
these systems, they are assumed to progress in continuous time with continuous
state spaces. Based on formal logic, there already exist several frameworks that al-
low expressing specifications and verifying refinement between them, see e.g. [7, 22,
25, 30]. However, they give no support for reasoning about probabilistic or stochas-
tic behaviors. This is a major limitation considering the stochastic nature of many
cyber-physical, in particular within safety where specifications typically set limits
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on the probability of undesired events to occur within certain time intervals. For
instance, a specification might state that the probability of reaching an unsafe state
within 10.000 hours shall be less than 0.05. Also of interest are specifications of
software using probabilistic algorithms or running in a probabilistic setting.

Recently, a new trace-based specification theory for stochastic systems has been
proposed [15]. Here, behaviors of components are expressed as probability measures
on trace sets, and specifications are represented as sets of such behaviors. As is
usual in specification theories [13], the theory in [15] enables compositions of be-
haviors, compositions of specifications, reasoning about behaviors implementing a
specification, and a specification refining another. These are all crucial for verify-
ing decompositions. Based on assume-guarantee contracts [5, 21, 32], the syntax of
these specifications is built up by probabilitic contracts P>p(A,G) that give a lower
bound p for a linear-time property G, called guarantee, given a linear-time property
A, called assumption.

The two major limitations with the theory in [15] is that (1) it assumes a dis-
crete state space, and (2) the procedure for verifying refinement is not guaranteed
to terminate due to an explicit enumeration of infinite sets of paths. To solve (1),
the present paper proposes, as a first contribution, an extension to the theory in
[15] based on predicates enabling support for continuous state spaces. To solve (2),
as the main contribution of the paper, a new algorithm is proposed for verifying re-
finement using reduction to the well-studied language emptiness problem for timed
automata. The result is that an answer can be found in finite time. Furthermore,
the present paper augments the syntax of specifications to facilitate more general
formulae, and is now based on the well-studied timed Muller automata [2], allowing
the reuse of theories and algorithms applying to that class.

The paper is organized as follows. Section 2 recalls the specification theory
of [15]. In Section 3, the new type of predicates are defined and connected to
deterministic timed Muller automata (DTMAs). Section 4 presents the syntax of
specifications based on DTMAs. Section 5 presents the new algorithm for verifying
refinement between specifications and Section 6 demonstrates the algorithm on an
example. Lastly, Section 7 surveys related work and Section 8 concludes the paper.

2 Stochastic Behaviors

In the present paper, we will represent the current state of any given system using
a set of variables. As a system changes state over time, the variables change val-
ues accordingly. Assume a fixed non-empty finite set X of variables, each x ∈ X
ranging over a (possibly uncountable) non-empty set range(x). As part of the first
contribution of the paper, we allow these ranges to be arbitrary sets. For instance,
variables can range over the integers or reals, thereby permitting both discrete and
continuous state spaces. Besides introducing continuous traces that capture this
generality, the rest of the section recalls important definitions from [15].

2.1 Continuous Traces

The intuition behind a continuous trace is to represent how the variables in X
change values over time, in a way similar to signals of [18, 19]. A continuous trace
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is a function mapping each point in time to the current values assigned to the
variables. These value assignments are called valuations. Formally, given a set E ⊆
X of variables, a valuation for E is a function νE : E →

⋃
xi∈E range(xi) mapping

each xi ∈ E to a value in range(xi). Let val(E) denote the set of all possible
valuations for E.

Definition 1 (Continuous Trace). Given a set E ⊆ X of variables, a contin-
uous trace for E is a function θ : R≥0 → val(E) mapping each time-point t to a
valuation for E.

In what follows, continuous traces will be referred to simply as traces, for short.
Let tr(E) denote the set of all possible traces for E. By convention, let tr(∅) = ∅.
Furthermore, for any trace θ ∈ tr(E) and set E′ ⊆ E of variables, let θ|E′ denote
the projection θ′ : R≥0 → val(E′) such that ∀t ∈ R≥0 .∀x ∈ E′ . θ′(t)(x) =
θ(t)(x). To define trace composition, consider two traces θ1 and θ2 for disjoint sets
of variables E1 and E2, respectively. The composition of θ1 and θ2 is the trace
θ1 ∥ θ2 : R≥0 → val(E1 ∪ E2) such that (θ1 ∥ θ2)(t)(x) equals θi(t)(x) whenever
x ∈ Ei, i ∈ {1, 2}.

2.2 Input/Output Behaviors

Before we can define input/output behaviors, we must first define “ordinary” be-
haviors. In short, these are just probability measures on traces, similar to trace
distributions of [29, 31] but over continuous time and general state spaces. For the
following definition of behavior, we assume, for each set E ⊆ X, a fixed σ-algebra
σE such that all trace sets considered in the rest of the paper are measurable. Fore
more details, see [15].

Definition 2 (Behavior). Given a non-empty set of variables E ⊆ X, a behavior
over E is a probability measure defined on σE.

Let beh(E) denote the set of all possible behaviors over a non-empty E ⊆ X. Since
system components often have control over some variables while being dependent
on others, a more general notion of behavior is needed to capture this. These are the
so-called input/output behaviors. As the name suggests, they dependent on traces
over the input variables and describe the probabilities of the output traces. More
precisely, they are functions mapping each possible input trace to an “ordinary”
behavior over the output variables.

Definition 3 (Input/Output Behavior). Given two disjoint sets of variables
I ⊆ X and O ⊆ X, where O is non-empty, an input/output behavior from I to O
is a function β : tr(I) → beh(O).

Let beh(I,O) denote set of all possible I/O behaviors from a set I to a non-empty
set O. Given an I/O behavior β from I to O, we call I the set of input variables,
denoted in(β), and O the set of output variables, denoted out(β).

To be able to compose behaviors, they are assumed to be compatible. Formally,
two I/O behaviors β1 and β2 are said to be compatible if in(β1) = ∅ and in(β2) =
out(β1). Note that, although it is possible to create a more general definition of
compatibility, these assumptions are made for simplicity.
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Definition 4 (Composition of I/O Behaviors). The composition of two com-
patible I/O behaviors β1 and β2, denoted β1 ∥ β2, is the unique I/O behavior from
∅ to out(β1) ∪ out(β2), i.e. the probability measure

β1 ∥ β2 ∈ beh(out(β1) ∪ out(β2)) ,

induced by

β1 ∥ β2(Θ1 ×Θ2) =

∫
Θ1

β2(θ1)(Θ2)β1(dθ1) .

Note that composing two compatible behaviors results in yet another behavior with
no input variables.

2.3 Specifications

Intuitively, we may think of a specification as a set of “allowed” I/O behaviors.
However, instead of saying that an I/O behavior β is allowed by a specification Σ,
we use the terminology that β implements Σ.

Definition 5 (Specification). Given two disjoint sets of variables I ⊆ X and
O ⊆ X such that O is non-empty, a specification Σ from I to O is a subset of the
I/O behaviors beh(I,O), i.e. Σ ⊆ beh(I,O).

An I/O behavior β from I to O is said to implement a specification Σ from I to O
if β ∈ Σ. The key notion of the present paper is refinement between specifications.
A specification Σ refines a specification Σ′ if each behavior implementing Σ also
implements Σ′. This is captured by the following definition.

Definition 6 (Refines). A specification Σ1 from I to O refines a specification Σ2

from I to O if Σ1 ⊆ Σ2.

Not unlike I/O behaviors, specifications for two different components can be com-
posed to form a single specification for the component composition. This is done on
the behavior level, by composing each possible pair of behaviors taken from the two
specifications. Extending the notion of compatible behaviors, two specifications Σ1

and Σ2 are said to be compatible if in(Σ1) = ∅ and in(Σ2) = out(Σ1).

Definition 7 (Parallel Composition of Specifications). Given two compatible
specifications Σ1 and Σ2, the parallel composition of Σ1 and Σ2, denoted Σ1 ∥ Σ2,
is the specification Σ1 ∥ Σ2 = {β1 ∥ β2 | β1 ∈ Σ1, β2 ∈ Σ2}.

3 Timed Automata

In the present paper, timed automata as defined by [2, 3] are used as a way to
represent sets of traces. As we will see later, putting probability bounds on the
trace sets of such automata serves as a representation for the type of specifications
defined in Section 2.3.
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3.1 Timed Predicate Sequences

In the present paper, we represent time using a continuous semantics [3, 4, 19] as
opposed to the point-wise semantics of e.g. timed words used in [1, 2]. For a com-
parison between the two, see e.g. [12, 16, 26]. Runs of an automaton thus generate
timed predicate sequences, which are a simple extension of the timed state sequences
of [3]. More precisely, instead of atomic propositions, we will utilize a more general
notion of predicates over variables in X.

In accordance with [3], a time interval I ⊆ R≥0 is a subset of the non-negative
real numbers, taking the form (a, b), (a, b], [a, b) or [a, b] where a, b ≥ 0 such that
a ≤ b if I = [a, b] and a < b otherwise. For any interval I ⊆ R≥0, let l(I) denote
the left endpoint of I and r(I) denote the right endpoint of I. Two intervals I1 and
I2 are said to be adjacent if r(I1) = l(I2), and either I1 is right-closed and I2 is
left-open or I1 is right-open and I2 is left-closed.

Also in accordance with [3], we now define interval sequences partitioning the
real timeline. Let N denote the non-negative integers.

Definition 8 (Interval Sequence [3]). An interval sequence is an infinite se-
quence of intervals I0I1I2 . . . partitioning the non-negative real line such that (1)
0 ∈ I0, (2) for each i ∈ N, Ii and Ii+1 are adjacent, and (3) the intervals cover all
of R≥0, i.e.

⋃
i∈N Ii = R≥0.

To express boolean statements about the values of variables, for instance that x1
lies within some interval or x2 is a singleton set, we now define predicates over
subsets of X. These facilitate the first contribution of the paper, allowing truth
statements about both discrete and continuous state spaces. As will be presented
later, these predicates can be coupled with timed automata to represent sets of
continuous traces.

Definition 9 (Predicate). Given a set E ⊆ X of variables, a predicate over E
is a function q : val(E) → {true, false} mapping each valuation for E to a truth
value.

Given a predicate q over some set E of variables, let var(q) denote the set E.
Throughout the rest of the paper, consider a fixed non-empty finite predicate set
Q. We lift the above notation also to predicate sets, so that whenever Q ⊆ Q,
var(Q) =

⋃
q∈Q var(q).

Definition 10 (Timed Predicate Sequence). A timed predicate sequence is
a pair τ = (Q̄, Ī) where Q̄ = Q0Q1Q2 . . . is an infinite sequence of predicate sets
Qi ⊆ Q and Ī = I0I1I2 . . . is an interval sequence.

Intuitively, in any timed predicate sequence (Q0Q1Q2 . . . , I0I1I2 . . . ), each set Qi

represents the predicates that are true throughout the corresponding interval Ii.
Given a timed predicate sequence τ = (Q̄, Ī), let τ∗ : R≥0 → 2Q be the function
such that τ∗(t) = Qi for each i ∈ N and t ∈ Ii.
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3.2 Deterministic Timed Muller Automata

Throughout the rest of the paper, we make use of a subclass of timed automata
that suits our specific needs. These are the so-called deterministic timed Muller
automata (DTMAs). Although strictly less expressive than their non-deterministic
counterpart, DTMAs are closed under both intersection and complement, rather
than just intersection [2]. Since these are crucial operations in the present paper,
DTMAs are a good candidate. The paper also relies heavily on the fact that the
language emptiness problem for DTMAs is decidable. This, however, is the case
also for the non-deterministic version [2].

Definition 11 (Clock Constraint). Given a set C of clocks, a clock constraint
δ on C is defined inductively by the grammar

δ ::= c ∼ k | δ ∧ δ | δ ∨ δ | ¬δ

where c ranges over clocks C, ∼ ∈ {<,≤,≥, >}, and k ranges over rationals Q.

Note that a constraint true can be defined as an abbreviation. Given a set C of
clocks, let ∆C denote the set of all possible clock constraints on C. The reason that
k ranges over rationals instead of e.g. reals is that the decidability result of [2] for
the language emptiness problem relies on this fact. It is worth noting that this is
not an assumption made on the nature of traces, but rather a restriction on the
timing constraints that the automata can specify. This is a reasonable restriction
since any real number can be approximated to arbitrary precision by a rational
number.

Given a set C of clocks, a clock valuation for C is a function νC : C → R≥0

mapping each clock c ∈ C to a non-negative real number νC(c). For any number
t ∈ R≥0, let ν

C + t be the clock valuation for C assigning each clock c ∈ C to
νC(c) + t. Given a function f and two values a and v, let f [a 7→ v] denote the
function mapping a to v and agreeing with f on all other values. Extending this
to sets A = {a1, . . . , ak}, let f [A 7→ v] be shorthand for f [a1 7→ v] . . . [ak 7→ v]. For
example, if f is the constant function mapping each element to 0, then f [A 7→ 1]
is the indicator function 1A.

Definition 12 (Satisfy Clock Constraint). Given a set C = {c1, . . . , cm} of
clocks, a clock constraint δ on C and a clock valuation νC for C, the valuation νC

satisfies δ if δ[c1 7→ νC(c1)] . . . [cm 7→ νC(cm)] interprets to true in the usual logic
sense.

The following definition introduces predicate constraints. These are formulae built
up by predicates and logic connectives, and serve as a more flexible way to express
complex predicates from simpler ones.

Definition 13 (Predicate Constraint). A predicate constraint ψ is defined in-
ductively by the grammar

ψ ::= q | ψ ∧ ψ | ψ ∨ ψ | ¬ψ

where q ranges over predicates Q.
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Once again, a constraint true can be defined as an abbreviation. Let Ψ denote the
set of all possible predicate constraints.

Definition 14 (Satisfy Predicate Constraint). A predicate set Q satisfies a
predicate constraint ψ if the formula obtained from ψ by substituting true for each
predicate q ∈ Q and false for each predicate q ∈ Q \ Q evaluates to true in the
usual logic sense.

To define timed Muller automata and their semantics, we will closely follow [3],
which also use a continuous semantics. However, besides requiring a singleton initial
location for determinism reasons, the difference is that we replace propositional
constraints by predicate constraints.

Definition 15 (Timed Muller Automaton). A timed Muller automaton (TMA)
is a tuple M = ⟨V, v0, C, α, β,→,F⟩ where
– V is a non-empty finite set of locations,
– v0 ∈ V is the initial location,
– C is a non-empty finite set of clocks,
– α : V → Ψ is a location labeling function associating each v ∈ V to a predicate

constraint ψ ∈ Ψ ,
– β : V → ∆C is a location labeling function associatibng each v ∈ V to a clock

constraint δ ∈ ∆C ,
– → ⊆ V × 2C × V is a set of transitions where each (v,R, v′) ∈ → consists of

a source v, a set R of reset clocks, and a destination v′,
– and F ⊆ 2V is the acceptance family.

For notational convenience, unless otherwise stated, each location v is assumed to
have a self-transition of the form (v, ∅, v). This is done to enable the automaton to
generate infinite runs even when no other outgoing transitions exist. An example
TMA is given in Figure 1a. It has two locations, a clock c, two predicate constraints
h and ¬h, a clock constraint c ≥ 103, two drawn transitions, and two implicit self-
transitions.

v0
¬h

v1
h

c ≥ 103

c := 0

(a) Deterministic

v0
¬h

v1
h

c ≥ 103

v2
h

c := 0

(b) Complete

v0
¬h

v1
h

c1 ≥ 103 v2
h

c1 < 103

c2 = 0

v3

c1 := 0

c2 := 0

(c) Deterministic and complete

Fig. 1: Timed Muller automata describing an overheating motor. Omitted con-
straints are to be understood as constraints that always evaluate to true.

We extend the notation var(·) such that, given a TMA M = ⟨V, v0, C, α, β, →,F⟩,
var(M) denotes the set of all variables E such that there appears some predicate
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q in α for which var(q) ⊆ E. The semantics of TMAs is defined in terms of runs,
which represent stepping through the transitions of an automaton subject to the
clock constraints. The definition presented here follows closely that of [3].

Definition 16 (Run). Given a timed Muller automaton M = ⟨V, v0, C, α, β, →,
F⟩, a run ρ of M is an infinite sequence

ρ = −−→
νC
0

(v0, I0)
R1−−→
νC
1

(v1, I1)
R2−−→
νC
2

(v2, I2)
R3−−→
νC
3

· · ·

where νCi ∈ val(C) are clock valuations, vi ∈ V are locations, I0I1I2 . . . is an
interval sequence, and Ri ⊆ C are clock sets, such that

– for each clock c ∈ C, νC0 (c) = 0,
– for each i ∈ N, there exists a transition (vi, Ri+1, vi+1) in → that resets the

clocks Ri+1, i.e. such that νCi+1 = (νCi + (r(Ii)− l(Ii)))[Ri+1 7→ 0],
– for each i ∈ N and t ∈ Ii, ν

C
i + (t− l(Ii)) satisfies β(vi).

Given a run ρ, let inf(ρ) denote the set of locations visited an infinite number
of times in ρ, i.e. the locations v ∈ V such that v = vi for infinitely many i.
Using similar notation as for timed predicate sequences, let ρ∗ denote the function
associating each time with the current location in the run ρ. That is, given a run

ρ = −−→
νC
0

(v0, I0)
R1−−→
νC
1

(v1, I1)
R2−−→
νC
2

(v2, I2)
R3−−→
νC
3

· · · of a TMA M = ⟨V, v0, C, α, β,→

,F⟩, ρ∗ : R≥0 → V is the function such that ρ∗(t) = vi for each i ∈ N and t ∈ Ii.
In the following definitions, we connect automata to corresponding sets of ac-

cepted timed predicate sequences. In short, a timed predicate sequence τ is accepted
by an automaton M if it is consistent with some run ρ of M with respect to the
acceptance family and the constraints of the visited locations. Formally, a timed
predicate sequence τ is consistent with a run ρ if for each i ∈ N and time t ∈ Ii,
the predicate set τ∗(t) satisfies α(ρ∗(t)).

Definition 17 (Accepts). A timed Muller automaton M = ⟨V, v0, C, α, β,→, F⟩
accepts a timed predicate sequence τ if τ is consistent with some run ρ of M such
that inf(ρ) ∈ F .

Through this notion of acceptance, we connect automata to the variables X, and,
as a further step, in Section 4, we will extend acceptance also to traces, completing
the goal of using automata to represent trace sets. Given a TMA M, let L(M)
denote the set of all timed predicate sequences accepted by M.

Example 1 (Overheating Motor). Consider a motor that may overheat, exceeding
200 ◦C. A possible requirement is that the motor shall not overheat within the first
103 s and, whenever overheated, shall not overheat again within 103 s. Let x be
a variable representing the current temperature and h be a predicate evaluating
to true if and only if x ≥ 200. A TMA describing this requirement is shown in
Figure 1a. It has two locations and a single clock c keeping track of the continuous
duration of being below 200 ◦C. The acceptance family is F = {{v0}, {v0, v1}},
accepting exactly the timed predicate sequences for which either (a) there exists
a point after which the motor is never overheated, or (b) the motor alternates
between overheating and cooling, and is never overheated more often than every
103 s. Note that omitting the set {v0} from F neglects case (a).
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3.3 Operations on Timed Automata

To support the later presented algorithm for the refinement problem, we now in-
troduce the two operations intersection and complement for timed automata. As
the name suggests, the language accepted by the intersection of two automata is
precisely the intersection of their respective languages. Likewise, the language of
the complement of an automaton is the complement of its language. Since the lan-
guages accepted by non-deterministic TMAs are not closed under complement, we
first define deterministic TMAs, or DTMAs for short.

Definition 18 (Deterministic TMA). A timed Muller automaton M = ⟨V,
v0, C, α, β,→,F⟩ is deterministic if for each location v ∈ V , predicate set Q ⊆ Q
and clock valuation νC ∈ val(C), whenever there exist locations v′, v′′ ∈ V such
that

– Q satisfies both α(v′) and α(v′′),
– there exist transitions (v,R′, v′) and (v,R′′, v′′) for some sets R′ and R′′,
– νC [R′ 7→ 0] satisfies β(v′), and νC [R′′ 7→ 0] satisfies β(v′′),

then v′ = v′′.

Figure 1a and 1c are two examples of DTMAs. The automaton of Figure 1b is not
deterministic since whenever the automaton is at location v0, c > 103, and h turns
true, there are two possible locations to enter nondeterministically.

In the present paper, the viewpoint is that runs generate timed predicate se-
quences. However, it is also possible to view it in the other direction, so that an
automaton instead reads a timed predicate sequence and generates a corresponding
run. Taking this view, it is possible that a given DTMA M, while reading a timed
predicate sequence and constructing a corresponding run, gets “stuck” when ar-
riving at a predicate for which there exists no corresponding neighboring location.
This is not a problem semantically, and simply means, in our context, that there
exists no run generateing the sequence. However, while not necessarily impossi-
ble, such “stuck” sequences make it cumbersome to define the complement and
intersection operators for automata. It is moreover always possible to construct an
equivalent automaton, said to be complete, and preserving determinism, in which
sequences never get stuck. For such a construction, see e.g. [2]. In short, it is done
by adding new “trap” locations and corresponding transitions, through which all
otherwise stuck sequences are lead. Thus, without loss of generality, the automata
of the present paper are henceforth assumed to be complete. However, we usually
omit to explicitly represent trap locations and corresponding transitions to make
the illustrations more compact. In the present context, completeness is captured
by the following definition.

Definition 19 (Complete DTMA). A DTMA M = ⟨V, v0, C, α, β,→,F⟩ is
complete if for each timed predicate sequence τ , there exists a run ρ of M such
that τ is consistent with ρ.

Figure 1b and 1c are two examples of complete timed Muller automata. The au-
tomaton of Figure 1a is not complete because whenever the automaton is at location
v0, c < 103, and h turns true, there is no location to enter.
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Now, the intersection operator for complete DTMAs is based on parallel com-
position as defined in [3] and the intersection construction presented in [2].

Definition 20 (Intersection of Complete DTMA). Let M1 = ⟨V1, v01, C1,
α1, β1,→1,F1⟩ and M2 = ⟨V2, v02, C2, α2, β2,→2,F2⟩ be two complete DTMAs
such that V1 ∩ V2 = ∅ and C1 ∩ C2 = ∅. The intersection of M1 and M2, denoted
M1 ⊓M2, is the TMA M1 ⊓M2 = ⟨V1 × V2, (v01, v02), C1 ∪C2, α, β,→,F⟩ where

– for each (v1, v2) ∈ V1 × V2, α((v1, v2)) = α1(v1) ∧ α2(v2),
– for each (v1, v2 ∈ V1 × V2), β((v1, v2)) = β1(v1) ∧ β2(v2),
– → is the smallest set that contains, for each pair of transitions (v1, R1, v

′
1) ∈ →1

and (v2, R2, v
′
2) ∈ →2, the three transitions ((v1, v2), R1 ∪R2, (v

′
1, v

′
2)),

((v1, v2), R1, (v
′
1, v2)) and ((v1, v2), R2, (v1, v

′
2)),

– the acceptance family F is the set F1 ∩F2, where

F1 = {F ⊆ V1 × V2 | {v1 ∈ V1 | ∃v2 ∈ V2 . (v1, v2) ∈ F} ∈ F1},

F2 = {F ⊆ V1 × V2 | {v2 ∈ V2 | ∃v1 ∈ V1 . (v1, v2) ∈ F} ∈ F2}.

Definition 21 (Complement of Complete DTMA [2]). Let M = ⟨V, v0, C,
α, β,→,F⟩ be a DTMA. The complement of M, denoted Mc, is the DTMA Mc =
⟨V, v0, C, α, β,→, 2L \ F⟩.

Proposition 1. The class of complete DTMAs is closed under intersection and
complement.

Proof. Starting with complement. Since M and Mc only differ in the acceptance
family and not in the structure, completeness and determinism are obviously pre-
served.

Now for intersection. Assume thatM1 andM2 are complete DTMAs. SinceM1

and M2 are both complete and deterministic, then any timed predicate sequence
τ has exactly one run ρ1 of M1 and one run ρ2 of M2. Since M1⊓M2 has exactly
one transition for every possible combination of transitions from M1 and M2,
it follows that there exists a run ρ of M with ρ∗(t) = (ρ∗1(t), ρ

∗
2(t)). The timed

predicate sequence τ is therefore also consistent with ρ, implying that M1 ⊓M2

is complete.
We must now prove that, given that M1 and M2 are deterministic, then so is

M1 ⊓ M2. Let (v1, v2) ∈ V1 × V2, Q ⊆ Q, νC ∈ val(C), (v′1, v
′
2) ∈ V1 × V2, and

(v′′1 , v
′′
2 ) ∈ V1 × V2 such that

– Q satisfies both α((v′1, v
′
2)) and α((v′′1 , v

′′
2 )). It must then be the case that Q

satisfies v′1, v
′
2, v

′′
1 , v

′′
2 .

– There exist transitions ((v1, v2), R
′, (v′1, v

′
2)) and ((v1, v2), R

′, (v′′1 , v
′′
2 )). These

transitions must have come from transitions (including self-transitions) (v1, R
′, v′1)

and (v2, R
′, v′2) of M1 and M2, respectively.

– νC [R′ 7→ 0] satisfies β((v′1, v
′
2)) and νC [R′′ 7→ 0] satisfies β((v′′1 , v

′′
2 )). It must

then be the case that νC1 [R′ 7→ 0] satisfies β1(v
′
1), ν

C1 [R′′ 7→ 0] satisfies β1(v
′′
1 ),

νC2 [R′ 7→ 0] satisfies β2(v
′
2), and ν

C2 [R′′ 7→ 0] satisfies β2(v
′′
2 ).
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Due to these implications, it follows from Definition 18 that v′1 = v′′1 and v′2 =
v′′2 . Thus, (v′1, v

′
2) = (v′′1 , v

′′
2 ), and once again from Definition 18, M1 ⊓ M2 is

deterministic. ⊓⊔

Proposition 2. Suppose that M1 and M2 are complete DTMAs. Then L(M1 ⊓
M2) = L(M1) ∩ L(M2).

Proof. Consider arbitrary complete DTMAs M1 and M2 and an arbitrary timed
predicate sequence τ . We will show that τ is accepted by M1 and M2 if and only
if τ is accepted by M1 ⊓M2.

Beginning with right implication, assume that τ accepted by both M1 and
M2. That means that there exists a run ρ1 of M1 and a run ρ2 of M2 such that
τ is consistent with ρ1 and ρ2 and inf(ρ1) ∈ F1 and inf(ρ2) ∈ F2. Because also
M1 ⊓ M2 is complete, there exists a run ρ of M1 ⊓ M2 corresponding to the
individual runs ρ1 and ρ2. That is, for each time t, ρ∗(t) = (ρ∗1(t), ρ

∗
2(t)). The last

step is to show that inf(ρ) ∈ F1 ∩F2. Since inf(ρi) ∈ Fi, i = 1, 2, it follows that
inf(ρ) ∈ F i, i = 1, 2. Thus, inf(ρ) ∈ F1 ∩F2.

Now for left implication. Assume that τ accepted by M1 ⊓ M2. Then there
exists a run ρ with inf(ρ) ∈ F1 ∩F2. Because M1 and M2 are complete, there
exist corresponding runs ρ1 and ρ2 with ρ∗(t) = (ρ∗1(t), ρ

∗
2(t)). We must now show

that inf(ρ1) ∈ F1 and inf(ρ2) ∈ F2. Since inf(ρ) ∈ F1 ∩ F2, it follows that
inf(ρ) ∈ F i for i = 1, 2, and furthermore that inf(ρi) ∈ Fi for i = 1, 2. ⊓⊔

Proposition 3. Suppose that M is a complete DTMA. Then L(Mc) = L(M)c.

Proof. Consider an arbitrary complete DTMA M and an arbitrary timed predicate
sequence τ . We must show that τ is accepted by exactly one of M and Mc.

Since the set inf(τ) is an element of 2L, which is spanned by F and 2L \ F
together, inf(τ) must be an element of at least one of F and 2L \F , implying that
τ is accepted by at least one of M and Mc. Furthermore, since the sets F and
2L \ F are disjoint, τ is accepted by at most one of M and Mc. ⊓⊔

4 Specifying Behaviors Using Timed Automata

In this section, we will define a specification language and accompanying semantics
that allows us to instantiate the type of specification from Definition 5. This lan-
guage, defined using a formal grammar, consists of so-called Probabilistic Contract
Formulae (PCFs). The basic building-block is a probabilistic assume-guarantee
contract, or probabilistic contract for short, of the form P∼p(A,G), consisting of
an assumption A, guarantee G and probability bound p. Both A and G represent
linear-time properties, and are given as DTMAs. Semantically, since each automa-
ton represents a set of traces, a probabilistic contract represents the set of all
I/O behaviors such that, whenever the assumption is satisfied, the probability of
the guarantee respects the probability bound. These probabilistic contracts can be
composed by negation (¬), parallel composition (∥), and conjunction (∧).

We begin by formalizing the way in which automata represent sets of traces,
using the notion of accepted trace. First, a trace θ for X is said to be consistent
with a timed predicate sequence τ if for each t ∈ R≥0 and q ∈ Q, the predicate
application q(θ|var(q)(t)) evaluates to true if and only if q ∈ τ∗(t).
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Definition 22 (Accepted Trace). A TMA M accepts a trace θ for X if there
exists a timed predicate sequence τ such that M accepts τ and θ is consistent with τ .

Given a TMA M, let L∗(M) denote the set of traces accepted by M. Furthermore,
if E is a set of variables such that var(M) ⊆ E ⊆ X, then let LE(M) denote the
set {θ|E | θ ∈ L∗(M)} of accepted traces restricted to the variables E.

Definition 23 (Probabilistic Contract Formula). A probabilistic contract
formula (PCF) ϕ is defined inductively using the grammar

ϕ ::= P∼ p(A,G) | ¬ϕ | ϕ ∥ ϕ | ϕ ∧ ϕ

where ∼ ∈ {<,≤,≥, >} is a comparison operator, p ∈ [0, 1] is the probability
bound, and A and G, the assumption and guarantee, respectively, are complete
DTMAs such that var(G) \ var(A) ̸= ∅.

Remark 1. Timed predicate sequences, which are an intermediate step between au-
tomata and their accepted traces, intrinsically obey the so-called finite variability
property [3]. This property states that each bounded time interval contains at most
finitely many state changes, which according to [3] is an adequate assumption for
modelling discrete-state systems. However, the discreteness of timed predicate se-
quences is merely an abstraction put over traces, which by no means are restricted
to obey finite variability. For instance, a trace over real-valued variables can gen-
erally change values uncountably many times even within bounded time intervals.

The semantics for a PCF ϕ is defined in terms of its interpretation JϕK, evaluating to
a specification, i.e. a set of I/O behaviors. The interpretation is defined inductively
following the structure of the formal grammar. Since parallel composition is only
defined for compatible specifications, we require in the following definition that for
each PCF of the form ϕ1 ∥ ϕ2, the specifications Jϕ1K and Jϕ2K are compatible.
Similarly, for each PCF ϕ1 ∧ ϕ2, we require that ϕ1 and ϕ2 have the same input
and output variables.

Definition 24 (PCF Interpretation). Given a probabilistic contract P∼ p(A,G),
as shorthand, let I denote var(A), O denote var(G) \ var(A), and ΘG denote
{θO ∈ tr(O) | θI ∥ θO ∈ LI∪O(G)}. The interpretation JϕK of a PCF ϕ is defined
inductively by:

JP∼ p(A,G)K =

{
{β ∈ beh(I,O) | β()(LO(G)) ∼ p}, I = ∅
{β ∈ beh(I,O) | ∀θI ∈ LI(A) . β(θI)(ΘG) ∼ p}, I ̸= ∅

J¬ϕK = {β ∈ beh(in(JϕK), out(JϕK)) | β /∈ JϕK}
Jϕ1 ∥ ϕ2K = Jϕ1K ∥ Jϕ2K
Jϕ1 ∧ ϕ2K = Jϕ1K ∩ Jϕ2K

We extend the notion of input variables and output variables also to PCFs ϕ such
that in(ϕ) = in(JϕK) and out(ϕ) = out(JϕK). See Section 6 for examples of PCFs.

The refinement-verification algorithm in the next section works analogously to
the language inclusion algorithm for automata, in which the top-level specification
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is negated and intersected with the component specifications and checked for lan-
guage emptiness. For this to work, the negated specification must have no input
variables and be expressed as a single probabilistic contract, rather than a gen-
eral PCF. The following proposition states that, under these restrictions, negation
works in the way we require.

Proposition 4. Suppose that ϕ = P∼ p(A,G) is a probabilistic contract with no
input variables. Then J¬ϕK = JP∼c p(A,G)K, where ∼c is the complement of the
operator ∼, so that ≤c is equivalent to >, >c is equivalent to ≤, <c is equivalent
to ≥, and ≥c is equivalent to <.

Proof. Let I denote in(ϕ) and O denote out(ϕ). Since ϕ = P∼ p(A,G) is a prob-
abilistic contract without input, Definition 24 gives JϕK = JP∼ p(A,G)K = {β ∈
beh(I,O) | β()(LO(G)) ∼ p}. Using this, Definition 24 furthermore gives

J¬ϕK = {β ∈ beh(I,O) | β /∈ JϕK}
= {β ∈ beh(I,O) | β /∈ JP∼ p(A,G)K}
= {β ∈ beh(I,O) | β()(LO(G)) ≁ p}
= {β ∈ beh(I,O) | β()(LO(G)) ∼c p}
= JP∼c p(A,G)K .

. ⊓⊔

5 Algorithm for Verifying Refinement

In this section, we present the main contribution of the paper, namely an algorithm
for verifying refinement between PCFs. To guarantee termination, we make a re-
duction to the well-studied language emptiness problem for timed automata. The
algorithm takes two inputs ϕ and ϕ0, each being a PCF, and outputs true only if
ϕ refines ϕ0. In this sense, the algorithm is sound. However, it is not complete, as
will be discussed in more detail below.

To understand the algorithm, note that ϕ refines ϕ0 if and only if there exists
no behavior implementing ϕ but not ϕ0. The key insight is that this is equivalent
to the statement that no behavior implements both ϕ and ¬ϕ0. That is, no prob-
ability measure over the traces will respect the bounds imposed by both ϕ and
¬ϕ0 simultaneously. To prove that no such measure exists, we first partition the
possible traces into subsets Θj according to the assumptions and guarantees. More
precisely, for any automaton M being either an assumption or a guarantee of some
probabilistic contract appearing in ϕ or ϕ0, either all or no traces in Θj satisfy
M. We only consider the possible probability measures over the sets Θj . This is
because, given any probabilistic contract P∼p(A,G) appearing in ϕ or ϕ0, the sets
Θj are fine-grained enough for expressing the conditional probability of the guar-
antee G given the assumption A. These conditional probabilities can be encoded
as a system of linear inequalities. If the system of inequalities lacks solution, it
means that no probability measure can possibly respect the bounds imposed by
both ϕ and ¬ϕ0, and we conclude that ϕ refines ϕ0. Of importance is the fact that,
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although the set of all probability spaces over the possible traces tr(X) is, in the
general case, uncountably infinite, the linear inequalities over the finitely many Θj

can be solved using e.g. the simplex method, see [8, 23].

The algorithm is presented in pseudocode below, where we assume that ϕ is a
composition of the form ϕ1 ∥ ϕ2 ∥ · · · ∥ ϕm, each being a probabilistic contract,
and that also ϕ0 is a probabilistic contract. Furthermore, due to the difficulties in
solving linear inequalities with non-strict inequalities, we assume that the proba-
bility bound of each ϕi, i ≥ 1, is non-strict and the probability bound of ϕ0 (which
will be complemented) is strict. On line 5, the notation M ∈ Ωj , where M is a
DTMA, means that M appears as part of the intersection Ωj . The details of the
algorithm are demonstrated in Section 6 on an example.

Algorithm 1 Verify that a PCF ϕ1 ∥ · · · ∥ ϕm refines a PCF ϕ0.

1: Ω ←


A0 ⊓ G0 ⊓ A1 ⊓ G1 ⊓ · · · ⊓ Am ⊓ Gm,
A0 ⊓ G0 ⊓ A1 ⊓ G1 ⊓ · · · ⊓ Am ⊓ Gcm,
A0 ⊓ G0 ⊓ A1 ⊓ G1 ⊓ · · · ⊓ Ac

m ⊓ Gm,
...

Ac
0 ⊓ Gc0 ⊓ Ac

1 ⊓ Gc1 ⊓ · · · ⊓ Ac
m ⊓ Gcm


2: Let z0, z1, . . . , zk−1 be fresh variables, where k = |Ω|
3: ineqs← {z0 + z1 + · · ·+ zk−1 = 1}
4: for ϕi ∈ {ϕ1, . . . , ϕm,¬ϕ0} do

5: ineqs← ineqs ∪


∑

j:Ai⊓Gi∈Ωj

zj∑
j:Ai∈Ωj

zj
∼i pi


6: for j ∈ {0, . . . , k − 1} do
7: if L(Ωj) is empty then
8: ineqs← ineqs ∪ {zj = 0}
9: else
10: ineqs← ineqs ∪ {zj ≥ 0}
11: return true if ineqs has no real solutions; unknown otherwise

Note that, whenever a solution to the system of linear inequalities is found, the
algorithm outputs unknown rather than false. To see why, consider one of the
probabilistic contracts ϕi of the composition, and suppose that it has both input
and output variables. Then the behaviors in JϕK respect the probability bound of
ϕ on each input trace satisfying the assumption. Intuitively, this means that the
granularity is fine. On the other hand, since the algorithm considers conditional
probabilities rather than individual input traces, any proposed solution only needs
to respect this bound on average, taken over all input traces satisfying the assump-
tion. Intuitively, the granularity is coarser. This is a weaker condition, potentially
resulting in spurious solutions. Since a fine-grained solution always implies a course-
grained solution, but not vice versa, the algorithm is sound but not complete.

Theorem 1 (Soundness). Let ϕ0 be a probabilistic contract and ϕ be a PCF of
the form ϕ1 ∥ ϕ2 ∥ · · · ∥ ϕm, each ϕi being a probabilistic contract, such that ϕ0
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and ϕ have the same (non-empty) set of output variables and no input variables. If
the procedure Refines(ϕ, ϕ0) given by Algorithm 1 returns true then ϕ refines ϕ0.

Proof. By contraposition: assume that ϕ does not refine ϕ0 and show that it is
possible to assign probabilities satisfying the system of linear inequalities contained
in the set ineqs. The assumption is equivalent to the existence of a behavior β such
that β ∈ JϕK and β /∈ Jϕ0K. Take an arbitrary such β and assign to each variable zj
the value β()(L∗(ωj)). Because Ω constitutes a partition of the trace space, i.e. the
sets L∗(ωj) are disjoint and span tr(X), and β()(tr(X)) = 1, then due to finite
additivity,

∑
ωj∈Ω β()(ωj) = 1. This satisfies the equality of line 3. The inequalities

of line 10 are satisfied trivially since for any measurable set A ⊆ tr(X), β()(A) ≥ 0.
If furthermore A is empty, then β()(A) = 0, satisfying also the inequalities of line 8.

The only remaining inequalities are those of line 5. Due to the interpretation of
¬, we know that β ∈ J¬ϕ0K. Since the assumption A of ϕ0 is ⊤ which accepts all
traces, we have

∑
j:A∈ωj

β()(L∗(ωj)) = 1. Due to the interpretation of PCF,

p ∼c β()(LO(G)) = β()(L∗(G)) = β()

 ⋃
j:G∈ωj

L∗(ωj)


= β()

 ⋃
j:Aj⊓Gj∈ωj

L∗(ωj)

 =
∑

j:Aj⊓Gj∈ωj

β()(ωj)

=

∑
j:Aj⊓Gj∈ωj

β()(ωj)

1
=

∑
j:Aj⊓Gj∈ωj

β()(L∗(ωj))∑
j:A∈ωj

β()(L∗(ωj))
,

satisfying the conditional inequality of line 5 for the case i = 0. Since also in(ϕ1) =
∅, the same reasoning applies also to the case i = 1 but where the inequality
p1 ∼1 β()(L

∗(G1)) comes from the definition of I/O behavior composition. (More
precisely, β guarantees the existence, through marginalization, of a behavior β1 ∈
beh(∅, out(ϕ1)) s.t. p1 ∼1 β1(L

out(ϕ1)G1).)
We now consider the rest of the cases i = 2, 3, . . . ,m. Let β1, β2, . . . , βm be

behaviors such that β = β1 ∥ β2 ∥ · · · ∥ βm and, for each i ∈ {2, 3, . . . ,m},
βi ∈ JϕiK. Such behaviors always exist because ϕ itself is defined as the composition
ϕ1 ∥ ϕ2 ∥ · · · ∥ ϕm for which the interpretation Jϕ1 ∥ ϕ2 ∥ · · · ∥ ϕmK = Jϕ1K ∥ Jϕ2K ∥
· · · ∥ JϕmK only contains behaviors being a composition of individual behaviors βi
of each ϕi, respectively. Definition 24 gives, for each i ∈ {2, 3, . . . ,m},

∀θIi ∈ LIi(Ai) . βi(θIi)({θOi | θIi ∥ θOi ∈ LI∪O(Gi)}) ∼i pi .

This implies that for each set ΘAi
satisfying

ΘAi ⊆ L∗(Ai) , (1)

we have

β()(L∗(Gi) | ΘAi) ∼i pi . (2)
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For each i, let

Ai =
⋃

j:Ai∈ωj

L∗(ωj)

and
Bi =

⋃
j:Ai⊓Gi∈ωj

L∗(ωj) .

Since Ai = L∗(Ai) satisfies (1), and Bi = Ai ∩ L∗(Gi), it follows from (2) that

pi ∼i β()(Bi | Ai)

=
β()(Bi ∩Ai)

β()(Ai)

=
β()(Bi)

β()(Ai)

=
β()(

⋃
j:Ai⊓Gi∈ωj

L∗(ωj))

β()(
⋃

j:Ai∈ωj
L∗(ωj))

=

∑
j:Ai⊓Gi∈ωj

β()(L∗(ωj))∑
j:Ai∈ωj

β()(L∗(ωj))
,

satisfying the rest of the inequalities of line 5. ⊓⊔

6 Illustrative Example

Following the setting of [15], consider a hypothetical power generating system com-
posed of the two components g1 and g2 representing the main and backup genera-
tor, respectively. In order for the backup to work properly, it must first have been
charged by the main, demonstrating a sort of dependence between the two. Assume
that we are given, in natural language, a top-level specification S0 and two com-
ponent specifications S1 and S2, one for each generator. Our objective is to answer
whether or not the decomposition is correct. That is, does the parallel composition
S1 ∥ S2 of the component specifications refine the top-level specification S0? Let
the three specifications be given as follows:

S0: “total power output shall be at least 1 kW throughout the first 7 hours with
over 45% probability”,

S1: “main power output shall be at least 1 kW throughout the first 6 hours with
at least 70% probability”,

S2: “assuming main power output is at least 1 kW throughout the first 3 hours,
then the first time t it declines below 1 kW, with at least 80% probability,
backup power output shall be at least 1 kW throughout the interval [t, t+2h]”.

To formally reason about this decomposition, let us express the above specifications
using the framework of the present paper. For each generator gi, let the real-valued
variable xi represent its current power output. Each possible trace for the set
of variables {x1, x2} therefore gives, for each point in time, the power output of
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the main and backup generator, separately. For i ∈ {1, 2}, let qi be the predicate
xi ≥ 1 kW, asserting that generator gi outputs at least 1 kW of power. We now
express each specification Sj above as a corresponding PCF ϕj . Starting with the
top-level specification S0, let

q1 ∨ q2
c0 ≤ 7

c0 > 7ϕ0 = P>0.45

(
⊤,

)
.

Denoting the double-ringed location as l, let the acceptance family of the guarantee
be the set {{l}}. We will continue to use this convention whenever there is only
one double-ringed location. This PCF puts no assumptions on the environment and
contains the guarantee that at least 1 kW is output through the first 7 h by either
the main or backup generator, or both. This time limit of 7 h is enforced by the clock
c0 and clock constraint c0 > 7, since the accepting location can only be entered if
the constraint q1∨q2 has remained true at all times before then. Otherwise, the run
moves to an implicit trap location, see Section 3.3. The probability bound states
that all traces satisfying this guarantee must have a total probability mass strictly
greater than 0.45. For the main generator specification S1, let

q1
c1 ≤ 6 c1 > 6ϕ1 = P≥0.7

(
⊤,

)
.

This PCF follows the same pattern as ϕ0 but, since the predicate q2 is not used, only
constrains the main generator. Note that ϕ1 by itself neither refines nor is refined
by ϕ0 due to the shorter time limit of 6 h, which is why the backup generator is
needed for the decomposition to work.

Since the natural-language specification S2 for the backup g2 contains an as-
sumption about the power output of g1, then so must the corresponding PCF:

q1
¬q1 ∧ q2
c2,2 = 0

q2
c2,2 ≤ 2c2,2 > 2

)
.

q1
c2,1 ≤ 3 c2,1 > 3 ,ϕ2 = P≥0.8

(
c2,2 := 0

The assumption, which is put on the main generator, encodes the charging require-
ment of the backup using the same pattern as before. In the guarantee, let l1 and
l2 denote the two double-ringed locations, from top to bottom respectively. The
acceptance family is the set {{l1}, {l2}}, which captures two scenarios. The first,
captured by l1, is where q1 never turns false, in which case the backup is not re-
quired to do anything. The second, captured by l2, is where q1 turns false and the
backup compensates, turning q2 true. The time at which this happens is recorded
by the clock reset c2,2 := 0, and q2 must then remain true for the next 2 h for the
trace to be accepted.

Verifying that this decomposition is correct amounts to evaluating whether
ϕ1 ∥ ϕ2 refines ϕ0. This is done following Algorithm 1, by checking emptiness of
each possible combination of the four automata or their complements, and reducing
to determining a solution for a system of linear inequalities. For example, it is clear



18 A. Hampus & M. Nyberg

that the language L(Ω0) = L(G0⊓G1⊓A2⊓G2) = L(G0)∩L(G1)∩L(A2)∩L(G2) is
non-empty because e.g. the constant trace θ(t) = {x1 7→ 1000, x2 7→ 1000}, t ∈ R≥0,
in which both the main and backup generator outputs 1 kW constantly, is accepted
by each automaton. In contrast, the language L(Ω2) = L(G0 ⊓ G1 ⊓ Ac

2 ⊓ G2) =
L(G0) ∩ L(G1) ∩ L(Ac

2) ∩ L(G2) is empty. To see this, note that G1 specifies 1 kW
for at least 6 h while A2 specifies the same output for the shorter duration of at
least 3 h. It is obviously not possible for a trace to uphold 1 kW for 6 h but not for
3 h, implying L(G1) ∩ L(Ac

2) = ∅. Checking emptiness for each combination gives
L(Ω0), L(Ω1), L(Ω2), L(Ω3),
L(Ω4), L(Ω5), L(Ω6), L(Ω7),
L(Ω8), L(Ω9), L(Ω10), L(Ω11),
L(Ω12), L(Ω13), L(Ω14), L(Ω15),

 =


·, ·, ∅, ∅,
·, ·, ·, ∅,
∅, ·, ∅, ∅,
·, ·, ·, ·,

 .

Let us now construct the system of linear inequalities expressing the probability
bounds of J¬ϕ0 ∧ (ϕ1 ∥ ϕ2)K. Note that, in accordance with Algorithm 1, the top-
level specification has been complemented. For each composition Ωk, we define a
corresponding variable zk to represent the probability mass of all traces accepted
by Ωk. That is, for a behavior β ∈ J¬ϕ0 ∧ (ϕ1 ∥ ϕ2)K, zk represents the probabil-
ity β()(L∗(Ωk)). The resulting inequalities can be constructed as follows:

15∑
j=0

zj = 1 (3)

(z2, z3, z7, z8, z10, z11) = (0, 0, 0, 0, 0, 0) (4)

(z0, z1, z4, z5, z6, z9, z12, z13, z14, z15) ≥ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (5)

z0 + z1 + z2 + z3 + z4 + z5 + z6 + z7 ≤ 0.45 (6)

z0 + z1 + z2 + z3 + z8 + z9 + z10 + z11 ≥ 0.7 (7)(
z0 + z4 + z8 + z12

z0 + z1 + z4 + z5 + z8 + z9 + z12 + z13

)
≥ 0.8 . (8)

The equality (3) represents the fact that all variables must sum to 1 to constitute
a probability measure. Next, (4) constrains the variables corresponding to empty
languages to have probability 0, and (5) constrains the rest to be at least non-
negative. Lastly, reconstructing the probability bounds given by the complement
of ϕ0 and by ϕ1 and ϕ2 gives the remaining inequalities (6), (7) and (8). Using e.g.
the simplex method, we see that this system of linear inequalities has no solution.
According to Theorem 1, we conclude that ϕ1 ∥ ϕ2 refines ϕ0.

7 Related Work

A related field is the area of model checking [20, 27]. However, this is different from
the current paper, since the goal of model checking is to verify implementation
rather than refinement.

Specification theories for Probabilistic Automata have been proposed [17, 29, 31],
in which the semantics is defined as sets of so-called trace distributions, resembling
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the behaviors of the present paper. A similar notion of bundles, which are gener-
ated by probabilistic modules instead of probabilistic automata, is studied in [9].
Although both of these theories facilitate refinement verification, they assume dis-
crete time and a specific underlying probability structure, while the present paper
gives explicit support for continuous time and general probability measures. Also
in the continuous setting, probabilistic I/O automata [33] and interactive Markov
chains [14] combine exponential distributions with non-deterministic choice, and
constraint Markov chains [6] can be used as a finite representation of infinite sets of
continuous-time Markov chains. While these theories assume the memoryless prop-
erty, the present paper allows general probability spaces. Also supporting general
probability spaces, a stochastic process algebra called SPADES [11] has been intro-
duced. However, the focus there is on discrete-event simulation while the present
paper studies refinement of specifications.

In the probabilistic contract setting, the papers [10] and [24] present two differ-
ent compositional contract-based specification theories for stochastic systems. Both
theories include refinement verification, although under the assumption of discrete
time in contrast to the continuous-time support of the present paper.

8 Conclusions

For cyber-physical systems, the ability to specify probabilistic properties, e.g. re-
lated to safety, is fundamental. Also fundamental is the ability to handle systems
with continuous state spaces. The present paper has presented a theory for such
specifications based upon probabilistic contracts. In particular, the main contri-
bution is an algorithm for verification of refinement between such specifications.
The algorithm utilizes a reduction to the language emptiness problem, making the
algorithm terminate after a finite number of computations.
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