
Abstract

Wireless sensor networks (WSNs) play an important role in the future of
Internet of Things IoT systems, in which an entire physical infrastructure
will be coupled with communication and information technologies. Smart
grids, smart homes, and intelligent transportation systems are examples of
infrastructure that will be connected with sensors for intelligent monitor-
ing and management. Thus, sensing, information gathering, and efficient
processing at the sensors are essential.

An important problem in wireless sensor networks is that of decentral-
ized detection. In a decentralized detection network, spatially separated
sensors make observations on the same phenomenon and send information
about the state of the phenomenon towards a central processor. The central
processor (or the fusion center, FC) makes a decision about the state of the
phenomenon, base on the aggregate received messages from the sensors. In
the context of decentralized detection, the object is often to make the best
decision at the FC. Since this decision is made based on the received mes-
sages from the sensors, it is of interest to optimally design decision rules at
the remote sensors.

This dissertation deals mainly with the problem of designing decision
rules at the remote sensors and at the FC, while the network is subject
to some limitation on the communication between nodes (sensors and the
FC). The contributions of this dissertation can be divided into three (over-
lapping) parts. First, we consider the case where the network is subject
to communication rate constraint on the links connecting different nodes.
Concretely, we propose an algorithm for the design of decision rules at the
sensors and the FC in an arbitrary network in a person-by-person (PBP)
methodology. We first introduce a network of two sensors, labeled as the
restricted model. We then prove that the design of sensors’ decision rules,
in the PBP methodology, is in an arbitrary network equivalent to designing
the sensors’ decision rules in the corresponding restricted model. We also
propose an efficient algorithm for the design of the sensors’ decision rules in
the restricted model.

Second, we consider the case where remote sensors share a common
multiple access channel (MAC) to send their messages towards the FC, and
where the MAC channel is subject to a sum rate constraint. In this situation,
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the sensors compete for communication rate to send their messages. We
find sufficient conditions under which allocating equal rate to the sensors,
so called rate balancing, is an optimal strategy. We study the structure of
the optimal rate allocation in terms of the Chernoff information and the
Bhattacharyya distance.

Third, we consider a decentralized detection network where not only
are the links between nodes subject to some communication constraints,
but the sensors are also subject to some energy constraints. In particular,
we study the network under the assumption that the sensors are energy
harvesting devices that acquire all the energy they need to transmit their
messages from their surrounding environment. We formulate a decentralized
detection problem with system costs due to the random behavior of the
energy available at the sensors in terms of the Bhattacharyya distance.

Keywords: Wireless sensor networks, decentralized detection, person-
by-person optimization, multiple access channels, rate allocation, Chernoff
information, Bhttacharyya distance, energy harvesting.
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1 Introduction

1.1 Decentralized detection in wireless sensor networks

Wireless sensor networks have gained worldwide attention over the past
decade [1–3]. Small sensors with limited processing, computing resources
and communication capabilities are used in wireless sensor networks. These
sensors are able to sense, measure, and gather information from their sur-
rounding environment. The sensors are also able, based on local decision
processes, to transmit the sensed data [4–6].

Statistical inferences about the environment such as detection, parame-
ter estimation and tracking, are some of the emerging applications of wire-
less sensor networks. In all these applications we are faced with a decision-
making problem where information is distributed across the sensors in the
network. In all these group decision-making problems we need to select a
particular course of action based on our observations regarding a certain
phenomenon. If the course of action is from a set of possible options, our
problem is a decentralized detection problem [7–11].

In a decentralized detection system, spatially separated sensors observe
a common phenomenon. If the sensors are able to communicate all their
data to a central processor for data processing, the sensors only act as data
collectors and no processing at the sensors is needed. In this situation,
the data processing is centralized in nature and optimal algorithms can be
implemented. On the other hand, if there are communication constraints
on the sensors, some preliminary data processing at each sensor needs to be
carried out and a compressed or quantized version of the received data is
then given as the sensor output. According to the network arrangement, the
output of each sensor is sent either to another sensor or to a fusion center
(FC) where the received information is appropriately combined to yield the
final inference [12–14].

Decentralized detection problems are found in many practical situations.
As an example, consider a radar detection system, where spatially separated
radars are observing an area. According to their observations, they send
some data towards a central processor or FC. Based on the received data
from the radars, the FC makes a decision regarding the presence or absence
of a target in that area. As another example, consider a digital commu-
nication system in which one of several possible waveforms is transmitted
and the goal is to determine the transmitted symbol according to the noisy
observations at the sensors.

In the context of decentralized hypothesis testing, each sensor is an
intelligent unit, and is therefore often referred to as a decision maker (DM).
In what follows, we shall discuss decentralized hypothesis testing problems
in different topologies.



S1 · · · Sn · · · SN

Phenomenon H ∈ H

Fusion Center
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Ĥ

Figure 1: Decentralized hypothesis testing scheme in a parallel
network.

1.2 Decentralized hypothesis testing problems

In a decentralized detection problem, we may be faced with a binary problem
in which we are looking for a yes or no type of answer. For example, in the
radar detection system described previously (see Section 1.1), our goal is
to determine if the target is present (yes) or not (no). These problems are
known as binary hypothesis testing problems and the two hypotheses are
usually denoted by H0 and H1. We may also be faced with a more general
situation with multiple hypotheses. An example of this problem is the
digital communication system also described previously (see Section 1.1),
where the set of possible waveforms consists of M > 2 different symbols.
In the M -ary hypothesis testing problems, we denote the hypotheses by1

H0, H1, . . . , HM−1.

The design of decentralized hypothesis testing algorithms depends on the
underlying sensor network topology (or configuration), i.e., the arrangement
of the sensors in a network [4]. The most common topology is the parallel
topology, which is extensively considered in the literature (see [9,15–20] and
references therein) and is shown in Figure 1. In this configuration, a sensor
Sn, n = 1, . . . , N , makes a private observation, denoted by xn, of the com-
mon phenomenon H and sends a message un towards the FC. The FC after
combining all the messages u1, . . . , uN received from the sensors S1, . . . , SN

1The definition of a hypothesis set for M -ary problems for notational simplicity in
some publications is as {H1, . . . ,HM}.
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S1 · · · Sn · · · SN

Phenomenon H ∈ H

x1 xn xN

MAC

u1
un uN

Fusion Center

Ĥ

Figure 2: Decentralized hypothesis testing scheme in a network,
where the sensors send their data through a MAC channel to the
FC.

makes a global decision Ĥ in favor of a hypothesis from hypothesis set H.
In this configuration there is no communication between the sensors and
each sensor-to-FC channel is a one-way channel from the sensor.

Although a large body of research in decentralized detection has been
devoted to the case where the sensors transmit their messages towards the
FC through parallel access channels, in wireless sensor networks the wireless
medium is typically shared among the sensors. In other words, the sensor-
to-FC channels are modeled as common multiple access channels (MAC)
[21–26]. This configuration is shown in Figure 2.

In both configurations shown in Figures 1 and 2, the sensors make pri-
vate observations on the underlying phenomenon and transmit their output,
known as local decisions, directly to the FC through wireless channels. In
another popular structure, known as the tandem (or serial) topology, sen-
sors are connected in series [27–34]. In this configuration, each sensor is
connected to two neighboring sensors: its predecessor and its successor.
Two exceptions to this rule are the first sensor, which does not have any
predecessor, and the last sensor which does not have any successor. A
network of sensors arranged in tandem is also shown in Figure 3. In this
configuration, each sensor Sn, n = 2, . . . , N − 1 makes an observation xn
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S1 · · · Sn · · · SN

Phenomenon H ∈ H

u1 un−1 un uN−1 uN

x1 xn xN

Figure 3: Decentralized hypothesis testing scheme in a tandem
network.

and receives the output un−1 of its predecessor as its inputs, and makes a
decision un to send to its successor Sn+1. Sensor S1 makes a decision u1

only based on its private observation x1, and the decision of the last sensor,
SN , is the final decision of the network.

Distributed detection in the tandem topology is closely connected to
decision making in social networks [35–40]. In social networks, each agent
chooses an action/decision by optimizing its local utility function and sub-
sequent agents then choose their actions/decisions using their private ob-
servations together with the actions/decisions of previous agents [38, 41].
In social networks, the agents typically do not reveal their raw private ob-
servations on the underlying state of nature, while they do reveal their
actions/decisions (e.g., votes and recommendations). This can be viewed as
a low resolution (or in the context of decentralized detection as quantized)
version of their observations and their interaction with other agents in the
network.

In contrast to decentralized detection networks where the agents’ de-
cisions are made in such a way that a global performance measure is op-
timized, in social networks the agents’ decisions are made in such a way
that their local performance measure is optimized. In other words, in social
networks agents selfishly try to optimize their outputs [42].

In addition to the extreme cases of parallel and tandem networks, there
are other configurations such as tree topologies which are combinations of
these cases [43–48]. An example of such a configuration is shown in Figure 4.
In this situation, some of the nodes make observations while other nodes
act as relays which combine the input messages and forward their output
to another node. All the observed data eventually arrive at the FC, where
the final decision about the present hypothesis is made.

In the following section, state of the art problems for each of the afore-
mentioned configurations will be discussed. However, before discussing the
problems, let us define the parameters that will be repeatedly used through-
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FC

Ĥ

Figure 4: Decentralized hypothesis testing scheme in a tree net-
work. Each sensor is shown by a circle and the observations are
not shown.

out this thesis. Let Xn and Un, for some 1 ≤ n ≤ N , be random variables
corresponding to observation xn and output un of sensor Sn, respectively.
The phenomenon H is also modeled as a random variable drawn from
a set H � {H0, H1, . . . , HM−1} with corresponding a-priori probabilities
π0, π1, . . . , πM−1 for a general M -ary hypothesis testing problem. We also
define fX|H (x1, . . . , xN |h), for h ∈ H, as the joint conditional distribution of

the observations at sensors S1 to SN , where by definition X � X1, . . . , XN .
When the observations at the sensors, conditioned on the hypothesis, are
independent the joint conditional distribution decouples as

fX|H (x1, . . . , xN |h) = fX1|H (x1|h) . . . fXN |H (xN |h) .
We also define Xn as the observation space of Xn, and Urn as the message
space of output un.

1.3 State-of-the-art problems in distributed detection

For the parallel topology shown in Figure 1, two main problems need to be
considered: the design of decision rules at the sensors, and the design of
decision rules at the FC. To optimize a performance metric of the network,
the decision rules at the FC and the local decision rules at the sensors should
be designed jointly. Assuming perfect knowledge of the system parameters,
the optimum design of the FC rule is conceptually a straightforward task
[4, 9]. However, even for small-sized networks, the design of decision rules
at the sensor nodes is a formidable task [49].
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Given a realization xn, sensor Sn in a parallel topology makes a decision
un according to its own private observation xn using a decision function
γn(·), i.e.,

γn(xn) = un , (1)

and the FC makes the final decision ĥ in favor of a hypothesis from the set
H by combining all the received messages from the sensors using a decision
function γFC(·), i.e.,

γFC(u1, . . . , uN) = ĥ . (2)

Note that, in this situation the sensor makes a decision only based on its
own observation and not the observations at the other sensors, since there
is no communication between the sensors. In what follows, we shall first
discuss the structure of optimal sensors’ decision rules and then formulate
state-of-the-art problems in distributed detection networks.

If there is no communication constraint on the channel from the sensor
to the FC, the sensor gives its own observation as its output, i.e., un = xn.
However, in practical situations the sensor-to-FC channel is subject to some
communication constraints. Let us assume that this channel is an error-free
but rate-constrained channel of rate rn, for a positive integer rn. In other
words, this channel is capable of reliably carrying rn bits to the FC. In this
situation, each sensor Sn is a quantizer and its decision rule is a mapping
from the observation space Xn to the message space Urn � {1, . . . , 2rn},
i.e., γn : Xn → Urn . We are then led to the problem of finding quantization
strategies at the sensors with respect to optimizing a performance measure.
This problem was extensively considered in the quantization literature [50–
55] and decentralized detection literature [9,56–58]. It is well known that for
several specific observation distribution models, when observations at the
sensors are independent given the hypothesis, likelihood-ratio quantizers
(LRQ) are optimal. Therefore the problem of finding optimal decision rules
at the sensors reduces to that of quantization thresholds [9, 15, 16, 59–61].

In the simple case of binary hypothesis testing where the sensors are
arranged in parallel and each sensor sends a single bit towards the FC, the
optimal decision rule at each sensor, as discussed above, is a likelihood-ratio
test (LRT) as

fXn|H (xn|H1)

fXn|H (xn|H0)

un=1

≷
un=0

αn, (3)

where αn is a scalar constant. If the likelihood-ratio is monotone in obser-
vation xn, (3) admits the following form

xn

un=1

≷
un=0

Tn, (4)

for a constant Tn which depends on αn and an observation model at the
sensor. In other words, in this case, without loss of generality we can assume
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that a quantizer is directly applied to the observations, rather than to the
likelihood-ratio (see [58, 62] for more detailed discussion). Furthermore, we
can without loss of generality assume that observations at the sensors are
from the set of real numbers, i.e., Xn ∈ R; even for non-real observations
the likelihood-ratios at the sensors are from the real set.

Returning now to the parallel configuration, let us consider the detec-
tion problem in which our aim is to design the decision rules of the sensor
nodes and the FC by optimizing a performance measure, subject to the rate
constraints of the sensor-to-FC channels. This problem can be formulated
as:

Optimize: some performance measure,

variables: γ1, . . . , γN , γFC,

subject to: r1, . . . , rN .

(5)

Note that so far we have not discussed the choice of the performance metric
and we postpone this issue to Section 1.4.

This problem was considered quite extensively in the literature, spe-
cially for the binary hypothesis test and when the sensor-to-FC channels
are one-bit channels, and for conditionally independent observations at the
sensors [9, 16]. Even under these simplified assumptions, the problem of
designing decision rules at the sensors and the FC is a demanding task and
in most cases, finding globally optimal decision rules at the sensors is math-
ematically intractable. To overcome this difficulty, we can use a person-
by-person (PBP) optimization method for the design of decision rules at
the sensors and the FC. In the person-by-person optimization approach, we
optimize the decision rule of each sensor while assuming fixed decision rules
at all other sensors and the FC. This approach is only guaranteed to reach a
locally optimal solution and not necessarily a globally optimal solution [4].

This specific problem was considered by Longo et al. in [17] for gen-
eral correlated observations at the peripheral nodes. The peripheral nodes
(scalar quantizers) were to be cooperatively designed according to a system-
wide measure of performance. They argued that the natural criterion of
optimization—in their case the power of a Neyman-Pearson test—made the
design procedure intractable. They therefore proposed to instead optimize
a measure of similarity between the conditional distributions of the joint
index space, i.e., the full set of quantizer outputs. Longo et al. obtained
their final result using a cyclic person-by-person optimization algorithm for
maximizing the Bhattacharyya distance [63] between the conditional prob-
ability distributions under the two hypotheses. We shall discuss this choice
of performance measure in detail in Section 1.4.

The design problem is even more challenging when the sensors share a
MAC channel to send their outputs towards the FC, as shown in Figure 2.
In this situation the detection problem involves the design of decision rules
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at the sensor nodes and the FC and, at the same time, allocation of rates
to the sensors in such a way that some communication constraints imposed
by the MAC channel are satisfied. The MAC channel model, as in [21], can
be considered as a set of error-free channels that are subject to a sum rate
constraint. We can mathematically formulate this problem as:

Optimize: some performance measure,

variables: γ1, . . . , γN , γFC, r1, . . . , rN

subject to:

N∑
n=1

rn ≤ R ,

(6)

for a positive integer R, where R is sum rate capacity of the MAC channel.
For the case of a binary hypothesis test where the observations at the

N remote sensors are independent and identically distributed (i.i.d.) condi-
tioned on the true hypothesis H , Chamberland and Veeravalli [21] studied
the structure of an optimal sensor configuration. Their study was in terms
of the optimal number of sensors (N) and the optimal sensors rate alloca-
tion. They found sufficient conditions under which having N = R one bit
(binary) sensors is optimal. Although the condition of having only rate one
sensors leads to a very simple network design, it is in many cases simply
not practically feasible to have an arbitrary number of sensors. The maxi-
mum number of sensors deployed in practice is often limited by hardware or
spatial constraints. Therefore in [62,64] we have considered a more general
case which extends the results in [21]. Concretely, we have considered the
case where N is fixed or limited a-priori, and our aim is to optimally select
the set of rates in the network. We shall discuss these results in Section 2.2.

The optimal design of decision rules for the sensors arranged in tandem,
according to Figure 3, has also generated a significant amount of interest in
the past [27,29,33,34,65,66]. Sensor Sn, n = 2, . . . , N in a tandem network
makes a decision according to its own observation xn and the decision un−1

of its predecessor Sn−1 using a decision function γn : Xn × Urn−1 → Urn ,
i.e.,

γn(xn, un−1) = un , (7)

where sensor SN serves as the FC and therefore for its output message set
we have UrN = H. Sensor S1 only uses its direct observation x1 to make a
decision u1 using a decision function γ1 : X1 → Ur1 , i.e.,

γ1(x1) = u1 . (8)

As in the parallel topology, if there is no communication constraint on the
channels between the sensors, each sensor only gives its inputs as output
and the problem reduces to a centralized problem and the optimal fusion
decision γN can be found accordingly. Let us consider the case where the
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channel between sensors Sn and Sn+1 is an error-free but rate-constrained
channel of rate rn. Without loss of generality, we can assume that the output
message un, n = 1, . . . , N −1 is from the set Urn = {1, 2, . . . , 2rn}, while the
output message of SN (the FC) is from the set H = {H0, . . . ,HM−1} for an
M -ary hypothesis testing problem. In this situation the detection problem
is to design the decision rules of the sensor nodes and the FC by optimizing
a performance measure, subject to the rate constraints of sensor-to-sensor
channels, or equivalently:

Optimize: some performance measure,

variables: γ1, . . . , γN ,

subject to: r1, . . . , rN−1 .

(9)

The optimal design of the sensors in a tandem network was previously
studied in [27,29,34] under the assumption that the observations at the sen-
sors were, conditioned on the hypothesis, independent. This scenario has
also been generalized in [33] to the case of conditionally dependent observa-
tions. While in [27,29,34] a binary hypothesis testing and binary messages
between the sensors were considered, [33] relaxed these assumptions and
considered general M -ary hypothesis testing, however with only M -valued
messages (i.e., ‖Urn‖ = M) for M ≥ 2 and n = 1, . . . , N .

Considering the optimal performance limits of tandem networks, it was
shown in [16,28] that for distributed networks with two sensors the optimal
parallel network is outperformed by the optimal tandem network. However,
for any network of more than two sensors, parallel networks perform better
than serial networks, and for any given distributed detection problem with
i.i.d. observations there exist a number of sensors at which the parallel
network becomes better [16]. Moreover, the error probability in the case
of a parallel topology with any logical decision functions, goes to zero very
quickly as the number of sensors increases. This does however not hold
in general for the tandem topology. In other words, as was shown in [65],
the rate of error probability decay of the tandem network is always sub-
exponential in the total number of sensors, while the error probability decay
of a parallel network is exponential in the total number of sensors [67].

There are also some significant studies regarding the asymptotic per-
formance of parallel and tandem networks, for instance [28, 65, 67–69].
In [28,68] the problem of M -ary hypothesis testing in tandem networks was
considered when the sensors were allowed to sendM -valued messages. They
have shown that in this situation a necessary and sufficient condition for the
probability of error to asymptotically go to zero is that the log-likelihood ra-
tio of the observation at each sensor, between any two arbitrary hypotheses,
is unbounded in magnitude. We can then conclude that in the general case
with potentially bounded log-likelihood ratios, having strictly more mes-
sages than the number of hypotheses is needed to have zero-limiting error
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probability. In the case of a binary hypothesis testing (i.e., M = 2) and for
the case of bounded log-likelihood ratios, Cover has proposed an algorithm
in [68] with a four-valued message (‖Urn‖ = 4) which results in zero-limiting
probability of error under each hypothesis. Koplowitz has generalized this
idea in [69], where he has shown that, even if the log-likelihood ratios are
bounded, (M +1)-valued messages are sufficient for achieving zero-limiting
probability of error in M -ary hypothesis testing.

Considering a tandem network of fixed size N , Papastavrou and Athans
[28] proposed a simple but suboptimal scheme for the design of sensors. In
their method, each sensor is optimized for locally minimal error probability
at its output, instead of for globally optimal performance. For this partic-
ular scheme, they have also shown that a necessary and sufficient condition
to achieve zero-limiting probability of error is that the log-likelihood ratio
of the observation of each sensor be unbounded from both above and below.
While optimizing the performance (e.g. minimizing the error probability)
locally at the output of each sensor makes the algorithm relatively simple,
it has a side effect that the messages are then constrained to be M -valued
(i.e., ‖Urn‖ = M) for the M -ary hypothesis testing problem. This is due to
the fact that a one-to-one relation between the sensor output messages and
the hypotheses is needed in the definition of the local error probabilities.
Therefore, even though it is known that increasing the number of communi-
cation messages can improve the performance of a parallel network [70], the
problem of designing the sensors in a tandem network for arbitrary-valued
messages remains largely open [27]. Al-Ibrahim and AlHakeem [66] also
have exemplified this point by allowing the first sensor in a tandem network
of two sensors to communicate two-bit messages instead of one-bit mes-
sages. They have observed a significant improvement in the performance of
the network for binary hypothesis testing. One way to view this result is
as follows: multi-bit (soft) decisions are able to transmit more information
to the FC for the final decision than a binary (hard) decision would. The
difficulty is in figuring out how to best capture and quantize this additional
information and this is one problem that we shall address in Section 2.1 of
this thesis.

In the following section we will consider different choices of performance
measure and discuss their properties.

1.4 Performance measures

In the Bayesian formulation, a decision at the FC is made in favor of a
hypothesis based on given prior information, namely a-priori probability of
hypotheses, and hypothesis-conditional probabilities. The optimal decision
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rule is the Bayes’ test that minimizes the Bayes’ risk which is equal to

R =
M−1∑
i=0

M−1∑
j=0

CijπjP
(
Ĥi|Hj

)
, (10)

where Cij represents the cost of deciding on the presence of Ĥi while Hj is

true and P
(
Ĥi|Hj

)
represents the probability of deciding on the presence

of Ĥi while Hj is true [9].
When no cost is assigned for a correct decision and unit cost is assigned

for a wrong decision, i.e.,

Cij =

{
1 i �= j ,

0 i = j ,

Bayes’ risk simplifies to Bayes’ error probability and Bayes’ rule reduces to
the maximum a-posteriori (MAP) decision rule [71]. According to the MAP

rule, the FC based on its input z decides on hypothesis Ĥi if [72]

π̂iPZ|H

(
z|Ĥi

)
= max

{
π0PZ|H (z|H0) , . . . , πM−1PZ|H (z|HM−1)

}
, (11)

for a general M -ary hypothesis testing problem, where PZ|H (z|Hj) is the
hypothesis-conditional probability of input z ∈ Z at the FC, and where π̂i

is the a-priori probability of hypothesis Ĥi. The expected error probability
when using the MAP rule at the FC is [73]

PE = 1−
∑
z∈Z

max
{
π0PZ|H (z|H0) , . . . , πM−1PZ|H (z|HM−1)

}
. (12)

In practice, Bayes’ error probability is quite tricky to calculate and in the
following we will discuss some of these difficulties in the design of sensor
networks. We will start with the parallel network and find hypothesis-
conditional probabilities and then discuss the calculation of hypothesis-
conditional probabilities for the tandem network.

For a network of N sensors arranged in parallel or MAC, as in Figures 1
and 2 respectively, the hypothesis-conditional probability is

PZ|H (z|Hj) = PU|H (u1, . . . , uN |Hj) , (13)

where U � U1, . . . , UN , and where the complete input set at the FC is
Z = U � Ur1 × . . . × UrN . When the observations Xn at the sensors,
conditioned on the hypothesis, are independent, the hypothesis-conditional
probability decouples as

PZ|H (z|Hj) = PU1|H (u1|Hj) . . . PUN |H (uN |Hj) . (14)
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This is due to the fact that each sensor output Un is only a function of its
corresponding input Xn. Since functions of independent random variables
are also independent, the independence of sensors’ inputs results in the
independence of sensors’ outputs.

Now consider a sensor Sn in the parallel network. Given a sensor decision
rule γn and the true hypothesis Hj ∈ H, the probability mass function
associated with the message Un = γn(Xn) ∈ Urn is calculated as

PUn|H (un|Hj) = Pr

(
γn(Xn) = un|Hj

)
=

∫
x∈γ−1

n (un)

fXn|H (x|Hj) dx,

(15)

where γ−1
n (un) is the set of observations x ∈ X that satisfy γn(x) = un.

This can be generalized to the joint probability mass function associated
with the message set U = U1, . . . , UN at the FC as

PU|H (u1, . . . , uN |Hj) =∫
x1∈γ−1

1 (u1)

. . .

∫
xN∈γ−1

N
(uN )

fX|H (x1, . . . , xN |Hj) dx1 . . . dxN .
(16)

As (13) shows, in order to design the decision rules at the sensors, such that
the MAP error probability in (12) is minimized, we need to find the joint
probability mass functions which are found from the joint conditional distri-
bution of the observations at the sensors. This makes the direct use of (12)
as a performance measure for the design of sensor rules in a parallel network
limited. However, using some mathematical reformulations in [74], we have
shown that using the same complexity order as the existing methods (for
example the proposed method in [17]) we can use (12) in a parallel network
to design the sensors’ decision rules, in a person-by-person framework.

For a network of N sensors arranged in tandem, as in Figure 3, the
hypothesis-conditional probability is

PZ|H (z|Hj) = PXN ,UN−1|H (xN , uN−1|Hj) , (17)

where for consistency we assume a discrete observation space Xn at (the
sensors and therefore) the FC in a tandem network. Note that, although
we restrict our attention to discrete observation spaces, Xn can be used to
approximate observations in a continuous space using fine-grained binning.
Longo et al. [17] used this idea by representing each bin, or interval, in
the continuous observation space by an index xn from the discrete set Xn.
The complete input set for the tandem network at the FC is then Z =
XN × UrN−1.

Using the same argument as in (14), for conditionally independent ob-
servations at the sensors, the hypothesis-conditional probability at the FC
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decouples as

PZ|H (z|Hj) = PXN |H (xN |Hj)PUN−1|H (uN−1|Hj) . (18)

Note that for conditionally independent observations at the sensors, (18)
generalizes to a continuous observation space. To do this, we can replace
probability mass function PXN |H (xN |Hj) with probability density function
fXN |H (xN |Hj).

Now consider sensor Sn for 2 ≤ n ≤ N in the tandem network. Given
its sensor rule γn and the true hypothesis Hj ∈ H, the probability mass
function associated with its message Un = γn(Xn, Un−1) ∈ Urn is calculated
as

PUn|H (un|Hj) = Pr

(
γn(Xn, Un−1) = un|Hj

)
=

∑
(xn,un−1)∈γ−1

n (un)

PXn,Un−1|H (xn, un−1|Hj) ,
(19)

where γ−1
n (un) is the set of tuples (xn, un−1) that satisfy γn(xn, un−1) = un.

For sensor S1, the probability mass function associated with its message
U1 = γ1(X1) ∈ Ur1 is calculated as

PU1|H (u1|Hj) =
∑

x1∈γ−1
1 (u1)

PX1|H (x1|Hj) , (20)

with the corresponding definition for γ−1
1 (u1). Equations (19) and (20)

show that every FC output uN depends on all the observations x1, . . . , xN

through the sensor functions γ1, . . . , γN in a complicated recursive way. This
can also be seen from (7) and (8) for any FC decision ĥ ∈ H as follows:

ĥ = uN = γN (xN , uN−1)

= γN (xN , γN−1 (xN−1, uN−2))

...

= γN (xN , γN−1 (xN−1, γN−2 (xN−2, . . . , γ2 (x2, γ1 (x1)) . . .))) .

(21)

These mathematical formulations show that finding the decision rules at
the sensors which directly minimize the MAP error probability in a tandem
network is even more challenging than in a parallel network for arbitrary
network size. However, for small-sized networks (i.e., N = 2) and condi-
tionally independent observations at the sensors, the MAP rule provides a
computationally tractable tool for the design of such networks, and in [75],
we have used this idea for the design of an arbitrary-sized tandem network
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in a person-by-person framework. We have further generalized this idea
in [76] for the design of sensor decision rules in an arbitrary tree topology.

Although the person-by-person methodology provides a computation-
ally tractable tool for the design of sensor decision rules in a wireless sensor
network, it does not necessarily lead to a globally optimal design and the
problem of understanding the characteristics of an optimal network remains
open. One way to tackle this problem in a binary hypothesis testing is to
study the structure of optimal networks in terms of their error exponent. In
what follows we will be discussing the Chernoff information and the Bhat-
tacharyya distance as two performance metrics for the design of decision
rules of sensors and the FC of a network [52, 63, 77].

Consider a binary hypothesis testing problem where sensors are arranged
in parallel or MAC. The expected error probability when using the MAP
rule at the FC is [see (12)]

PE = 1−
∑
u

max
{
π0PU |H (u|H0) , π1PU |H (u|H1)

}
=

∑
u

p (u)
(
1−max

{
PH|U (H0|u) , PH|U (H1|u)

})
=

∑
u

p (u)
(
min

{
1− PH|U (H0|u) , 1− PH|U (H1|u)

})
=

∑
u

min
{
π0PU|H (u|H0) , π1PU |H (u|H1)

}
.

(22)

Since the Bayes’ error probability in (22) minimizes the average probability
of error, bounding it tightly is crucial in hypothesis testing [78]. To upper
bound the Bayes’ error in (22), let us replace the min function by the smooth
power function: namely for a, b > 0, we have

min{a, b} ≤ aαb1−α, ∀α ∈ (0, 1).

Therefore we obtain the following Chernoff bound for the error probability
[79]

PE ≤ πα
0 π

1−α
1

∑
u

(
PU |H (u|H0)

)α (
PU |H (u|H1)

)1−α

≤
∑
u

(
PU |H (u|H0)

)α (
PU |H (u|H1)

)1−α
,

(23)

which follows from π0, π1 ≤ 1 and holds for any α ∈ (0, 1). Since (23) is true
for any α ∈ (0, 1) we can take the minimum of it to achieve the Chernoff
information bound as follows

PE ≤ e−Cr(γ), (24)
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where Cr(γ) is the Chernoff information at the input of the FC for the given

rate allocation r � r1, . . . , rN and sensor rules γ � γ1, . . . , γN ,

Cr(γ) � − log min
α∈(0,1)

∑
u

(
PU |H (u|H0)

)α (
PU |H (u|H1)

)1−α
. (25)

The inequality in (24) suggests maximizing the Chernoff information in
place of minimizing the error probability as a performance measure in the
design of sensor networks, with the cost of solving an optimization prob-
lem. The Chernoff information was used as the performance measure in
hypothesis testing problems, see [21, 80–82]. Lee and Sung [80] considered
the performance of mismatched likelihood ratio detectors for binary hy-
pothesis testing problems. Using large deviation theory, they have derived
the maximum Bayesian error exponent for a mismatched detector and have
shown that the maximum Bayesian error exponent is given by the Chernoff
information. In [81], Fabeck and Mathar designed the decision rule at the
sensors by locally optimizing the Chernoff information. In [82], Chamber-
land and Veeravalli studied the performance of power constrained wireless
sensor networks in a parallel topology when the channels between the sen-
sors and the FC are subject to additive noise, while in [21], they studied the
structure of an optimal network of sensors arranged in a MAC configuration
which is subject to a sum rate constraint.

While the Chernoff information provides a tight upper bound for the
probability of error at the FC, for many applications and for hypothesis-
conditional distributions finding the optimal parameter α can be mathemat-
ically intractable. In these situations a relatively looser upper bound can be
used. By setting α = 0.5 in (25) we obtain the Bhattacharyya distance [63]
as

Br(γ) � − log
∑
u

√
PU|H (u|H0)PU |H (u|H1) . (26)

It immediately follows that

Br(γ) ≤ Cr(γ)
as the Bhattacharyya distance can be obtained from (25) with α = 0.5 in
place of optimization over α as noted above. The Bhattacharyya distance
also provides an upper bound on the Bayesian error probability of the MAP
detector according to [83]

PE ≤ √
π0π1e

−Br(γ) (27)

which can be found from (23). As mentioned above, the main reason for us-
ing the Bhattacharyya distance in place of the Chernoff information is that
it will increase the tractability of the problem by dropping the optimiza-
tion over α. Furthermore, considering the Bhattacharyya distance instead
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of the Chernoff information (in terms of mathematical tractability) has the
following benefit: the Bhattacharyya distance of a network of sensors, ar-
ranged in parallel or MAC and with independent observations, is equal to
the sum of the Bhattacharyya distances of individual sensors. Thus, a net-
work which maximizes the Bhattacharyya distance at the FC is a network
with individually optimized sensors.

It should however be noted that the Bhattacharyya distance has been
frequently used in the past as a performance measure in the design of dis-
tributed detection systems [17, 52]. It will be used in this thesis for the
problem of designing decision rules at the sensors and allocating rates to
the sensors arranged in MAC configuration [62]. The Bhattacharyya dis-
tance will also be used as the performance measure for the design of sensors
in a network of energy harvesting sensors [84,85], as we shall discuss in the
next section.

1.5 Energy constrained wireless sensor networks

In wireless sensor networks, a large number of sensors with small batteries
and limited lifetimes are often used. Their limited lifetimes are a major
limitation of using them [86]. In other words, the sensors work as long as
their batteries last and this implies that the network itself also has a limited
lifetime. To increase the lifetime of battery-powered sensor networks many
solutions have been proposed [87–92], e.g., by choosing the best modulation
strategy [89], or by exploiting power-saving modes (sleep/listen) periodically
[91]. However, in all of these methods the aim is to find an energy usage
strategy to maximize the lifetime of a network, and therefore the lifetime
remains bounded and finite. An alternative way of dealing with this problem
is to use energy harvesting devices at the sensor nodes. An energy harvesting
device is capable of acquiring energy from nature or from man-made sources
[93–95].

Energy harvesting technologies provide a promising future for wireless
sensor networks, such as self sustainability and an effectively perpetual net-
work lifetime which is not limited by the sensor battery’s lifetime [95–97].
While acquiring energy from the environment makes it possible to deploy
wireless sensor networks in situations which are impossible using conven-
tional battery-powered sensors, it poses new challenges related to the man-
agement of the harvested energy. These new challenges are due to the
randomness of the amount of energy available at a sensor, since the source
of energy might not be available at all times that we may want to use the
sensor nodes [96, 98–106].

Figure 5 shows a network of energy harvesting sensors, where sensors
are arranged in parallel. Each sensor Sn, n = 1, . . . , N during time interval
t makes an observation xn,t and sends a message un,t towards the FC. In
this configuration the output message of the sensor depends not only on its



1. INTRODUCTION 17

Fusion Center

S1 · · · · · · SNSn

Phenomenon Ht ∈ H

u1,t un,t uN,t

Ĥt
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Figure 5: Decentralized hypothesis testing scheme in a parallel
network of energy harvesting sensors.

observation, but also on its battery charge, i.e.,

γn(xn,t, bn,t) = un,t ,

where bn,t denotes the battery charge of sensor Sn at transmission time t. A
central problem in this configuration is how to design the sensors’ decision
rules in such a way that a performance measure is optimized. However,
this problem is more challenging than the conventional problem of design-
ing sensors’ decision rules in a parallel network, due to the randomness of
the battery charges. Note that in this situation, energy (denoted by en,t)
arrives to the sensor according to a random process and in general the FC
is not aware of the battery charges. To the best of our knowledge, the prob-
lem of decentralized hypothesis testing using energy harvesting sensors has
not been considered before and in [84,85] we have considered this problem.
Concretely, in these works, we have formulated a decentralized detection
problem with system costs due to the random behavior of the energy avail-
able at the sensors and we have shown how the problem formulation changes
(compared to the unconstrained case) when we consider the energy features
in the problem of designing decision rules at the sensors in the network.
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2 Our contributions

In this section we discuss our contributions to the problem of decentralized
hypothesis testing in wireless sensor networks. In the first part, we shall
consider the problem of designing decision rules at the sensors and the
FC in different configurations. We have studied this problem in [74–76]
labeled as Papers A–C. In the second part, we shall consider the problem of
rate allocation in wireless sensor networks. We have studied this problem
in [62, 64] labeled as Papers D–E. Finally, we shall consider the problem
of decentralized detection in energy harvesting sensor networks. We have
studied this problem in [84, 85] labeled as Papers F–G. For each paper,
we will briefly discuss the system model and assumptions and present the
central results.

2.1 Problem of designing sensors’ decision functions

Paper A: Bayesian design of decentralized hypothesis testing un-
der communication constraints [74]
In this paper we have considered a binary hypothesis testing problem in the
parallel topology as in Figure 1, where the peripheral nodes observe a com-
mon phenomenon and send their possibly correlated observations towards
the FC via error-free but rate-constrained channels. The objective in this
paper is to design the sensor nodes’ decision rules γn, n = 1, . . . , N and the
FC decision rule γFC such that the Bayesian error probability PE at the FC
is minimized.

This problem was studied by Longo et al. [17], who considered each
sensor to be a scalar quantizer that satisfies the rate-constraints. They pro-
posed a cyclic person-by-person optimization algorithm to design the quan-
tizers. Longo et al. argued that the natural criterion of optimization—the
power of a Neyman-Pearson test—made the design procedure intractable.
They therefore proposed to instead maximize the Bhattacharyya distance
(26) between the conditional probability distributions under the two hy-
potheses.

The main contribution of our work was to show that, contrary to pre-
vious claims, it is in fact possible, within a person-by-person framework, to
minimize the probability of error directly, while having the same complexity
order as in the previous work by Longo et al. To this end, we have proposed
combining the idea of fine-grained observation-binning used in [17] with a
method for updating the hypothesis-dependent mass functions of the joint
index space (13).

The benefits of the proposed method are that: it takes into account
the a-priori probability of the hypotheses in the design procedure, and it
is applicable to general M -ary hypothesis testing problems and not only
binary hypothesis tests. Furthermore, the proposed method shows better
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Figure 6: Error probability performance of the designed networks
using different methods for different a-priori probabilities.

performance in terms of both the receiver operating characteristic (ROC)
and the error probability. To exemplify these results, we have considered a
network of N = 2 sensors with the following observation model:

H0 :

[
x1

x2

]
=

[
n1

n2

]
,

H1 :

[
x1

x2

]
=

[
a
−a

]
+

[
n1

n2

]
,

(28)

where n =

[
n1

n2

]
is a zero-mean Gaussian vector of covariance matrix

Σ =

(
σ2 rσ2

rσ2 σ2

)
,

where r = 0.9 is the spatial correlation coefficient. As in [17], we have
assumed that per channel signal-to-noise ratio (E/σ2) is −5 dB and channel
rates are the same, i.e., r1 = r2. We divided the interval [−4,+4] (containing
0.9997 of the total probability mass for each DM) into 256 bins, and designed
the sensors for various values of a-priori probabilities and channel rates
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Figure 7: The complete ROC curve achievable using the proposed
design method, Longo et al.’s method, and the optimal centralized
design.

(in bits/sample). Figure 6 shows the error probability performance of the
sensor network designed using the proposed method and using Longo et al.’s
method, and Figure 7 illustrates the achievable ROC curves for both design
methods. Note that the close relation between the error probability and the
ROC makes it possible to compare the results of the proposed method with
those of Longo et al.’s in terms of the ROC curve as well. These figures
imply that although the proposed design method is based on the Bayesian
error probability, it also outperforms the previous method in terms of the
ROC curve.

To see how the two methods work, let us consider the decision regions
found using these methods in Figure 8, when π0 = 0.5 and with the same
parameters as before, i.e., r = 0.9, r1 = r2 = 2 and the same observation
model as in (28) and for a = 0.5. In this figure, the decision boundaries for
each sensor are shown by solid blue lines and the final decision by the FC
(which uses the optimal MAP rule) in each region is shown by (red colored)
zeros and ones, where zero and one correspond to H0 and H1, respectively.
We further show sample values p(x1, x2) by cyan and their conditional mean
values by solid black circles. Also the corresponding decision regions using
likelihood test [107] (for centralized design) are shown by dashed lines in
both subfigures. As we can see, the decision regions in the proposed method
are such that more likely observations are classified correctly, while less likely
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Figure 8: Decision regions resulting from our method (top) and
Longo et al.’s method (bottom) for a sample data. Decision
boundary using likelihood test for centralized design is also shown
(dashed).

observations may not be classified correctly. In other words, the proposed
method performs better in the detection of more probable observations,
while it performs worse in the detection of less likely observations, which
results in a better overall performance for the system.

Consider again the decision regions in Figure 8. We can see that the
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designed sensors using Longo et al.’s method are monotone quantizers of
rate 2: each axis is divided into 22 non-overlapping intervals, each interval
corresponds to a sensor output message from the set {0, 1, 2, 3}, while the
designed sensors using the proposed method are not monotone quantizers.
Though it is known that monotone quantizers are often optimal decision
functions at the sensors with conditionally independent observations, they
are not proved to be in general optimal decision functions when the sensors
make correlated observations. This can also be seen from our simulation
results in Figure 8.

Paper B: Bayesian design of tandem networks for distributed de-
tection with multi-bit sensor decisions [75]
In this paper we have considered the problem of decentralized hypothesis
testing where several peripheral nodes are arranged in tandem as in Fig-
ure 3. We have assumed that the observations at the sensors, conditioned
on the true hypothesis, are independent. Furthermore, the channels be-
tween every two successive sensors are error-free but rate-constrained. The
objective in this paper is to design the sensor nodes’ decision rules such that
the error probability at the FC (the last sensor) is minimized.

This problem was previously considered in [27, 68] for a binary hypoth-
esis test, where the sensors were able to send one-bit messages. Though
these studies then were extended to M -ary hypothesis testing problems,
the output of each sensor was constrained to be from an M -valued message
set. In this paper we have proposed a cyclic numerical design algorithm for
the design of sensors in a person-by-person methodology, where the num-
ber of communicated messages was not necessarily equal to the number of
hypotheses.

Our main contribution is to introduce a numerical methodology for de-
signing sensors’ decision rules in a tandem network, where each sensor is
capable of sending arbitrary-valued messages. We have designed the sensors
in such a way that the final error probability of the network is minimized.
We have proposed a modified person-by-person optimization in which each
sensor’s decision rule is jointly designed with the FC (the last sensor). In
other words, we have designed each sensor under the assumption that the
FC always employs the optimal MAP rule to its inputs.

First we have shown that the design of each sensor Sn, n = 1, . . . , N − 1
in this framework is equivalent to the design of sensor S in a network labeled
as a restricted network, as shown in Figure 9, where SN in both networks
uses the MAP rule. This means that regardless of the network size, each
sensor in a tandem network can be designed using the restricted model with
a fixed computational burden.
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S P (uN−1|u,H) SN

Phenomenon H

u uN−1 uN

y H yN

Figure 9: Restricted model used for the design of sensors in tandem
networks.

In other words, in the proposed person-by-person methodology (where
a sensor is designed together with the FC while all other sensors are kept
fixed), the design of the sensor is equivalent to the design of sensor S in
the restricted model. We have then found parameters of the restricted
model according to the structure of the network: P (uN−1|u,H) was found
according to the other sensors’ (fixed) decision rules, y was found according
to the sensor observation and the input from its predecessor, except for the
first sensor in the network, while yN had the same distribution as the FC
observation.

Next, we have proposed a computationally efficient algorithm for the
design of sensor S in the restricted model. We have further found the
overall complexity of the proposed algorithm for the design of sensors in a
tandem network.

In order to illustrate the benefits of the proposed method, we have com-
pared the performance of designed networks using our proposed method
with those of Cover [68] and Swaszek [27] for binary hypothesis testing.
Figure 10 shows the performance of networks with different numbers of
sensors designed using different methods. We assumed each real valued ob-
servation consists of an antipodal signal ±a in unit-variance additive white
Gaussian noise, i.e.,

H0 : xi = −a+ ni ,

H1 : xi = +a+ ni .

We also defined the per channel SNR for the binary hypothesis test as E �
|a|2, and assumed that the hypotheses are equally likely (π0 = π1 = 0.5).

As noted before, the proposed method can be applied to general M -ary
hypothesis testing problems. To see this, we considered a ternary hypothesis
testing problem in which each real valued observation consists of a known
signal sm,m = 0, 1, 2 in unit variance additive white Gaussian noise. We
have assumed an equal distance signal set in the interval [−a, a], i.e., the
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Figure 10: Error probability performance of tandem networks with
different channel rates for a binary hypothesis testing problem as
a function of number of sensors. Error probability of an uncon-
strained tandem network and existing methods for rate-one chan-
nels are also shown.

test signal set was {−a, 0, a}. The observation model at each sensor was

Hm : xi = sm + ni, m = 0, 1, 2.

Similar to the binary hypothesis test, we assumed equally likely hypotheses
and defined the SNR as E � |a|2. Figure 11 shows the performance of
networks with different numbers of sensors designed using the proposed
method for different channel rates. As we can see from Figure 10 and
Figure 11, networks with multi-bit (soft) message sensors outperform those
of binary (hard) message sensors and by increasing the channel rates (length
of transmitted messages) the performance of the networks improves.
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Figure 11: Error probability performance of tandem networks with
different channel rates for different numbers of sensors with an
unconstrained tandem network, for a ternary hypothesis testing
problem.

Paper C: A general method for the design of tree networks under
communication constraints [76]
This paper mainly generalizes the results in [75]. In this paper, we have
considered a distributed detection problem where several nodes are arranged
in an arbitrary tree topology. Communication channels between the sensors
are again rate-constrained but error-free and observations at the sensors are
conditionally independent.

We have proposed a cyclic design procedure using the expected minimum
error probability by adopting a person-by-personmethodology for the design
of sensors’ decision rules in the network. Concretely, we design the decision
rule of each sensor jointly together with the FC while all the other sensors
in the network are kept fixed. In order to obtain a tractable solution during
the design of a sensor, say Sn, all other sensors were modeled using a Markov
chain. We have further shown that the design of sensor Sn jointly with the
FC is analogous to the design of a special case of a network with only two
nodes, which is again referred to as the restricted model. The restricted
model for the design of sensors in a tree network is shown in Figure 12.
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k P (w|z,H) FC

P (y|H) P (v|H)
Phenomenon

H

z w

y v

Figure 12: Restricted model for the design of nodes in tree topol-
ogy.

Next, we have shown how, according to the structure of the problem and
Markovian properties of sensors in a network, parameters of the restricted
model can be found in a computationally efficient way.

As an example consider the tree network shown in Figure 13. Let us
assume only sensors S1, . . . , S4 make observations (labeled as leaves) and
sensors S5, S6 are relays that summarize their received messages from their
neighboring nodes and send their messages towards the FC. We also assume
that the observation model at each leaf consists of an antipodal signal ±a
in additive unit-variance white Gaussian noise as

H0 : xi = −a+ ni ,

H1 : xi = +a+ ni .

We define the per channel SNR for a binary hypothesis test again as E �
|a|2, and we assume that the hypotheses are equally likely (π0 = π1 = 0.5).
We further assume leaf-to-relay and relay-to-FC channels have the same
rate r. Using the proposed algorithm, we have designed the tree network
for different rates r. In Figure 14, error probability performance of the

FC

S5

S1 S2

S6

S4S3

uN

Figure 13: An example of a tree network.
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Figure 14: Error probability performance of a designed tree net-
work shown in Figure 13 for different channel rates.

designed tree network for different rates is shown. As expected, increasing
channel rates results in better error probability performance.
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2.2 Problem of rate allocation in wireless sensor net-

works

Paper D: Rate allocation for decentralized detection in wireless
sensor networks [64]
In this paper we have considered the problem of rate allocation to sensors
arranged as in Figure 2, in which the sensors make noisy observations of
a binary phenomenon and send a quantized information towards a FC to
make the final decision. The sensors send their messages through a MAC
channel which is modeled as a sum-rate constrained channel, with capacity
R.

Using the Chernoff information (25), Chamberland and Veeravalli [21]
studied the structure of an optimal network model in terms of the optimal
number of sensors and their rate allocation. They proved that, if for a
given observation model there exists a (one-bit) quantization rule which
leads to the transfer of at least half of the Chernoff information contained
in each raw observation, an optimal strategy is to employ N = R sensors
each quantizing its observation to a one-bit message. Although their result
greatly simplifies the design of sensors in a MAC network, it suffers from the
constraining assumption of having an unlimited number of active sensors.
In fact, due to cost and space constraints, it may not be feasible to have
N = R sensors in a network.

In this paper we have addressed the problem of finding an optimal rate
allocation r when the total number of active sensors N is fixed a-priori.
We assumed R = mN , where m is a positive integer. Using the Chernoff
information at the FC as a performance measure, we have found conditions
under which uniform rate allocation to the sensors in the network is an
optimal rate allocation. These conditions are captured in Theorem 1 of the
paper and is restated as follows:

Theorem: Given a sensor design method, if for a single sensor Sn the re-
sulting Chernoff information Crn is a discrete concave function of rate rn,
a uniform rate allocation across sensors is optimal.

As stated above, the optimality of the uniform rate allocation in the
network relies on the concavity of the Chernoff information of the sensor
design method. In order to show the benefits of the results, we have explored
this point numerically for a couple of sensor design methods. First, we have
considered Benitz and Bucklew’s [54] method for the design of a sensor
rule (or quantization rule) in detection with i.i.d. observations. When the
observation model at any sensor consists of an antipodal signal ±a in an
additive unit-variance white Gaussian noise, or

H0 : xi = −a+ ni ,

H1 : xi = +a+ ni ,
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Figure 15: Chernoff information of a single sensor designed using
Benitz and Bucklew’s method and using the numerical method for
different SNRs, E .

we have proved, at high rates, the concavity condition holds. Also, using
simulation results we have shown that the Chernoff information of a sensor
designed using Benitz and Bucklew’s method is a concave function of its
rate. Then, we have concluded that for a network of sensors whose decision
rules are designed using Benitz and Bucklew’s method, an optimal rate
allocation to the sensors is a uniform rate allocation.

Next, we have proposed a numerical method for the design of a sen-
sor through a numerical optimization. In the proposed method, for a rate-r
quantizer, the real interval was divided into 2r non-overlapping intervals ran-
domly, where each interval corresponds to an output message. Then, in an
iterative fashion, the intervals are modified (in a person-by-person method-
ology) to maximize the Chernoff information, until a stopping criterion was
satisfied. Our simulation results show that the Chernoff information re-
sulting from the proposed numerical method is also a concave function of
sensor rate. Figure 15 illustrates resulting Chernoff information curves of
sensors whose decision rules are designed using the aforementioned methods
for different SNRs (E = |a|2). As we can see from this figure, the Chernoff
information resulting from both methods is a discrete concave function of
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Figure 16: Error probability performance of a network of N = 6
sensors for different rate allocation schemes.

rate.

According to concavity of the Chernoff information, we can conclude
that for a network of N sensors, where the sensors share a common MAC
channel with sum rate capacity R (where R divides N), an optimal rate
allocation to the sensors is a uniform rate allocation. To exemplify this, we
have considered a network of N = 6 sensors and sum rate capacity R = 12
and compared their performance in terms of error probability at the FC
(note that the FC applies the MAP rule to make the final decision). It
can be observed from Figure 16 that the uniform rate allocation results in
the best error probability performance, which is consistent with the results
obtained using the Chernoff information.

In this paper, we have found sufficient conditions for the optimality
of uniform rate allocation in a decentralized detection network. We have
numerically verified that these conditions hold true for some sensor decision
rule design methods. However, it is hard to stringently prove the required
concavity property for Chernoff information. This difficulty arises mainly
because of the optimization problem over parameter α in the definition of
the Chernoff information. In Paper E, using the Bhattacharyya distance,
we have generalized the results.
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Paper E: Optimality of rate balancing in wireless sensor networks
[62]
This paper generalizes the results in Paper D, in which we have considered
the problem of rate allocation for decentralized detection in a network of
sensors arranged as in Figure 2. In this configuration, the sensors share a
MAC channel to send their observations towards the FC. The MAC channel
is modeled as a sum rate constrained channel of capacity R bits per unit
time.

This problem was previously studied in [21] by Chamberland and Veer-
avalli, where they argued that when an unbounded number of sensors with
i.i.d. observations compete for rates under sum rate constraints at the input
of the FC, it is often optimal to use as many sensors as possible and let
each sensor communicate with the FC over a one bit link. They proposed
the Chernoff information at the input of the FC as a measure of optimality
given the intractability of the Bayesian probability of error. They proved
that if there exists a one bit sensor rule with a Chernoff information of the
sensor output that is at least half of the Chernoff information of the original
observation, having as many one bit sensors as possible is optimal. They
also proved that such a sensor rule exists when the observations are drawn
from particular Gaussian and exponential observation models.

Our contribution is, in the same vein, to study when equal rate alloca-
tion or rate balancing is an optimal solution for a fixed number of sensors
operating in a network under a common sum rate constraint. Concretely,
we have driven a sufficient condition for when rate balancing is an optimal
strategy in the sense that one can, without loss of optimality, assume that
rates of any two sensors differ by at most one bit.

One problem with extending the results in Paper D to a general case
(when R does not divide N) is that parameter α which optimizes the Cher-
noff information of a rate r1 sensor is not necessarily equal to that of a
sensor of rate r2 for r1 �= r2. In order to circumvent this difficulty we have
instead of using the Chernoff information, used the Bhattacharyya distance,
as the performance measure of the network. The Bhattacharyya distance
has another benefit over the Chernoff information which is captured in the
following lemma:

Lemma: The Bhattacharyya distance of a network of sensors, arranged as
in Figure 2 and with independent observations, is equal to the sum of the
Bhattacharyya distances of individual sensors, i.e.,

Br(γ) =

N∑
n=1

Brn(γn),

where Brn(γn) is the Bhattacharyya distance of a sensor of rate rn and
decision rule γn.
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This lemma implies that Bhattacharyya distances of individual sensors
completely describe the Bhattacharyya distance of the network, and a net-
work which optimizes the Bhattacharyya distance is a network with indi-
vidually optimized sensors. Then by defining B�

rn as the maximum Bhat-
tacharyya distance of a sensor of rate rn, we have found the following the-
orem for an optimal rate allocation:

Theorem: If, for a given observation distribution at the sensors, B�
rn is a

discrete concave function in the rate rn, then rate balancing is an optimal
rate allocation.

Although this theorem provides sufficient conditions for the optimality
of rate balancing, it however is difficult to analytically characterize B�

rn in
general. To circumvent this difficulty and obtain a mathematically tractable
criterion, we have found a sufficient condition under which B�

rn is a concave
function of rate rn, and this sufficient condition is described in the following
remark:

Remark: Conditioned on an observation X being in any given interval of
the real line (or an interval of an optimum monotone quantizer), if there is
a one bit quantization of X with a Bhattacharyya distance more than half
of the Bhattacharyya distance of X itself, then having rate balanced sensors
is optimal.

This is in agreement with Chamberland and Veeravalli’s result. The
conditioning on X being in an interval of an optimum monotone quantizer,
is in part what generalizes the result to higher rates. However, verifying
this condition is considerably harder than verifying the condition of [21] as
it needs to be established for all possible optimal intervals for any arbitrary
rate. Nevertheless, we proceed to discuss the Laplacian and the Gaussian
observation models where the conditions of the remark can be established
in practice. Then we have shown that rate balancing is an optimal strat-
egy when the observations at the sensors are distributed as Gaussian or
Laplacian.

Our next contribution was then to show how the performance of differ-
ent rate allocation schemes can be partially compared using majorization
theory [108] and also the concavity properties of the Bhattacharyya dis-
tance. Concretely, we have shown that the optimal Bhattacharyya distance
of a network of sensors is Schur-concave and consequently, if a rate allo-
cation vector is majorized by another rate allocation vector, it has higher
Bhattacharyya distance. This is in agreement with our previous result in the
sense that the rate allocation vector of a balanced rate network is majorized
by any other rate allocation vector. Therefore a balanced rate network out-
performs any other network with the same size N and the same sum rate
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Figure 17: Error probability performance of designed sensor net-
works with different rate allocation schemes and Gaussian obser-
vations as a function of channels SNR E , for N = 5 sensors and
R = 12 bits per unit time.

constraint R.
Figure 17 illustrates error probability performance of designed networks

of N = 5 sensors with different rate allocations, where sum rate capacity of
the networks is R = 12 bits per unit time. The observation model at any
sensor consists of an antipodal signal ±a in an additive unit-variance white
Gaussian noise, or

H0 : xi = −a+ ni ,

H1 : xi = +a+ ni .

We observe from this figure that the balanced rate allocation (denoted by
r1) results in the best error probability performance, and the second best
performance is for rate allocation denoted by r2 which is majorized by other
rate allocation schemes.

Figure 18 shows the evolution of error probability performance of dif-
ferent networks with the relation R = 2N with different rate allocation
schemes, as a function of the number of sensors N . In the first scheme,
denoted by [2, 2, . . . , 2, 2], all sensors have the same rate 2, in the second
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Figure 18: Evolution of error probability performance of designed
sensor networks of R = 2N bits per unit time with different rate
allocation schemes and Gaussian observations with SNR E = 0 dB,
as a function of number of sensors N .

scheme, denoted by [3, 1, . . . , 3, 1], half of the sensors have rate 3 while the
other half have rate 1, finally in the third scheme, denoted by [4, 0, . . . , 4, 0],
only half of the sensors are active with rate 4. Note that all the three
schemes satisfy the rate constraint R = 2N . As we observe from the pre-
sented results in Figure 18, the uniform rate allocation not only has the best
error probability performance for any N , it also has the best error exponent,
i.e., decay rate as a function of total number of sensors; this was predicted
by superior Bhattacharyya distance previously.
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2.3 Problem of decentralized detection in energy har-

vesting sensor networks

Paper F: Decentralized detection in energy harvesting wireless
sensor networks [85]
In this paper and Paper G, we have considered decentralized detection net-
works which use energy harvesting peripheral nodes. The sensors are ar-
ranged in parallel as in Figure 5 and make noisy observations of a time
varying phenomenon. Each sensor then sends a message towards a FC
about the present phenomenon and the FC according to aggregate received
messages makes the final decision about the present hypothesis at each time
instance t. We have assumed that each sensor is an energy harvesting device
equipped with a battery and is capable of harvesting all the energy it needs
to communicate from its environment.

Our contribution in this paper is to formulate and analyze a decentral-
ized binary hypothesis testing problem with energy harvesting sensors that
are allowed to form a long-term energy usage policy. Our analysis is based
on a queuing-theoretic model for the battery and we have assumed that the
battery has infinite capacity (storage). This problem is structurally simi-
lar to the binary decentralized detection problem over a parallel network
where each sensor is capable of communicating with the FC using a one bit
link. We have considered the optimization of the Bhattacharyya distance
between the two hypotheses at the input of the FC. We have shown how
the Bhattacharyya distance jointly depends on the sensor transmission rule
and the battery depletion probability. We have also found a closed-form
expression for the steady state depletion probability of an infinite capacity
battery sensor as

p0 =

{
0 pe ≥ q ,

1− pe

q Otherwise ,
(29)

where pe is related to energy arrival features and q is a function of sensor
decision rules. Concretely, q is the probability of sending a positive message
in an on-off keying (OOK) strategy. In order to find the expression above
for the depletion probability of the sensor, we modeled the sensor battery
using a birth-death process [109]. We have shown the usefulness of this
result by showing how to optimize the sensor transmission rule.

Figure 19 shows the error probability performance of a network of N = 4
energy harvesting sensors with two types of decision rules at the sensors:
traditional decision rules optimized for unconstrained sensors, and adapted
decision rules for energy constrained sensors. According to this figure, using
adapted decision rules at the sensors results in better a performance in
terms of the error probability. Note that each observation at the sensors is
either from a Rayleigh distribution of unit scale parameter or from a Rician
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Figure 19: Error probability performance of a network of N = 4
energy harvesting sensors while using a traditional decision rule γ�

u

and an adapted decision rule γ�, for different (π1, pe).

distribution of unit scale parameter and noncentrality parameter s, i.e.,

fX|Ht
(x|0) = xe−

x2

2

fX|Ht
(x|1) = xe−

x2+s2

2 I0(xs) ,
(30)

where I0(z) is the modified Bessel function of the first kind with order zero.
This observation model corresponds to an energy harvesting sensor applied
to detect the presence of a known signal in Gaussian noise by received power;
a relevant case for low complexity sensors in wireless sensor networks.

Paper G: Decentralized hypothesis testing in energy harvesting
wireless sensor networks [84]
In this paper we have considered decentralized detection networks which use
energy harvesting peripheral nodes. The sensors are arranged in parallel as
in Figure 5 and make noisy observations of a time varying phenomenon
Ht. Each sensor then sends a message towards a FC about the present
phenomenon and the FC according to aggregate received messages makes
the final decision about the present hypothesis at each time instance t. We
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Figure 20: Binary asymmetric channels between sensors and the
FC in Figure 5.

have assumed that each sensor is an energy harvesting device equipped with
a battery and is capable of harvesting all the energy it needs to communicate
from its environment.

This paper generalizes our results in Paper F in the sense that in contrast
to the previous work, it considers the case where sensor-to-FC channels are
not error-free, and it generalizes the results in Paper F to limited-capacity
batteries. In other words, in this work we have assumed the battery is
capable of saving at most K energy packets, for a positive integer K.

As in previous studies in energy harvesting networks [96, 98–106], we
assumed that the energy arrives in packets and at each time interval the
sensors are capable of harvesting at most one packet of energy. Also we
assumed only sending a positive message costs a packet of energy while
a negative message is conveyed through non-transmission with no cost in
energy.

We have considered erroneous communication channels between sensors
and the FC. We assumed each sensor-to-FC link is a binary asymmetric
channel (BAC) shown in Figure 20. This is also a relevant model for fading
channels when the FC uses an energy detector to detect its input yn,t.

Our contribution in this paper is to formulate the problem using the
Bhattacharyya distance at the FC and to propose a numerical method for
the design of decision rules (likelihood ratio test) at the sensors. We have
shown how the Bhattacharyya distance depends on different parameters in
the network, e.g., depletion probability of the battery and communication
channel parameters. Concretely, we have found a closed-form expression
for the depletion probability at a sensor of battery size K which generalizes
(29).

Further, we have found an upper bound for the Bhattacharyya distance
resulting from a single sensor at the FC. In the following theorem we restate
this result:

Theorem: Consider a K-slot-battery energy harvesting sensor S. Assume
that the probability of harvesting energy at each time interval is pe, and
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Figure 21: Bhattacharyya distance of an energy harvesting sensor
as a function of battery capacityK, for noisy and noiseless commu-
nication channels and for π1 = 0.2, pe = 0.15, and corresponding
upper bounds.

the a-priori probability of hypothesis Ht = 1 is π1 and the sensor-to-FC
channels are BAC channels as in Figure 20. The BD of this sensor at the
input of the FC can not exceed

B � − log
[√

ε0 (1− ε1 − p0δ) +
√
(1 − ε0) (ε1 + p0δ) ,

where

p0 =

[
1 +

1

1− π1

K∑
k=1

(
pe(1− π1)

π1(1− pe)

)k
]−1

,

and
δ = 1− ε0 − ε1.

Note that according to (27), upper bounded Bhattacharrya distance can
be translated to lower bounded error probability, which means the error
probability is not zero-approaching while the corresponding Bhattacharyya
distance is upper bounded.
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Figure 22: Error probability performance of networks with N = 4
energy harvesting sensors with different battery capacities, when
π1 = 0.2 and pe = 0.15, and noisy communication channels with
ε0 = 0.1 and ε1 = 0.2.

Figure 21 shows the Bhattacharyya distance of an energy harvesting
sensor as a function of battery size K, and corresponding upper bounds
according to the theorem above, where the observation model at the sensor
is according to (30), for s = 5.

In order to show the benefit of our results, in Figure 21 we show the
error probability performance of a network of N = 4 energy harvesting
sensors, designed using the proposed formulation (γ�) and the traditional
formulation (γ�

u). We observe from this figure that the proposed formulation
results in better error probability performance. This result is parallel with
our previous results based on the Bhattacharyya distance.



40 Summary

3 Conclusions

This dissertation aims to push the frontier of knowledge relating to de-
centralized detection when the network is subject to some communication
and/or energy constraints. Specifically, it formulates decentralized detection
problems and presents numerical algorithms and analytical results relating
to the optimal design of decision rules at the sensors in a network.

This dissertation mainly examines the Bayesian design of decision rules
at the sensors, by minimizing the Bayes’ misclassification error (Paper A,
Paper B, and Paper C). When direct use of the error probability is not
tractable, it invokes dissimilarity measures like the Chernoff information
(Paper D) and the Bhattacharyya distance (Paper E, Paper F, and Paper G)
to study the structure of an optimal decentralized detection network.

It was effectively established that applying the PBP methodology for the
design of decision rules at sensors, arranged in an arbitrary topology and
making conditionally independent observations, is analogous to the design
of decision rules of sensors in an equivalent network of two sensors. Though
this result leads to a computationally efficient way of designing the sensor’s
decision rules in a network, it is however not completely known how this
result can be generalized to the case where the sensors make correlated
observations. To tackle the problem of designing decision rules at the sensors
with correlated observations, the dissertation proposes a PBP optimization
method for the design of decision rules of sensors arranged in a parallel
topology and making correlated observations, by directly minimizing the
probability of making erroneous decisions at the FC.

An analytical proof was given that shows the optimality of rate balanc-
ing in decentralized detection networks. By maximizing the Bhattacharyya
distance for a network of sensors, arranged in MAC and making i.i.d. obser-
vations, the dissertation proves the optimality of having equal rate sensors.
This extends the previous significant asymptotic result on the optimality
of allocating single bit rates to the sensors. An optimal rate allocation
strategy for the case where sensors have non-identical observation models
remains to be found, but using a similar approach (minimizing the error ex-
ponent in place of the error probability) seems likely to be more challenging
in this case. One reason might be (as we have seen in Paper A) because
of sub-optimality of monotone quantizers for correlated observations. This
problem has not yet been addressed: even the structure of an asymptoti-
cally optimal network is not known. Furthermore, when the observations
at the sensors are correlated, these results do not hold anymore and a more
in-depth analysis for finding an optimal rate allocation strategy is needed.
Another possible extension could be extending these results to composite
hypothesis testing problems.

Further, this dissertation has formulated a decentralized detection prob-
lem with system costs due to the random behavior of energy available at the
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sensors. Concretely, decentralized detection, in which the sensors are en-
ergy harvesting devices and are able to acquire all the energy they need from
the environment, was considered. This formulation is based on the Bhat-
tacharyya distance and generalizes the previous formulations. The analysis
in this dissertation provides the first steps in the area of decentralized de-
tection in the presence of energy harvesting sensors and numerous in-depth
analyses of these type of networks are needed. In our analysis, we as-
sumed an independent observation model and uncorrelated energy arrival
processes at different sensors. Further study could take into account possi-
ble correlations between observations and the energy arrival processes. In
addition to that, a more in-depth study of such models could consider more
sophisticated decision-making rules at the sensors, i.e., energy-dependent-
threshold-tests at the sensors are examples of such decision rules. Another
possible extension to our work is to study the structure of optimal rate al-
location to the network of energy harvesting sensors arranged as in MAC.
Finally, in this dissertation, decentralized detection in energy harvesting
sensor networks, where the sensors are arranged in parallel, was considered,
while study of energy harvesting networks for arbitrary topologies remains
largely open.
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