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1 Introduction

An important step in drug discovery is to predict/asses whether a compound
inhibits an ion channel or not. This can either be part of the desired effect, but
it can also be associated with side effects whose severeness depends on the ion
channel that is inhibited. Such an inhibition can be assessed experimentally.
On the other hand, a typical drug discovery project may involve a large number
of compounds that will have to be tested against large number of ion channels,
so a purely experimental approach quickly becomes unfeasible.

An alternative approach is to simulate the ion channel inhibition caused by
a compound. This is currently part of predictive chemistry and the usual ap-
proach is based on Quantitative Structure–Activity Relationship (QSAR) which
is purely data driven in the sense that one learns a model relating the compound
properties to inhibition properties from experimental data using techniques from
statistical learning. Such an approach does not explicitly take into consideration
the physics governing the inhibition. Model learnt from data associated with a
ion channel results in poor predictions when applied to other ion channels, so
such a data driven approach requires a substantial amount of data, one data set
for each type of ion channel. One can also consider simulating the inhibition
based on first principles. This leads to molecular dynamics based approaches
where one has to simulate large quantum mechanical systems for long time
frames. Current approaches are neither computationally feasible nor are they
accurate enough. Furthermore, such an approach requires an atomic model for
the ion channel, which is rarely available.

The idea that underlies this masters thesis is to simulate ion channel inhibi-
tion based on a mesoscopic model. The model is phenomenological but it does
abide by physics based principles that apply to the situation at hand. Another
advantage with this approach is that it does not require an atomic model for
the ion channel. Instead, the channel only needs to be described roughly.

2 The organization

The project is a collaboration between Anna-Karin Tornberg at the Numerical
Analysis group, Department of Mathematics, KTH, Jan-Frederik Pietschmann
at the Numerical Analysis and Scientific Computing group, Department of
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Mathematics, Darmstadt University of Technology, Ozan Öktem at the Cen-
ter for Industrial and Applied Mathematics, Department of Mathematics, KTH
and Lars Carlsson at AstraZeneca.

Tornberg and Pietschmann will advise on numerical analysis related issues,
Öktem will provide input on relating the simulation model to future inverse
modeling attempts (not part of this master thesis project), and Carlsson will
provide expertise on the chemistry, data pre-processing (compound docking),
validation and experimental data for validation. The work will be pursued from
KTH, but the person has the possibility to visit Pietschmann and Carlsson.

3 The model

The model is based on a class of partial differential equations that are used to
describe the flow of ions through an ion channel. The most popular variant is
the Poisson–Nernst–Planck (PNP) model which has originally been introduced
in the context of electro-diffusion in semiconductors, cf. [5, 6, 4].

The basic idea is that the motion of ions is governed by a combination of
diffusion (Brownian motion) and drift, the latter due to the electrostatic field
generated by all charges present in the system. A more detailed derivation in
the context of ion channels can be found for example in [8]. We consider two
different types of ions c1 and c2, with c1 positively and c2 negatively charged.
The corresponding concentrations ci = ci(x, t), i = 1, 2 at position x and time
t under an electrostatic potential V = V (x, t) can be modeled by the (scaled)
classical PNP model

∂tc1 = ∇ ·
(
D1(∇c1 − c1∇V )

)
, (1a)

∂tc2 = ∇ ·
(
D2(∇c2 + c2∇V )

)
, (1b)

−∆V = −c1 + c2 + cperm. (1c)

Here Di denotes the diffusion coefficients and cperm is a given function modeling
permanent charges in the channel. This model does not account for finite volume
effect which can occur when the density inside the narrow channel becomes very
high. To this end, a non-linear variant has been derived and analyzed, cf. [2, 3]

∂tc1 = ∇ ·
(
D1

(
(1− ρ)∇c1 + c1∇ρ− c1(1− ρ)∇V

))
, (2a)

∂tc2 = ∇ ·
(
D2

(
(1− ρ)∇c2 + c2∇ρ+ c2(1− ρ)∇V

))
, (2b)

−∆V = −c1 + c2 + cperm, (2c)

with ρ = c1 + c2. Both models are supplemented with mixed boundary condi-
tions consisting of a Dirichlet and a no-flux part, i.e.

ci(x) = cDi , on ΓD,

V (x) = V D, on ΓD,

∂nci = ∂nV = 0, on ∂Ω \ ΓD

The goal of both models is to predict the flux, either given by

jPNP :=
∑
i=1,2

∫
ΓD

Di(∂nci − ci∂nV ), (3)
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or, for the non-linear model by

jNPNP :=
∑
i=1,2

∫
ΓD

Di

(
(1− ρ)∂nci + ci∂nρ− ci(1− ρ)∂nV

)
. (4)

4 Thesis topics

Depending on the background of the student, a combination of these topics
could be covered in the thesis.

4.1 Implementation of numerical schemes

In the literature, several discretization schemes of (1) are proposed, see [5].
One possibility is to apply a Newton scheme to the complete system (1) or (2),
respectively. To facilitate the solution of the resulting linear system, various
block iteration algorithms have been proposed. Most often, so-called Gummel-
type methods are used. In two space dimension, so-called exponential fitting
methods can be used as well, cf. [1].

4.2 Convergence

In [7], a convergence proof for two different finite element discretization of (1)
is given. The discretization is based on an Entropy functional which decreases
during the evolution of the PNP system. It would be interesting to see whether
this analysis can be used to prove converge for the nonlinear system (2). To
make this problem more accessible, one could start with a given potential (e.g.
neglect the Poisson equation) and one species which yields

∂tc1 = ∆c1 +∇ ·
(
c1(1− c1)∇V

)
.

4.3 Numerical study of the flux dependence on the area
function a(x)

For possible applications in drug discovery, it is of interest to study how the
flux measurements (3) or (4), respectively, are influenced by the geometry of
the domain Ω. To this end, one has to scale the equations appropriately to
accound for the dimensions of the hERG ion channel that is of interest for
AstraZeneca. The simplest approach is to start with a reduced one dimensional
model given by, cf. [3],

∂tc1 = ∂x
(
D1a(x)(∂xc1 − c1∂xV )

)
, (5a)

∂tc2 = ∂x
(
D2a(x)(∂xc2 + c2∂xV )

)
, (5b)

−∂x
(
a(x)∂xV

)
= a(x)(c1 + c2 + cperm). (5c)

This can be derived from the 3d model if the domain is cylindric. Here the
so-called area function a = a(x) accounts for the area of the three-dimensional
cylinder. The idea is to use the numerical codes to empirically study the depen-
dence of the flux j on the function a. From AstraZeneca flux measurements for
an empty, open channel are available and could be used to estimate parameters
in the model (e.g. permanent charge, area). This could be done for both the
linear and non-linear model.
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