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Abstract— Autonomous scene understanding by object classi-
fication today, crucially depends on the accuracy of appearance
based robotic perception. However, this is prone to difficulties in
object detection arising from unfavourable lighting conditions
and vision unfriendly object properties. In our work, we
propose a spatial context based system which infers object
classes utilising solely structural information captured from the
scenes to aid traditional perception system.

Our system operates on novel spatial features (IFRC) that
are robust to noisy object detections; It also caters to on-the-fly
learned knowledge modification improving performance with
practise. IFRC are aligned with human expression of 3D space,
thereby facilitating easy HRI and hence simpler supervised
learning. We tested our spatial context based system to
successfully conclude that it can capture spatio structural
information to do joint object classification to not only act
as a vision aide, but sometimes even perform on par with
appearance based robotic vision.

Keywords: structure learning, spatial relationships, lazy learn-
ers, autonomous scene understanding

I. INTRODUCTION

In the near future, autonomous helper robots will need

to automatically learn about their specific environment, the

human members and their activities over time. It is vital for

these systems to process streams of noisy image data in day-

to-day dynamic environments, be able to model, abstract and

generalise from little data and maintain long-term knowledge

with plasticity and transferability. The robot needs to under-

stand ‘common factors’ in scenarios and adaptively apply

what it has previously learnt.

The above functionalities fundamentally depend on reli-

able recognition of the plethora of objects in the environment.

Appearance based robotic perception are troubled by, variety

in class instances, bad segmentation due to bad lighting and

real-world confusing clutter in environments. The challenges

faced by state-of-the-art vision based perception systems for

scene understanding [1], [2], [3], can be eased using spatio-

temporal context information [4], [5], [6]. Consider Bob

the robot in Fig.1; it guesses that the object is a keyboard

because of its spatial context which is composed of the

individual spatial relationship features (SRFs) of that object

of interest with respect to other objects in the scene. We

believe that long-term learning can be more effective by

extracting and compiling structures in environments. To this

end, we propose a novel spatial context structure learning

system to improve robotic perception.

†RPL (CVAP), KTH Royal Institute of Technology, Sweden:
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Fig. 1: ‘Bob’ seen here, is a SCITOS-G5 mobile robot platform
which is observing a desktop (●) using a 3D camera mounted atop
his head. He recognises a keyboard based on its spatial context –
comprised of inter-object spatial relationships (➼).

Perception systems using appearance and spatial context

have been introduced in the work of [7], [15]; The authors

in [7] compare the efficacies of two different spatial context

based systems which aid appearance based systems on the

task of Joint Object Classifcation in desktop settings, where

the challenge is to assign correct labels to all detected

objects in the scene. The performance of their perception

improves because of inculcating spatial context information

into the reasoning. However, the features they extract de-

pend critically on a spatial origin and their learners have

drawbacks with respect to knowledge amendment and speed

of reasoning.

In this paper we propose a knowledge modification

friendly, faster and significantly better Context Comprehen-

sion System (CCS) to aid robotic perception. This utilises

only inter-object spatial relationships to independently per-

form joint object classification. Our system only requires

rough pose and size detections of objects in a 3D observation

of the scene in question. We introduce a novel set of

SRFs, called Intrinsic Frame of Reference Calculi (IFRC),

which is computed between all object pairs. Subsequently,

our CCS, learns from ground truth data and employs a

weighted k-Nearest Neighbour (KNN) based technique to

learn features→class-label mappings. Voting schemes along

with a multiclass KNN classifier infer the class labels of

unknown objects in a novel scene.

Through our experiments we show that a joint second-

order treatment of the labelling problem can successfully aid
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Fig. 2: Object recognition schematic of context comprehension system (L to R). (a) In a 3D image of a desktop scene, objects are
detected as oriented minimum bounding boxes (different colors). (b) Each object is a node which has no label but only measurements of
position, pose and rough size in the global frame of the desk. (c) In the Spatial Features Extraction part, IFRC are computed from each
object to every other object to capture scene structure (in shades of blue). (d) takes a closer look at a component of the scene structure

stemming from object O8 . f(O8, Ot) : ∀t 6= 8 (➞) are the outgoing IFRC vectors of all other objects with respect to landmark O8;

and f(Ol, O8) : ∀l 6= 8 (different shades of blue) are the incoming IFRC vectors of trajector O8 with respect to all other objects. (e) Such
training data is provided to the Knowledge and Inference part which learns a knowledge bank. When such features are computed on a
novel scene, a KNN based inference scheme is employed to estimate object class labels as in (f). In (c,d) the arrows ➞ corresponding to
appearance based cues and ➞ to single object spatio-temporal statistics, schematically show how our CCS could integrate into a robotic
perception system as a whole.

and in some cases even perform on par with state-of-the-

art appearance based systems. A system using this treatment

can provide object classifications when the appearance based

system can provide only object segments due to systemic

or environment problems. Subsequently, we also show that

a simpler and faster approximate second-order treatment

provides inferences which can be incorporated into robotic

perception. Inference using this treatment can be deployed on

robotic platforms to work in tandem with real-time appear-

ance based perception, to improve wholistic performance.

Thus our contributions are: (1) A novel, robust, human

robot interaction (HRI) friendly spatial relation set – IFRC.

(2) A context comprehension system which offers accu-

rate object labellings despite having a low complexity. (3)

Experimental evidence to support the hypothesis –“there

is sufficient information contained in underlying structures

to use them independently for scene understanding”. Note:

Our context comprehension system is proposed to support

appearance based perception systems, not to replace them.

II. RELATED WORK

Traditionally, robotic vision systems perceive, understand

and reason about their surroundings using appearance based

features [8], [9]. However, contextual information has been

used for improving object recognition [10], [11], [12], activ-

ity recognition [13], [14], [15] and scene understanding [16],

[17]. Since the components of human environments – back-

grounds, objects, humans and other living beings – rarely

occur in isolation, it is possible to obtain better recognition,

by appending evidence from their spatio temporal contexts

to the appearance based perception systems.

Spatio temporal context information can be a simplistic

encoding of neighbourhood measurements of the already

used appearance based features [18], [19] or statistics of con-

text co-occurrences [20], [21]. On the other hand, contextual

information can be captured using sophisticated approaches

involving dedicated feature sets utilised by specialised in-

ference methods. Spatial relations can be encoded using

pairwise geometric calculi [22], [23] and temporal context

can be characterised using cues from time series analysis

[24]. Such contextual information can also be learned [25],

[26], [27], [28] using the scope of the research problem rather

than imposing pre-defined relations.

The work in [7] shows that robotic perception systems

depending on coarse SRFs are helpful for early and mid

stage learning in long-term autonomy when there is low

availability of training data. The work in [29] presents a

generic superset of spatial relationship concepts using com-

binations of which, any spatial relationship between objects

in any environment can be described. In our work, we learn

underlying structures using spatial relations and characterise

the environment and its components with such structures.

Scene understanding achieved by abstracting over object

recognitions has improved with the use of SRFs. In [30],

Gupta et.al. use 3D geometry constraints and understand

scenes represented in real-world images in terms of adjacent

semantic 3D blocks. Choi et.al. in [31], use camera geometry

to obtain best fit bounding boxes of component objects in a

2D scene. These box-objects are then clustered and learned

in the form of semantic trees to provide spatial relation based

structural information for supporting inference. Lin et.al. in

[32] use object detections and compute geometric potential

functions between pairs which reflect spatial relationships.

These potentials are factored into a conditional random field

for object inference. In our work we propose the use of IFRC,

a spatial relations feature set, which is vitally grounded

in human linguistics to facilitate HRI and yet preserve the

properties required to capture structures to achieve joint ob-

ject recognition and provide for environment understanding;

Work in [33], [34] explore the uses of inculcating human

language into environment descriptions for robots.

Our CCS uses a non-parametric approach for structure

learning and multiclass inference [35] for joint object recog-

nition. It employs a lazy learner and populates a metric-

subspace with labelled exemplars. The work in [36] ap-



plies kernel density estimation to separate background and

foreground in an image. We apply similar principles in the

learned metric-subspace to focus on the queried neighbour-

hood and obtain a radial basis function weighted nearest

neighbour estimate. Another approach would be to do a fixed

number nearest neighbour query like the work in [37], [38].

Chiang et.al. [39] use a ranking of the queried neighbours

for multiclass classification. We employ a weighted KNN

based approach to query the metric-subspace for multiclass

classification and separately to provide label-belief factors

for maximum a-posteriori reasoning.

The authors in [40], [7] propose similar approaches which

operate on SRF sets for object recognition and scene un-

derstanding. These feature measurements crucially depend

on the location of the observer and the size of objects,

which are usually measured with uncertainty. CCS operates

on IFRC which are all relative measurements. They only

need rough object sizes and a general direction of an observer

for an initialisation. The inference systems used in [7], [41],

[42] have probabilistic modelling, which involve learning

parametric distributions for class labels over extracted fea-

tures. Modelling this ensemble of distributions requires large

amounts of ground truth data. In contrast, CCS uses non-

parametric lazy learners which do not need intensive training.

Learned knowledge might need modification in a long-

term setting. For probabilistic methods in [7], [41], [42], this

can be achieved only by expensive re-training. In contrast,

the CCS’ lazy learner disadvantages help on-the-fly knowl-

edge modification by having virtually no training costs.

III. SPATIAL FEATURES EXTRACTION

We introduce a set of spatial relations called the Intrinsic

Frame of Reference Calculi. IFRC are geometric definitions

grounded in human linguistic concepts which are commonly

used to describe 3D space across many vernaculars [44].

IFRC is a collection of spatial geometry predicate measure-

ments between a pair of objects e.g. How much right-of

the monitor is the mug? IFRC is comprised of 4 directional

predicates, 2 proximity predicates and 1 overlap predicate.

We formulated these definitions after we conducted a

perception test on 12 subjects in 3 languages. They de-

scribed controlled real world object settings on desktops

using relational prepositions of their choice. The object

configurations in the tests were adaptively modified based

on subjects’ previous answers to approximately trace out the

IFRC boundaries. As IFRC are grounded in linguistic con-

cepts, it becomes a WYSIWYG language, facilitating easier

human robot interaction (HRI). A long-term autonomous

robot could thus be trained by a human supervisor without

robotics related expertise.

IFRC are robust to noise in size and shapes of object detec-

tions and are independent of object appearances in contrast

to traditional perception systems (see§VI). In comparison,

appearance based perception operate on keypoints, colors,

textures and salient object parts which are dependent on

segmentation fidelity and stable lighting. Many a time, due

to faulty segmentation, chunks of the object go missing –

which makes measurements of size also unreliable. IFRC

α 
β 

Fig. 3: The Principal Face (�) and the Principal Edge as its lower
edge (•–•) are determined for this monitor using angles α < β
subtended to front edge of desk (�). (§III)
will describe the same objects devoid of such critical depen-

dencies. Lastly, IFRC are quickly calculable using closed

form geometric equations.

We make the following assumptions and conventions for

IFRC definitions:

1) Real-world scenes can be compelled to a global defini-

tion of origin and coordinate directions. For example:

All objects stand on X-Y plane with their heights in the

positive Z direction. The origin is always at the nearer

left corner of the desktop scene.

2) An oriented minimum bounding box in 3D space can be

computed for every object (Fig.2). From here onwards,

when we use the term ‘object’, it refers to the oriented

minimum bounding box of the object. This relates

to a rough object detection, where there is unreliable

capturing of shape, size and appearance based features.

3) A Principal Face of higher interest can be computed

for every object (Fig.3). The principal face of objects

are calculated as that plane which makes the least angle

with the front of the desktop. The X-Y projected edge

of the principal face, closest to the interacting human,

is called the Principal Edge.

4) The linear measures of an object in the X-Y plane,

parallel to the principal edge is length, perpendicular

to it is width and along the Z-axis is height.

5) The volume (area, in X-Y) confined by the object’s

oriented minimum bounding box is defined as the inside

of the object. The rest is outside of the object.

6) For the rest of the paper we deal with objects only

using their X-Y projections, to account for incomplete,

unreliable object segmentations.

The directional IFRC spatial relations of a Trajector (Ot)

object wrt. a Landmark (Ol) object is defined from the ‘per-

spective of the landmark’ or its intrinsic frame-of-reference.

Given a landmark and a trajector we can algorithmically

extract the directional IFRC feature vector, f(Ol, Ot) ∈ I7

where, I = [0, 1] in R.

Directional Predicates: The space around the landmark is

demarcated into Front, Behind, Left and Right fields (Fig.4)

based on the perception tests’ results. A space expanding

outside of the object in the direction of a vector pointing

toward the principal face from the centroid of the object is

Front Field; And a space expanding similarly in a direction

opposite to this vector is the Behind Field. These fields

extend infinitely along the width of the object but along the



length, they are bound by one extra length of the object on

either side of it as shown in Fig. 4. The Left Field and Right

Field are defined to the landmark’s left and right directions

and have boundaries consequent to the definitions of front

and behind fields.

The measure of front, behind, left and right of a trajector

is the fraction of its total area (At
total) lying in those corre-

sponding fields (At
front field) as shown in Fig.4. Thus,

F := At
front field/A

t
total . . . similarly for B,L,R (1)

and B,F ,L,R ∈ I.

Proximity Predicates: In IFRC, we define two flavours

of non-directional, proximity predicates or Nearness as,

functions of Euclidean distances between objects, differing

in the rough size contexts they use. For both, we first find

the direction of the shortest distance between landmark and

trajector (ρP ).

• Nearness-Projected (NP ): We project the objects along

the direction of ρP and find the size context distance

DP as shown in Fig.5. We define,

NP := e−ρP /DP where, NP ∈ I. (2)

We interpret NP as proximity in the context of size of

the objects when viewed in ρP -centric perspective.

• Nearness-Diagonal (ND): We calculate another size

context distance DD by summing the diagonals of both

objects: DD = dl + dt. We define,

ND := e−ρP /DD where, ND ∈ I. (3)

ND in contrast to NP considers the proximity of objects

in the contexts of their absolute sizes.

Note: both NP and ND would assume a maximum value of

1 if the objects are touching or overlapping with each other.

Overlap Predicate: We define the amount of overlap O

as the fraction of the total area (At
total) of the trajector lying

inside the landmark (At
landmark),

O := At
landmark/A

t
total where, O ∈ I (4)

This predicate is directional. Consider the example of a mug

(obj-A) placed on top of a laptop (obj-B). It could be that

OB→A = 1 but OA→B = 0.2
Concatenating all of these predicates, we obtain the direc-

tional IFRC feature vector extending from the landmark to

the trajector as:

f(Ol, Ot) := [B,F ,L,R ,NP ,ND ,O]⊤ where, f ∈ I7 (5)

IV. CONTEXT COMPREHENSION SYSTEM

We give an overview of our CCS and subsequently elab-

orate on its different parts in the following sections (Fig.2).

Our CCS begins with the Spatial Feature Extraction part.

It extracts IFRC vectors between objects for every scene S
as FS = {flt : ∀l, t ∈ {1 : NS}} using the definitions (§III).

The Knowledge and Inference part uses lazy machine

learning to learn spatial structural knowledge from the en-

vironment scenes (§IV-A). For every training scene, IFRC
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Fig. 4: IFRC fields wrt. landmark object OLM with centroid (∗).
IFRC vectors are computed to trajector objects OT1 and OT2. Prin-

cipal edge (•–•) of OLM determines the fields: behind- B , front–

F , left– L and right– R . Here, directional predicates [B,F,L,R]
of IFRC vectors to T1 and T2 are fLT1

= [0.3, 0.1, 0.0, 0.6] and
fLT2

= [0.0, 0.3, 0.6, 0.0]. The length ℓ of OLM is used to define
the behind and forward fields as shown. (§III)

examples are extracted for each possible object pair and com-

piled into a Knowledge Bank (Ξ) with their corresponding

object class labels.

The inference part assumes we have the following set of

K object classes in our universe C = {C1, C2, · · · , CK};
Given a scene S with NS unknown objects, it finds the best

class label sequence estimate: Y ∗ = {y∗
1
, ..., y∗NS

} where

y∗i ← Ci ∈ C. The inference queries and considers the

nearest neighbours and their labels for maximum a-posteriori

reasoning and voting schemes which provide the required

class label estimates. CCS treats joint object classification in

either of two ways: In the Joint Second-Order treatment (§IV-

B), we reason about all the object labels by jointly focusing

on all possible object pairs; In the Approximate Second-

Order treatment (§IV-C), reasoning is relaxed to one object

at a time, still strictly keeping with its collective pairwise

spatial context.

A. Learning and Querying

The CCS learns non-parametric models using training data

of objects in scenes. For every scene, IFRC are extracted

for every possible directional object pair and stored along

with the true class labels for those objects. This builds a

knowledge bank (Ξ) as,

Ξ← {(flt, Cl, Ct) : ∀ l, t ∈ O}S ∀ S ∈ S (6)

where Cl, Ct are true class labels for landmark and trajector

objects respectively and S is the training set of scenes.

The Ξ is used differently by the two treatments. When our

CCS encounters a novel scene, IFRC vectors are extracted



between all object pairs FS and fed to the inference part.

CCS queries Ξ for nearest neighbours ∀f ∈ FS and then uses

either of the problem treatments to infer all object labels.

We implemented a kernel density estimate [36] based

retrieval (RBNN) with a radial basis function weighting,

parametrised by its radius r. We also implemented an Eu-

clidean metric based KNN retrieval classifier which queries

for k voting members [43]. Voting weights for these k mem-

bers are computed using an exponentially decreasing func-

tion of Euclidean distance and inverse of class occurrence

frequency to undo data bias. In RBNN query, the k number

of nearest neighbour voting members varies depending on

the density of data distribution at the queried point in the

metric-subspace of Ξ. For simplicity of notation we will use

k for number of queries for both types of queries.

B. Joint Second-Order Treatment

For a novel scene S, for each fij ∈ FS our CCS retrieves

voting members and their corresponding class labels Ci, Cj

from Ξ. The retrieved voting members are compiled into

a normalised factor φ in accordance to their weights and

parametrised by fij :

φfij (yi, yj) ∀ yi, yj ∈ C× C (7)

Such a factor, gives an empirical probability distribution over

all possible label assignments to that object pair:

P (yi=Cp, yj=Cq|fij) where ∀p, q ∈ {1 : K}. A unimodal

maximum value is expected for the target labelling of the

objects (Oi, Oj) at (yi, yj) = (Cp, Cq)target in φfij .

We do joint object classification of the NS by consid-

ering all the IFRC vectors together to get a best labelling

sequence. We suppose an empirical probability score P̃ for

an estimated labelling sequence Y to be proportional to all

2
(

NS

2

)

object-pairwise factors φ(yi, yj) parametrised by their

corresponding computed IFRC fij

P̃ (Y ) ∝
∏

i,j∈{1:NS},i 6=j

φfij (yi, yj) where,

φfij (yi, yj) : K ×K → R
K2

(8)

These factors are then combined as in Eqn.9 to search for

the label assignment sequence Y ∗ which maximises the

empirical probability P̃ .

Y ∗ = argmax
Y

P̃ (Y ) or,

Y ∗ = argmax
Y

∑

i,j∈{1:NS},i 6=j

log(φfij (yi, yj)) (9)

Our joint second-order treatment of joint object classification

could be realised using a factor graph. However, to keep

our results away from implementation biases, we solve the

above optimisation problem using a pruned depth-first search

algorithm.

C. Approximate Second-Order Treatment

Approximate joint second-order treatment is a relaxation

of the joint second-order treatment, which has a lower time

complexity at the expected cost of some accuracy. Here, NS

�
�
= �

�
+ �

�

Fig. 5: Proximity components NP and ND are computed between
Landmark OL and Trajector OT as using the rough contextual size
measurements: DP and DD . (§III)

objects in a scene S are labelled by considering each object

independent of other objects. We take an object Oi ∈ O1:NS

in the scene and extract IFRC features with respect to

all other objects Oj in the scene as the landmark in-turn:

{fji∀j = {1 : NS}, j 6= i}. These {fji} are used to infer the

object label y∗i for Oi. This process is repeated for all objects

in-turn to obtain the estimated labelling Y ∗ = {y∗
1
, ..., y∗NS

}.
The features in use are still solely, pairwise IFRC vectors;

It is still a second-order treatment because the mechanism

to infer the final label sequence is piecewise independent

(approximate) as opposed to the combined undertaking by

the joint second-order treatment.

In this treatment, for an object Oi, CCS performs KNN or

RBNN queries for k nearest neighbour voting members for

each fji in Ξ (§IV-A). Only their weighed trajector labels

Ct are considered for voting (Eqn.6). These votes are max-

pooled to provide a class label estimate yji for Oi from Oj :

y∗ji = argmax
C

HISTOGRAM({y1:kji }, {w
1:k
ji }, bins = C) (10)

where, C ∈ C.

The final class label estimate y∗i for that object Oi is

obtained by weighted max-pooling over all its class label

estimates {y∗ji ∀j = {1 : NS}, j 6= i},

y∗i = argmax
C

HISTOGRAM({y∗ji}, {wji}, bins = C) (11)

where, C ∈ C and, for i ∈ {1 : NS}.

This process is repeated for all other objects and the best

label sequence estimate for a novel scene Y ∗ (§IV) is

obtained.

The following interpretation is the fundamental crux of

our methods: A IFRC vector computed for a trajector wrt. a

landmark can be portrayed as a description of the trajector

from the point of view of the landmark. If we pool such

incoming IFRC vectors from all objects in the scene as the

landmarks, to a particular object of interest as the trajector,

we can understand it as a ‘description of that object by the

environment’. We believe that such a portraiture of each

object, by its environment is discriminative and these can be

used for object classification, eliminating the need of object-

centric appearance based cues.

V. EXPERIMENTS

We design our experiments involving joint object clas-

sification. Our system achieves two important aspects: (1)

labelling a group of underlying structures by considering



them together (2) and to do so, solely using underlying

structures between objects in the scene.

We use standard ball-tree implementations for KNN and

RBNN and the query time is not comparable to the infer-

ence part. The time order of complexity for joint second-

order treatment inference is O(N2KN ) and for approximate

second-order treatment inference is O(N2K2k) where N
is number of objects in a scene, K is the number of

object classes and k the number of neighbours queried. The

parameters for KNN and RBNN were fixed using exhaustive

grid search.

A. Dataset

We run our experiments on the KTH-3D-Total dataset

[45] comprised of long-term office desktop observations

and manually annotated objects. Desktop data can be con-

sidered as prototypical environments because they (1) are

controlled, easily and repeatedly observable environments,

(2) offer inter-object spatio-temporal dynamics that offer

modelling predicaments, (3) exhibit a majority of real-world

perception challenges: occlusions, lighting inconsistencies,

photo-unfriendly objects, instance variations and intra-object

dynamics (eg. Laptop open and closed).

The dataset contains 461 scenes (desktop instances) be-

longing to 20 desktop-users and containing 18 object classes.

We used only those object classes which had 100 or more

occurrences: Monitor, Papers, Keyboard, Mouse, Mug, Lamp,

Laptop, Book, Pen, PenStand, Bottle, Headphones. To intro-

duce controlled noise, we also consider five more categories

which had more than 50 occurrences: Folder, Mobile, Glass,

Flask, Jug; We require at least 100 occurrences to have

adequate data for drawing credible conclusions. In every

scene, there are 8-10 objects and there could be upto 3

instances of a particular object class.

B. Experiment Details

During experimentation, for each test run instance or trial,

we sample from all relevant scenes in the dataset to make the

test data and retain the exclusive rest of the dataset as training

data in the proportion 20:80. Since our CCS is a monolithic

classifier for multiclass classification, the primary challenge

is perplexity caused by increased number of classes. If we

consider more number of classes, we have a higher chance

of confusion but at the same time, by design, we expect

our system to find more evidence to ascertain each object

label – making this an interesting trade off. We choose object

classes in decreasing order of their frequency of occurrence;

we experiment by initially considering a subset of the top

3 classes and then repeating experiments by including the

next top class every time. For every such class subset, we

conduct at least 10 trials to report average accuracies. When

sampling test data, we prefer only those scenes containing

the entire class subset to uphold maximum perplexity.

We compute system accuracy over one trial by averaging

over class specific true positive rates, for all object classes

considered in that trial. This measures how accurate our

system is at a focussed, object level classification. Another

measure of performance is what we call hit@n. It is a
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Fig. 6: Joint object classification (a) true positive rates and (b) hit@5
of different classifiers vs. number of object classes. Solid lines
correspond to joint second-order and dotted lines to approximate
second-order treatments respectively. Blue (�) is weighted KNN,
red (�) is RBNN, grey (�) is a baseline random classifier. (c) Stan-
dard quartile statistics for accuracies of joint second-order(�) and
approximate second-order(�) KNN classifiers, over 30 randomly
sampled class subsets.

rougher version of the standard precision@n. A hit@n only

checks if precision@n > 0. Getting a high hit@n score

measures if the system determined labels of all objects in

a scene, although with an allowance of n guesses.

We finally evaluate the robustness of our CCS in the face

of simulated realistic noise: We include object classes, other

than those in the testing subset, to compose mild and high

amounts of confusing clutter usually caused due to false

detections. In a second test, we inject measurement noise in

object pose and size and inspect the resilience of our system

to such errors.

VI. RESULTS AND DISCUSSION

Clean Experiments: We tested our context comprehension

system with the dataset organised according to §V-B and

the accuracies are recorded in Fig.6. As the size of our

class subset increases, perplexity increases, yet we observe a

graceful decline in the average true positive rates. We relax

the maximum perplexity constraint (§V-B) as our class subset

size increases beyond 7 classes. The data is insufficient to

report results for experiments containing more than 9 classes.

It is clear in Fig.6 that the more thorough joint second-

order classifiers exploit their higher constrained inference to

perform better than their approximate counterparts. However,

the approximate second-order treatments (RBNN,KNN), av-

eraged over number of classes (40%, 72%), already perform



comparably to the systems in [7]: (57%, 76%).

The statistics of run time per scene of the approximate

treatment inference, on a standard desktop computer, over

different class subset sizes and scene sizes are: mean run time

is 4.3ms with a standard deviation of 2.1ms. The methods

in [7] use inference schemes with order of complexity com-

parable to our joint treatment inference, which has a mean

run time of 5 × 104ms, varying exponentially as KN . This

shows that the approximate second-order treatment gives a

huge speed boost for not a drastic drop in accuracy.

For this data, KNN classifiers significantly outperform the

RBNN classifiers as shown in Fig.6a. We also expected our

RBNN classifiers to provide more reliable labels because they

‘listen to’ more voting members, when available. However,

our RBNN classifiers with fixed radii, drag in a high number

of confounding data points from the neighbourhood leading

to significantly diminished accuracies (Fig. 6a). Contrast-

ingly, KNN classifiers have a constant cardinality neighbour-

hood (k) resulting from a non-linear truncation in the data

subspace of I7. If data is scattered such that there are crude

clusters for each class, then using RBNN is advantageous;

Otherwise, KNN with a tuned k, will keep out the majority

of the confounding neighbours to provide better consensus.

In Fig.6b we observe the hit@5 rates for the joint second-

order treatment is significantly larger than the hit@1 rates

of their corresponding approximate treatments. Due to their

inference process, we can only measure a hit@1 rate for the

approximate second-order treatments. This means that, even

though the approximate second-order treatments can provide

quick reasonable true positive rates on the whole, it is better

to use the joint second-order treatments when the situation

demands true joint object classification.

When we test class subsets by randomly selecting classes,

our systems still perform steadily and consistently as shown

in Fig. 6c. We also experimented by excluding scenes of

those desktop-users, selected in the test set, from the training

set. This ensured that our system generalises learnt spatial

relation structures across scene types and not do a template

matching in Ξ. The accuracies of such experiments matched

those values in Fig.6 within ±2%.
Noise Experiments: Our CCS performs as shown in

Fig.7a when we introduce detection noise by creating an

exclusive ghost class out of 3 component classes exclusive

to the class subset in question. Increasing the amount and

spread of ghost class data in the data space with more com-

ponent classes makes it harder for multiclass classification.

Our CCS refrains from confusion and has a high true positive

rate for all members in the class subset and also the ghost

class. The joint second-order treatments perform as well as

the best approximate second-order treatments (KNN) and

have a slight increasing trend in Fig.7a because larger class

subsets provide more evidence to constrain inference toward

more accurate results. The drop in accuracy at the start is

because |class subset|:|ghost class| is 3:3 causing a lower

signal-to-noise-ratio in comparison to the 4:3, 5:3,. . . cases.

We increased ghost class size to 5 and the accuracies of the

classifiers do not vary significantly.

The results in Fig.7b shows the decline of accuracies
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Fig. 7: Robustness to noise: (a) Detection Noise: ‘ghost’ class is
made using 3 classes exclusive of the testing classes subset. Plot
color codes are consistent with Fig. 6. (b) Measurement Noise: Solid
and dotted lines correspond to KNN joint second-order and KNN
approximate second-order classifiers. These classifiers are tested by
considering 3�, 4�, 5�, 6� object classes during testing (Note the
Y-axis limits).

of joint second-order and approximate second-order KNN

classifiers with increase in measurement noise and class

subset size. The measurement noise is injected for a fraction

q of the objects in every scene, randomly altering: object

size by upto ±25%, position by upto ±25% of object’s

dimensions projected along the axes and orientation by upto

±45◦ in yaw angle. Consider, the curve corresponding to

class subset of size 5; The joint second-order treatment KNN

continues to give an accuracy of 67%. This experiment is our

most important, showing that our CCS is significantly robust

to everyday, detection-measurement problems.

Even though our CCS is robust, less complex, faster and

provides opportunity for online knowledge growth, there are

still some challenges. Non-parametric methods are sensitive

to r value (RBNN) and k value (KNN) tuning, and the metric

used [46]. We can carefully calibrate these parameters by grid

searching for optimum performance once the data domain is

fixed. The data dependence of the lazy learners makes it

susceptible to outliers, confusing data scatter and data bias.

We can circumvent these problems by correct weighting and

using reinforcement learning schemes in an online setting.

Deep learning approaches for scene understanding–as in

[47], [48], [49]–require numerous, class specific, ground

truth examples (≈3000 samples per class) and intensive

training over couple of hours [50]. Our CCS learns and

generalises almost instantaneously, with smaller training data

(≈30 samples per class). The training of our CCS is inexpen-

sive, conducive for easy online learning and HRI friendly.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have developed a context comprehension

system to aid robotic vision for scene understanding through

joint object classification. We introduce Intrinsic Frame of

Reference Calculi – a HRI conducive, spatial relation feature

set for structure learning which is highlighted by its robust-

ness to corrupt object detections. Our context comprehension

system operates on IFRC with a more accurate joint second-

order and faster approximate second-order treatments. The

context intelligence systems employ non-parametric methods

which provide for on-the-fly learned knowledge modification

and faster operation. By experimenting with our systems



on desktop data, we were able to show that we captured

sufficient information from only structures in scenes to con-

duct joint object classification not only to aid but sometimes

perform even as good as state-of- the-art appearance based

perception systems! When compared to prevalent systems

[7], The joint second-order treatment provides significantly

better accuracies at similar complexities; The approximate

second-order treatment is as accurate and more robust with

a huge improvement in speed of reasoning.

In the immediate future, we will modify the joint second-

order inference system to work in real time and integrate

with an appearance based perception system on our robotic

platform. We want to improve knowledge and inference by

implementing reinforcement learning to rank learnt exem-

plars based on contribution history to classification accuracy.

Subsequently, we wish to extend this system to act as a

generative system to help in object search and anomaly

detections.
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