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Abstract—We consider the problem of decentralized hypothesis
testing in a network of energy harvesting sensors, where sensors
make noisy observations of a phenomenon and send quantized
information about the phenomenon towards a fusion center. The
fusion center makes a decision about the present hypothesis
using the aggregate received data during a time interval. We
explicitly consider a scenario under which the messages are sent
through parallel access channels towards the fusion center. To
avoid limited lifetime issues, we assume each sensor is capable
of harvesting all the energy it needs for the communication from
the environment. Each sensor has an energy buffer (battery) to
save its harvested energy for use in other time intervals. Our
key contribution is to formulate the problem of decentralized
detection in a sensor network with energy harvesting devices. Our
analysis is based on a queuing-theoretic model for the battery
and we propose a sensor decision design method by considering
long term energy management at the sensors. We show how
the performance of the system changes for different battery
capacities. We then numerically show how our findings can be
used in the design of sensor networks with energy harvesting
sensors.

I. INTRODUCTION

Distributed detection problem formulations have tradition-
ally addressed detection in sensor networks by considering
network performance measures like error probability and re-
ceiver operating characteristic [1]. In these setups, spatially
separated sensors make observations of the same phenomenon
and send a summary of their observations towards a fusion
center (FC) through rate-constrained channels. Each sensor can
be viewed as a quantizer which quantizes its observation, and
according to the network arrangement, sends its output either
to another sensor or to the FC. In many applications, sensors
send their outputs to the FC through a multiple access channel
[2]–[4] or through parallel access channels, commonly known
as the parallel topology [5], [6]. A survey of early works on
decentralized hypothesis testing in wireless sensor networks
can be found in [7]–[9].

A large number of sensors with small batteries and limited
life-time are often used in wireless sensor networks. A major
limitation of these sensors is their finite lifetime. In other
words, the sensors work as long as their battery last and
this implies that also the network has a limited lifetime.
Many solutions to increase the lifetime of battery-powered
sensor nodes have been proposed, see [10]–[12] and references
therein. While in all of these methods the aim is to find an
energy usage strategy to maximize the lifetime of a network,
the lifetime remains bounded and finite. An alternative way of
dealing with this problem is to use energy harvesting devices

at the sensor nodes. An energy harvesting device is capable of
acquiring energy from nature or from man-made sources [13],
[14].

Energy harvesting technologies provide a promising future
for wireless sensor networks, such as self sustainability and an
effectively perpetual network lifetime which is not limited by
the sensor battery lifetime [14]–[16]. While acquiring energy
from the environment makes it possible to deploy wireless
sensor networks in situations which are impossible using
conventional battery-powered sensors, it poses new challenges
related to the management of the harvested energy. These
new challenges are due to the fact that the amount of energy
available at a sensor is random, since the source of energy
might not be available at all times we may want to use the
sensor nodes.

We address the problem of detection in networks of sensors
arranged in parallel, where each sensor is an energy harvesting
device. At each time t = 1, 2, . . . the sensors send a message
towards the FC about the state of the current hypothesis Ht and
the FC makes a decision about the hypothesis at that time. The
sensors communicate with the FC using energy asymmetric
on-off keying (OOK), as a low communication rate scheme
for distributed detection applications [17], where a positive
message can be sent at the cost of one unit of energy, and a
negative message is conveyed through a non-transmission at no
cost in energy [18], [19]. It was previously shown in [20] that
OOK is the most energy efficient modulation scheme under
Rayleigh fading non-coherent transmission, though we are
not primarily concerned with explicitly modeling the fading
channels between the sensors and the FC herein. We assume
that each sensor is equipped with an internal battery and is
allowed to use a long term energy conversion policy. We
assume the observations at the sensors are, conditioned on
the true hypothesis, independent and our goal is to design
the sensors’ transmission rules in such a way that the error
probability at each time instance t, at the FC, is minimized.
To this end, we use the Bhattacharyya distance between the
conditional distributions at the FC input, which has been
frequently used in the past as a performance measure in the
design of distributed detection systems [5], [21], [22].

Using the Bhattacharyya distance, essentially reduces the
joint design of decision rules at the sensors to the design
of decision rules at single sensors. Doing so may risk not
capturing all the aspects of the joint design of the decision
rules at peripheral sensors. However, due to the analytical
tractability that follows from this choice of design rule, the
Bhattacharyya distance has been frequently considered as a
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Fig. 1. Decentralized hypothesis testing scheme in a parallel network.

performance metric before in the literature [5].
The novelty of our work is in the formulation of a de-

centralized detection problem with system costs coupled to
the random behavior of the energy available at the sensors.
Concretely, we will find the depletion probability at the sensor
batteries, and evaluate the performance of the network for dif-
ferent battery capacities (buffer sizes). We will show how the
problem formulation changes (compared to the unconstrained
case) when we consider the energy features in the problem of
designing the sensors in the network.

Distributed inference using energy harvesting agents has
gained a lot of interest during the last years (see [23]–
[32] and references therein). In the context of distributed
estimation, Nayyar et al. studied the structure of optimal
communication scheduling [23], Zhao et al. [24], Huang et al.
[25], and Nourian et al. [26] studied optimal power allocation
schemes, while Li et al. [27] studied the performance of
an energy harvesting relay-aided cooperative network under
fading channels. Hong [28] considered the case where each
peripheral node sends a re-scaled version of its observation
towards a FC, if the required energy for that transmission is
available at the sensor; otherwise the sensor remains silent.
This non-transmission also conveys information regarding the
magnitude of the observed signal. Hua Liu et al. [29] con-
sidered adaptive quantization is distributed estimation using a
game-theoretic approach. Energy harvesting in relay systems
was also considered in [30], [31], where the nodes (or relays)
harvest the energy they need to transmit their amplified re-
ceived messages towards a receiver. Medepally and Mehta [31]
considered a relay selection scheme where if multiple active
relays are available, one of them is selected to transmit. In
the context of distributed detection, however, finding optimal
decision rules at the remote energy harvesting sensors is
largely open. In [32] we studied the structure of decision
rules at agents with infinite battery size and in error-free
communication channels, while in this paper we shall extend
the results to a more general case of erroneous communication
channels.
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Fig. 2. Binary asymmetric channels between sensors and the FC.

The outline of this paper is as follows. In Section II we
describe the structure of a parallel network and an energy
harvesting sensor, and formulate the problem. In Section III
we study the performance of an energy harvesting sensor with
different battery capacities. In Section IV we will illustrate
our results in the design of sensor networks by presenting
numerical simulations, and finally in Section V we conclude
the paper.

II. PRELIMINARIES

In this section we first present the system model. We then
define an energy harvesting sensor and formulate the problem
of designing the energy harvesting sensors in the network.
Limitations of the proposed system model, and their influence
on the obtained results, are further discussed in the concluding
remarks in Section V.

A. System Model

We consider a decentralized hypothesis testing problem
where N sensors S1, . . . , SN are arranged in parallel, accord-
ing to Fig. 1. During each time interval t (defined as [t, t+1))
each sensor Sn, n ∈ {1, . . . , N}, makes an observation
xn,t from the same phenomenon and sends a message un,t
towards the FC. Note that xn,t is just assumed to be an
element of an abstract space, so it could be a single scalar
measurement or a vector of measurements made during time
interval t at sensor Sn. We consider the case where different
observations at the sensor Sn, conditioned on the hypothesis,
are independent and identically distributed and Xn is a random
variable corresponding to observations at sensor Sn.

At each time interval the phenomenon Ht is modeled as
a random variable drawn from a binary set {0, 1} with a-
priori probabilities π0 and π1, respectively, and gives rise
to conditionally independent observations Xn ∈ Xn with
conditional distribution fXn|Ht

(xn,t|ht) for ht ∈ {0, 1} at the
sensors. In this paper, we assume that the present hypothesis
Ht changes over time in an i.i.d. fashion while it is fixed during
each time interval. We also assume that the sensors are allowed
to use a long term energy usage policy managed together with
an internal battery. In other words, we consider the long term
behavior of a sensor when its battery state operates in steady
state.

The communication channels between the sensors and the
FC are one-way links from the sensors, and there is no
communication between the sensor nodes. The sensors com-
municate with the FC using an energy asymmetric on-off
keying, where a positive message (labeled by “1”) is conveyed
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by transmission of a message and a negative message (labeled
by “0”) is conveyed by a non-transmission. We model the
channel between sensor Sn and the FC by the most general
binary discrete memoryless channel that is the so called binary
asymmetric channel (BAC) [33], where the 0-to-1 error occurs
with probability ε0 < 0.5 and the 1-to-0 error occurs with
probability ε1 < 0.5, as shown in Fig. 2, where yn,t ∈ {0, 1}
is the received message at the FC corresponding to the sensor
output un,t. When ε0 = ε1 the channel will be a binary
symmetric channel (BSC) and when ε0 = 0, the channel will
reduce to the Z-channel. It is important to stress that although
we consider the sensor-to-FC channel to be unreliable, we
also consider it to be fixed and not subject to alteration by
the sensors, i.e., the optimization of the sensor decision rules
does not encompass the design of the over the air transmission
protocol.

The BAC is also a relevant high-level model for the case
where each sensor-to-FC channel is a fading channel and the
FC (as a non-coherent receiver) uses an energy detector to
detect its input yn,t, i.e., where

yn,t =

{
1 En,t > Γ
0 Otherwise ,

where En,t is the energy received at the FC resulting from
sensor un,t and Γ is some positive threshold [18]. For OOK
transmission over a fading channel with an energy threshold
detector at the FC, it may be reasonable to assume that ε1 �
ε0, reflecting the belief that deep fades causing the received
energy to not meet the specified threshold are more likely than
noise induced fluctuations that push the decision metric over
the threshold boundary.

The overall problem considered is structurally similar to
the classical binary hypothesis testing problem over one bit
channels. In other words, each sensor Sn, given a realization
xn,t of Xn, computes a message un,t ∈ {0, 1} using its
decision function γn : X → {0, 1}, i.e.,

γn(xn,t) = un,t ,

and sends this message towards the FC. The FC, based on the
aggregate received BAC channel outputs y

t
, (y1,t, . . . , yN,t),

makes a decision ĥt ∈ {0, 1} (with corresponding random
variable Ĥt) about the present hypothesis at each time interval,
using its decision function γ0 : {0, 1}N → {0, 1}, i.e.,

γ0(y
t
) = ĥt .

Note that the FC does not directly have access to the sensor
outputs ut , (u1,t, . . . , uN,t), while it has access to the
corresponding BAC channel outputs y

t
.

The overall objective in this paper is to design the decision
functions γn, for n = 0, . . . , N , of the FC and the sensors
in such a way that some performance measure is optimized.
This problem was considered extensively in the classical
distributed detection literature [1], [5], [6] when energy is
always available at the sensors to send their messages and the
sensor-to-FC channels are error-free channels. However, the
problem of designing sensors’ decision functions when each
sensor is an energy harvesting device is largely open. We shall

herein consider the problem of designing decision functions of
the sensors when each sensor is an energy harvesting device.
In what follows, we first define our performance metric and
then, in Section II-B, we define an energy harvesting device.

Let Un be a random variable corresponding to output
messages of sensor Sn. Then, due to the independence of
observations, the conditional PMF associated with the message
vector U , (U1, . . . , UN ) can be obtained according to

PU |Ht
(u|ht) =

N∏
n=1

∫
x∈γ−1

n (un)

fXn|Ht
(x|ht) dx , (1)

where u , (u1, . . . , uN ), and where γ−1
n (un) is the set of

observations x ∈ X that satisfy γn(x) = un.

Let BTot,t be the total Bhattacharyya distance (BD) at the
FC at time instance t, and for given sensor decision functions
γ1, γ2, . . . , γN :

BTot,t = − log
∑

y
t
∈{0,1}N

√
PY |Ht

(y
t
|0)PY |Ht

(y
t
|1) ,

where Y , (Y1, . . . , YN ) and Yn is a random variable
corresponding to BAC channel output yn,t. The Bayesian error
probability PE,t , Pr

(
Ĥt 6= Ht

)
is minimized when the FC

applies the maximum a-posteriori (MAP) rule [34] and the
corresponding error probability can be upper bounded by the
total BD according to [35]

PE,t ≤
√
π0π1 e

−BTot,t .

In the context of distributed hypothesis testing, it has been
acknowledged that the Bayesian error probability criteria in
most cases does not lead to a tractable design procedure for
decision functions, even for small sized networks. This led
authors to consider the Bhattacharyya distance as a perfor-
mance measure of the network [5], [21], [22]. In addition,
when the observations at the sensors, conditioned on the true
hypothesis, are independent, the total Bhattacharyya distance
at the FC simplifies greatly and decouples [22], i.e.,

BTot,t =

N∑
n=1

− log
∑

yn,t=0,1

√
PYn|Ht

(yn,t|0)PYn|Ht
(yn,t|1)

=

N∑
n=1

Bn,t .

In other words, at each time instance t, the total Bhattacharyya
distance at the FC of a parallel network is the summation of all
the Bhattacharyya distances delivered from different sensors.
Therefore, a network which maximizes the Bhattacharyya
distance at the FC is a network with individually optimized
sensors. Then, it suffices to maximize the BD received at the
FC from each sensor, separately. From now on we will focus
on a single energy harvesting sensor S and drop the subscript
n and denote its BD at time t by Bt. Throughout this paper,
we interchangeably use the terms “Bhattacharyya distance”
and “BD”.
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Fig. 3. Model of an energy harvesting node (left) and an example of a time
interval t (right).

B. Energy Harvesting Sensors

Consider an energy harvesting sensor S as in Fig. 3.
Let us assume that during time interval t energy et arrives
stochastically at the node as a stationary and ergodic random
process Et, see [14]. Let bt be the battery state and let Bt
be its corresponding random process, which is in general
a correlated random process over time even when energy
harvesting process Et is i.i.d. Note that the actions of the
sensor affect the future of the battery state, and the sensor
knows the battery state. Assume that the battery size (capacity)
is K. Then the amount of available energy in the battery at
transmission time t+ 1 is (cf. [13])

bt+1 = min {bt − wt + et, K} , (2)

where wt is the amount of energy used to send the message
ut at time t, with the corresponding random variable Wt. We
assume that the arrival energy et during time interval t can not
be used at the same time interval (see Fig. 3). The same as
in [36]–[39], we assume energy arrives in packets and at each
time interval the sensor is capable of harvesting at most one
packet of energy. We also assume et ∈ {0, 1} is drawn from
a Bernoulli distribution, with Pr(et = 1) = pe. We further
assume that only sending a message costs a packet of energy,
and the energy of making the observation and processing
is negligible. These assumptions, while rather simplistic, are
repeatedly used in the literature (see [36]–[39] and references
therein) for an energy harvesting system. We adopt this model
for the sake of analytical tractability and insight. Thus, wt = 1
if ut = 1 was sent during time interval t, otherwise wt = 0,
i.e.,

wt = wt(ut) =

{
1 ut = 1 ,

0 ut = 0 .

As noted before, the received BD at the FC from sensor S at
time t is

Bt = − log

[ ∑
yt=0,1

√
PY |Ht

(yt|0)PY |Ht
(yt|1)

]
, (3)

where

PY |Ht
(yt = i|h) =PU |Ht

(ut = i|h)(1− εi)+
PU |Ht

(ut = 1− i|h)ε1−i .
(4)

We say a sensor decision function γ is a likelihood-ratio

quantizer (or likelihood-ratio threshold) if

ut = γ(xt) ,

{
1 l(xt) ≥ Θ,
0 Otherwise , (5)

for a given Θ, where

l(xt) , ln
fX|Ht

(xt|1)

fX|Ht
(xt|0)

is the log-likelihood ratio for a given observation xt. Let
lt , l(xt) and let L , l(X). It was shown in [40] that, for
the unconstrained case1, and error-free sensor-to-FC channels,
likelihood-ratio quantizers are optimal decision rules at the
local sensors. Chen and Willett [41] then generalized this result
for the case of non-ideal sensor-to-FC channels. They have
shown that likelihood-ratio thresholds are optimal for non-
ideal channels as well (see [41], [42] for the conditions under
which this result holds). Furthermore, for scalar observations
xt, when the likelihood-ratio of the observation at a sensor S is
monotone and increasing in xt, the likelihood-ratio threshold
can be directly translated to the sensor observation. This is an
immediate consequence of the Karlin-Rubin theorem [43].

Throughout this paper, we denote the optimal threshold of
an energy unconstrained sensor by Θ?

u. In other words, Θ?
u is

the threshold in (5) which maximizes (3), i.e.,

Θ?
u = arg max

Θ

{
− log

[√
[ε0 + δq0][ε0 + δq1] +√
[1− ε0 − δq0][1− ε0 − δq1]

]}
(6)

where
qh , Pr (L ≥ Θ|Ht = h) ,

δ , 1− ε0 − ε1,

for h = 0, 1. Note that q0 and q1 are the false alarm and the
detection probability of an unconstrained sensor, respectively.

We say that the observation model at the sensor is separable,
or perfect, if there exists a threshold Θ for which

q0 = 0 , q1 = 1 . (7)

In this situation, for an unconstrained sensor and error-free
channel, the BD will be infinity and the detection problem is
trivial. However, in real-world applications such observation
models do not exist and the observation models are non-
separable, i.e., there is no threshold Θ for which the conditions
in (7) are both satisfied. However, such a condition may hold
asymptotically in the high SNR limit. Thus, let us define E as
the signal-to-noise ratio (SNR) at the sensor. We say that the
observation model at the sensor is asymptotically separable
if, when SNR goes to infinity, for a sensor with non-separable
observations there exists a threshold Θ for which

lim
E→∞

q0 = 0 , lim
E→∞

q1 = 1 , (8)

and therefore the corresponding BD for the unconstrained sen-
sor and error-free channel goes to infinity, limE→∞ Bt = ∞.

1By unconstrained we mean the situation where energy is always available
at the sensor.
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Many observation models that are considered in the literature
are asymptotically separable and in the following we will
introduce one of these observation models. Consider the case
where each observation is from a Rayleigh distribution with
scale parameter σ0 or from a Rician distribution with scale
parameter σ1 and noncentrality parameter s. The conditional
distributions at the sensor are therefore

fX|Ht
(x|0) =

x

σ2
0

exp

(
− x2

2σ2
0

)
, and

fX|Ht
(x|1) =

x

σ2
1

exp

(
−x

2 + s2

2σ2
1

)
I0

(
xs

σ2
1

)
,

(9)

where I0(z) is the modified Bessel function of the first kind
with order zero. This is a relevant observation model for low
complexity sensors in a wireless sensor network used to detect
the presence of a known signal in Gaussian noise based on the
received power. For simplicity, we assume σ0 = σ1 = 1 and
by definition E , s2. Now, letting SNR go to infinity, there is a
threshold Θ under which the conditions in (8) are satisfied, and
therefore the observation model is asymptotically separable.

We shall herein assume that the energy constrained sensor S
is also a single-threshold likelihood-ratio quantizer that applies
the following threshold test:

ut = γ(xt, bt) ,

{
1 lt ≥ Θ, bt > 0,
0 Otherwise. (10)

In other words, a sensor S at each time t compares the
likelihood-ratio lt of its observation xt with a threshold Θ.
If lt ≥ Θ and the battery is not empty bt > 0, it sends
a message towards the FC, otherwise it remains silent.2 We
would like to note that, the FC in this setup is a static device,
in the sense that, it makes decision at each time t only based
on its input messages at the same time, and it does not use
previous input messages from the sensors. In other words, the
FC does not take into account any correlation in the received
messages from a sensor that could (possibly) be introduced
by the memory of the battery at that sensor. In what follows
we will find a threshold Θ? which maximizes the delivered
Bhattacharyya distance from a sensor to the FC. We will show
that for the problem at hand an optimum decision rule not
only depends on the observation model, it also depends on the
battery charge state, arrival energy features and the capacity
of the battery K. We further show that the resulting thresholds
in general differ from those of the unconstrained case.

In the following section, for different battery capacities, we
study the depletion probability of an energy harvesting sensor.
Furthermore, we will show how one can design an energy
harvesting sensor for different battery capacities. Note that by
designing energy harvesting sensors we mean the selection of
the decision threshold Θ in (10).

2Note that the condition bt > 0 is a consequence of wt = 1 assumption.

III. DESIGN OF ENERGY HARVESTING SENSORS

To formulate the problem, let us first find conditional mass
probabilities resulting from a sensor decision ut ∈ {0, 1}.

PU |Ht
(ut = 1|h) = Pr (L ≥ Θ ∩Bt > 0|Ht = h)

= Pr (L ≥ Θ|Ht = h) Pr (Bt > 0)

= qh [1− Pr (Bt = 0)]

(11)

From (3), (4), and (11) we observe that the BD of an
energy harvesting sensor at time t depends on the observation
distribution at the sensor through qh and the battery deple-
tion probability Pr (Bt = 0). Under the assumptions that the
energy harvesting probability is i.i.d. Bernuoulli over time
and space, and has a probability pe, and the observations at
the sensor are i.i.d. in time, we say that, the battery has a
Markovian behavior in the sense that, conditioned on Et and
Wt, its state at time t + 1 (i.e., Bt+1) only depends on its
state at time t (i.e., Bt) and not the sequence of previous
states, {Bt′}t−1

t′=0. Under the Markovian assumption, a steady
state probability for the battery charge state can be derived,
which allows us to consider the long term performance of an
energy harvesting sensor equipped with a battery. Let the state
probability vector of the battery charge at time t be

pt ,
(

Pr (Bt = 0) , . . . ,Pr (Bt = K)
)ᵀ
,

where the superscript ᵀ indicates transposition, and let us
define the transition probability matrix as

P =
[
pi,j
]
K×K ,

where K = K + 1 and pi,j , Pr(Bt = j|Bt−1 = i) , for
i, j = 0, . . . ,K. When the battery is in steady state [44], the
state probability vector will satisfy

p∞ = Pᵀ p∞ , (12)

and the steady state probability of each battery state, i.e.,

pj , lim
t→∞

Pr(Bt = j),

can be found using (12) and the fact that the summation of
the probabilities must equal unity.

In steady state, after dropping the subscript t, the conditional
probabilities in (11) are given by

PU |H(u = 1|h) = qh(1− p0) ,

PU |H(u = 0|h) = 1− qh(1− p0) .
(13)

We can plug (13) into (4) and find the resulting Bhattacharyya
distance in (3) as

B = − log
[√

[ε0 + δq0(1− p0)][ε0 + δq1(1− p0)] +√
[1− ε0 − δq0(1− p0)][1− ε0 − δq1(1− p0)]

]
.

(14)

We observe that the resulting BD for the energy constrained
case (in steady state) depends on the depletion probability p0

of the battery, which itself is a function of energy features
and the battery capacity. Therefore, in the following we study
the performance of an energy harvesting sensor for different
battery capacities, K. To this end, for an arbitrary battery
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capacity K, in Lemma 1, we will find the depletion probability
p0. Then we can find a threshold Θ? which maximizes (14).

To this end, consider a K-slot-battery energy harvesting
sensor S. Assume that at transmission time t, its battery charge
is in state bt = k, where 0 < k < K. Since during each time
interval the sensor is capable of harvesting and consuming at
most one packet of energy, its state at transmission time t+ 1
will be either bt+1 = k − 1, k or k + 1. Two exceptions to
this rule are when the battery charge is in state bt = 0 or in
state bt = K. In the former case the state of the battery at
transmission time t + 1 will be either zero or one, since the
battery charge can not be negative. In the latter case, the state
of the battery at transmission time t+ 1 will be either K − 1
or K, since there is no space to save more energy packets.

Lemma 1: The depletion probability of a K-slot-battery
energy harvesting sensor is given by3

p0 =

[
1 +

1

1− q

K∑
k=1

Ωk

]−1

(15a)

=
pe − q

peΩK − q
, (15b)

where
Ω ,

pe(1− q)
q(1− pe)

,

and q , π0q0 + π1q1.

Proof. See Appendix A.

Remark: The depletion probability of a K-slot-battery en-
ergy harvesting sensor (when pe < 1) is always above zero for
any K <∞. However, when K =∞ it admits the following
expression:

p0 =

{
0 pe ≥ q ,

1− pe
q Otherwise . (16)

This can be seen by noting that, the summation
∞∑
k=1

Ωk =

∞∑
k=1

(
pe(1− q)
q(1− pe)

)k
converges if pe < q. Otherwise the sum diverges, which
makes the depletion probability equal to zero. This depletion
probability expression for an infinite capacity battery sensor
is in line with the expression found before by modeling the
battery state as a birth-death process in [32].

Note that the condition pe ≥ q, which results in zero
depletion probability, follows intuition in the sense that, when
the probability of energy arrival pe is higher than the prob-
ability of energy consumption (or the probability q that the
sensor observation is above the threshold and it decides to
send a message), the battery will accumulate energy and, with
probability one, in long term not be empty. In this situation
the problem will be the same as the unconstrained setup.

Now by plugging the expression for the depletion probabil-
ity in (15) into that of the BD for energy constrained sensor

3We would like to note that the difference between this model and an
M/M/1/K queue is that in this model each battery charge state k after each
transition can either change by one, or remain unchanged.

in (14), we can find a closed-form expression for the BD of
a K-slot-battery sensor as follows.

B =−log

[√[
ε0 + δq0

pe(ΩK − 1)

peΩK − q

][
ε0 + δq1

pe(ΩK − 1)

peΩK − q

]
+√[

1− ε0 − δq0
pe(ΩK − 1)

peΩK − q

][
1− ε0 − δq1

pe(ΩK − 1)

peΩK − q

]]
.

(17)

Note that since the BD is a function of observation models,
we can not simplify it more. In what follows we will be
considering different battery capacities K, and numerically
find the threshold Θ? which maximizes the corresponding
Bhattacharyya distance.

When a sensor is capable of saving only one packet of
energy, incoming energy et is saved in the battery if the battery
is empty. Otherwise, the sensor discards the incoming energy
packet. For a single-slot-battery sensor an optimal threshold
Θ? is found by maximizing the BD in (17) for K = 1. To do
this, we use a grid search to find the threshold Θ that maxi-
mizes the BD. When a sensor is capable of saving two packets
of energy (K = 2), incoming energy et is saved in the battery
if the battery is empty or has only one packet of energy in
the buffer. Otherwise, the sensor discards the incoming energy
packet. The same as for a single-slot-battery, by maximizing
(17) we can find an optimal threshold Θ? for a double-slot-
battery sensor K = 2. Fig. 4 illustrates the resulting BD of
single- and double-slot-battery energy harvesting sensors using
the adapted (Θ?) and the unconstrained (Θ?

u) thresholds, for
π1 = 0.2 and pe = 0.15. The figure on the left, considers
error-free communication channels (ε0 = ε1 = 0) while the
figure on the right considers BAC channels with parameters
ε0 = 0.1 and ε1 = 0.2.

We observe that the unconstrained threshold Θ?
u is always

sub-optimal. In the single- and double-slot-battery cases the
Bhattacharyya distance is bounded when the SNR goes to
infinity. In Theorem 1 we will find a closed-form expression
for this upper bound for an arbitrary battery size K, and find
conditions under which the Bhattacharyya distance is upper
bounded.

Theorem 1: Consider a K-slot-battery energy harvesting
sensor S. Assume that the probability of harvesting energy
at each time interval is pe, and the a-priori probability of
hypothesis Ht = 1 is π1 and the sensor-to-FC channels are
BAC channels as in Fig. 2. The BD of this sensor at the input
of the FC can not exceed

B , − log
[√

ε0 (1− ε1 − p0δ) +
√

(1− ε0) (ε1 + p0δ)
]
,

(18)

where

p0 =

[
1 +

1

1− π1

K∑
k=1

(
pe(1− π1)

π1(1− pe)

)k]−1

.

Proof. See Appendix B.

Remark: The upper bound in (18) is achievable under
any separable observation model by selecting Θ? so that
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Fig. 4. Bhattacharyya distance of single- and double-slot-battery (K = 1, 2) energy harvesting sensors for different threshold tests and for noiseless (left)
and noisy (right) communication channels, for π1 = 0.2, pe = 0.15, as a function of non-centrality parameter.
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of battery capacity K, for noisy and noiseless communication channels and
for π1 = 0.2, pe = 0.15, and corresponding upper bounds according to
Theorem 1.

q0 = 0 and q1 = 1. It is also asymptotically achievable
(when E → ∞) for a sensor with an asymptotically separable
observation model. These asymptotes are also shown in Fig. 4
by dotted lines. Note that a, possibly unexpected, insight due
to this result is that when the sensors make (asymptotically)
separable observations, i.e., when the sensors are sure of the
true hypothesis, it is optimal for the sensor to act greedily and
always transmit whenever Ht = 1 and their internal battery
allows for a transmission. The FC will in this situation still
only receive a transmission from a subset of the sensors, as the
battery depletion events are independent across sensors due to
the independence of the energy arrival process.

Remark: The upper bound in (18) is an increasing function
of the battery capacity K. It is in line with the intuition that the

performance of an energy harvesting sensor S is improved by
increasing its battery capacity. The upper bound in (18) is also
an increasing function of the probability of harvesting energy
pe and is a decreasing function of the a-priori probability π1.

These also follow the intuition in the sense that by increas-
ing the probability of having energy available at the battery,
the performance of the sensor is improved. While pe affects
the amount of available energy directly, π1 affects the battery
content in a more complicated way: According to (10) an
optimally designed sensor aims to send a message “1” and
consume a packet of energy when its observation is above
Θ?. By increasing the a-priori probability of the hypothesis
Ht = 1, it will be more likely that the sensor aims to send
a “1” and consume energy. This itself increases the depletion
probability p0 and so decreases the performance of the sensor.

We would also like to note that, unlike previous works on
the design of sensor decision functions in a distributed detec-
tion network using the Bhattacharyya distance as performance
metric, our problem formulation comprises the affect of a-
priori probabilities πj , for j = 0, 1 through q in the depletion
probability p0.

Remark: For any finite K, the BD never grows unboundedly
with E → ∞, while for the unconstrained case we have seen
that it can grow unboundedly for separable and asymptoti-
cally separable observation models for error-free channel by
increasing the SNR.

Using (17) and (18), one can analyze the BD performance
of a K-slot-battery sensor (when K <∞) and its asymptote.
In Fig. 5 the optimum BD for an energy harvesting sensor
as a function of the sensor battery capacity is shown when
the observation model at the sensor is according to (9) with
s = 5. We observe from this figure that the maximum BD
and the upper bound (as discussed before) are both increasing
(non-decreasing) functions of sensor battery capacity K.

Remark: For an infinite battery capacity sensor K = ∞,
under some conditions the BD distance grows unboundedly
for an asymptotically separable model, as SNR increases.
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Fig. 6. Bhattacharyya distance of an infinite-slot-battery (K = ∞) energy
harvesting sensor for different threshold tests and for different (π1, pe, ε0, ε1),
as a function of noncentrality parameter.

Concretely, only if pe ≥ π1 and communication channels
are noiseless, ε0 = ε1 = 0, the Bhattacharyya distance
of an optimal threshold test (10) increases unboundedly for
separable or asymptotically separable observation models, as
SNR increases.

In Fig. 6 the Bhattacharyya distance for an infinite-slot-
battery sensor is shown, when using different thresholds, and
for different setups. We observe from this figure that as the
non-centrality parameter (or SNR) increases, for the case
where pe ≥ π1 and ε0 = ε1 = 0 the Bhattacharyya distance
increases unboundedly, otherwise it is upper bounded with the
asymptote (shown by the dotted line) found in (18).

In the following section, we compare the error probability
performance of networks of energy harvesting sensors which
we have designed using conventional (unconstrained) formula-
tion in (6) (for Θ?

u) and using our proposed formulation in (17)
(for Θ?). Before considering the error probability performance
of the designed networks, consider again the choice of Θ?

u and
Θ?. While using Θ?

u, the sensor makes an optimal decision (in
the sense of the Bhattacharyya distance) for the case where
required energy for transmission of positive message is always
available at the sensor. However, when energy is not always
available at the sensor, the sensor should act more conser-
vatively in the sense that: The sensor should remain silent
and preserve energy for future time slots, unless it receives
observation about the presence of hypothesis 1 with high
reliability. In our formulation for the Bhattacharyya distance,
the threshold Θ? determines if a received observation has high
reliability about the presence of hypothesis 1. According to our
simulation results, we always obtain Θ? ≥ Θ?

u which further
confirms our discussion above.

IV. ERROR PROBABILITY PERFORMANCE OF NETWORKS

In this section we illustrate the benefit of our results by
numerical examples. Consider a sensor network with N = 4
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Fig. 7. Error probability performance of networks with N = 4 energy
harvesting sensors with different battery capacities, when π1 = 0.2 and
pe = 0.15, and noisy communication channels with ε0 = 0.1 and ε1 = 0.2.

energy harvesting sensors. Suppose the sensors make obser-
vations from the same phenomenon Ht during each time
interval t, and send an OOK message to the FC. Let us
assume again that sending a positive message consumes a
packet of energy and a negative message is conveyed through
a non-transmission with no energy cost. Let the observation
model at each sensor be as in (9), and conditioned on the
true hypothesis, the observations be independent, and that the
sensors use the threshold test in (10). Note that, though in
this section we assume the same observation model at the
sensors, our results and conclusions drawn through this work
are generalized to non-identical observation models at the
sensors (and respectively non-identical sensor) case.

Using our results in the previous section, we design sensor
decision rules Θ for different battery sizes, and compare their
error probability performance with those of the unconstrained
case. The expected error probability, when the FC uses the
MAP criterion, at time t is found using [6]

PE,t = 1−
∑
y
t

max
j=0,1

{
πjPY |H

(
y
t
|j
)}

,

which can be numerically computed, without the need for
Monte-Carlo simulations.

Fig. 7 shows the error probability performance of designed
sensor networks, with single-slot-battery sensors and double-
slot-battery sensors, when π1 = 0.2 and pe = 0.15. In both
cases (K = 1, 2) the adapted threshold Θ? leads to better
performance than the unconstrained threshold Θ?

u. This is in
line with our results based on the Bhattacharyya distance:
Adapted threshold leads to a higher BD. As s→∞, we also
observe that the error probability does not converge to zero
(lower bounded). It was shown for the Bhattacharyya distance
that Bt is upper bounded for single and double-slot-battery
sensors. We also observe from the figure that, while both using
the optimal threshold or the sub-optimal threshold, increasing
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Fig. 8. Error probability performance of networks with infinite-slot-battery
(K = ∞) energy harvesting sensors, and for different (π1, pe, ε0, ε1).

the battery capacity (here from one to two) can improve the
error probability performance of a network of sensors.

In Fig. 8 the error probability performance of the network of
N = 4 infinite-slot-battery sensors is shown for different sets
of (π1, pe, ε0, ε1). When π1 > pe and/or sensor-to-FC channels
are erroneous, the error probability of the network converges
to a fixed value as s → ∞, while when π1 ≤ pe and the
channels are error-free (ε0 = ε1 = 0), the error probabilities
for both the adapted threshold and the energy unconstrained
threshold rapidly go to zero. These observations are also in
line with our results in terms of the Bhattacharyya distance:
When K =∞, if pe ≥ π1 and channels are error-free, the BD
increases unboundedly, otherwise it converges to a non-zero
asymptote. Note that we have the same observations for other
choices of (π1, pe, ε0, ε1).

V. CONCLUDING REMARKS

In this paper we studied the problem of decentralized hy-
pothesis testing in a network of energy harvesting sensors. The
sensors in the network make observations of a phenomenon
and harvest all the energy they need from the environment.
We consider the case where the sensors have different battery
capacities to save the harvested energy. Considering the Bhat-
tacharyya distance as a performance metric, we formulated the
problem of designing sensors in the network by considering
the constraints imposed by energy harvesting and proposed a
method to design the sensors decision rules. We further studied
the performance of sensors for different battery capacities and
presented conditions under which the Bhattacharyya distance
is upper bounded, and therefore the error probability is lower
bounded and does not converge to zero.

In this paper, we considered the case where the obser-
vations and the energy charging processes at the sensors
are independent. A possible extension to this work can be
to consider the case where the observations at the sensors,
or/and the energy charging processes are correlated. For the

sake of analytical tractability and insight, we only studied
the case where each sensor decision rule is a simple single-
threshold test. It is known that having multiple-thresholds at
the sensors can result in better BD performance. Concretely,
battery state dependent thresholds Θ(bt) can improve the
performance of a single-threshold energy harvesting sensor,
and an extension to our study can be to study the performance
of such threshold tests. Although not presented herein, we have
numerically found optimal threshold tests Θ?

1,Θ
?
2, where Θ?

i

is the optimal threshold when bt = i for i = 1, 2, using a
grid search in the case of a double-slot-battery (K = 2) and
the observation model in (9). Our results confirm that having
multiple thresholds can improve the BD performance of the
sensor, but the gains are small compared to introducing the
single threshold in the first place.

We would also like to note that other members of Ali-Silvey
distance (like J-divergence) can also be used as a performance
metric for the design of decision rules at the sensors, with a
lot of similar derivations. In this paper, we chose to use the
BD as the performance metric since according to [5] the BD is
one of the most analytically tractable members of Ali-Silvey
distances and was reported as the most efficient metric among
those studied in [21].

Our work represents a first attempt to introduce energy har-
vesting considerations in the context of distributed detection
using established (but arguably simple) design metrics such as
the Bhattacharyya distance. Our approach furthermore utilizes
simplified models such as the energy arrival model taken from
[36]–[39]. While the simplifying assumptions make the results
more tractable and interpretable, they also naturally come with
some strong limitations. Apart from the extension to a battery-
dependent decision threshold, one could also consider the case
where the sensors optimize the OOK transmission energy in
order to influence the error probability of the transmission,
i.e., the cross-over probability ε0 in Fig. 2, based on some
given physical channel model. This would however arguably
be more relevant in conjunction with a more refined energy
arrival and storage model, which we cannot presently handle
directly given that we (for simplicity) assume that energy
arrives in quanta matched to the energy needed for a positive
(on) transmission. Furthermore, although the decoupling of
the sensor design caused by considering the Bhattacharyya
distance is often used to simplify the sensor design problem
in the distributed detection literature, this approach should be
scrutinized again when adding the energy harvesting aspect.
This is due to the fact that jointly designed sensor decision
rules can potentially lead to tangible benefits through more
advanced joint energy conservation rules across sensors than
what is implicitly provided by the differences in the random
battery state across the sensors.
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APPENDIX A
PROOF OF LEMMA 1

Using (12), state probabilities for p0, . . . , pK−1 are found
as

p0 = p0,0p0 + p1,0p1,

pk = pk−1,kpk−1 + pk,kpk + pk+1,kpk+1, 1 ≤ k < K.
(19)

Using (2) and (10), for the transition probabilities we obtain

p0,0 = 1− pe , p1,0 = q(1− pe) , p0,1 = pe ,

and for 1 ≤ k < K

pk,k+1 = (1− q)pe ,
pk+1,k = q(1− pe) ,
pk,k = qpe + (1− q)(1− pe) .

(20)

By re-arranging the equations in (19) and replacing the transi-
tion probabilities pi,j with those in (20) we get the following
equations

p1 =
pe

q(1− pe)
p0 (21a)

p2 =
p2
e(1− q)

q2(1− pe)2
p0 (21b)

pk = −Ω pk−2 + (1 + Ω) pk−1 , 3 ≤ k ≤ K. (21c)

The system of equations described by (21) is a homogeneous
difference equation [45]. Its characteristic polynomial is

ρ2 − (1 + Ω)ρ+ Ω = 0 ,

whose roots are ρ = {1,Ω}. These lead to the general solution
for the difference equation as

pk = λ1 + λ2Ωk. (22)

Now, applying auxiliary conditions (21a) and (21b) to (22),
we obtain λ1 = 0 and λ2 = 1

1−qp0. Thus the solution to the
difference equation is found to be given by

pk =
Ωk

1− q
p0, 1 ≤ k ≤ K , (23)

which describes each state probability pk in terms of the de-
pletion probability p0. Now, using the fact that the summation
of the probabilities must equal unity, for a K-slot-battery we
obtain the desired depletion probability expression (15).

APPENDIX B
PROOF OF THEOREM 1

To prove the theorem, first consider the following function
Γ1 where 0 ≤ α ≤ β ≤ 1, 0 ≤ ζ ≤ 1, and 0 ≤ ξ ≤ 0.5.

Γ1 ,
√

[ξ + ζα][ξ + ζβ] +
√

[1− ξ − ζα][1− ξ − ζβ]

Taking the derivative of Γ1 with respect to α, we observe that
when 0 ≤ α ≤ β, Γ1 is an increasing function of α and its
minima is attained when α = 0. In other words

min
α

Γ1 =
√
ξ[ξ + ζβ] +

√
[1− ξ][1− ξ − ζβ] ,

or equivalently√
[ξ + ζα][ξ + ζβ] +

√
[1− ξ − ζα][1− ξ − ζβ] ≥√

ξ[ξ + ζβ] +
√

[1− ξ][1− ξ − ζβ]
(24)

for 0 ≤ α ≤ β ≤ 1, 0 ≤ ζ ≤ 1, and 0 ≤ ξ ≤ 0.5.

Using (24), we can conclude that for any given q1, ε0, and
p0, the BD in (14) is upperbounded by

B ≤ − log
[√

ε0[ε0 + q1(1− p0)δ]+√
[1− ε0][1− ε0 − q1(1− p0)δ]

]
,

(25)

by replacing α, β, ξ, and ζ in (24) by q0, q1, ε0, and (1−p0)δ,
respectively.

In what follows, we will find another upper bound for B by
maximizing the right-hand-side of (25) which is equivalent to
minimizing Γ2.

Γ2 ,
√
ε0[ε0 + q1(1− p0)δ]+√
[1− ε0][1− ε0 − q1(1− p0)δ]

(26)

Minimizing Γ2 is equivalent to maximizing Σ , q1(1 − p0),
since Γ2 is a decreasing function of Σ. Then by replacing the
depletion probability p0 from (15) we obtain

Σ = q1

1−

[
1 +

K∑
k=1

pke(1− q0π0 − q1π1)k−1

(1− pe)k(q0π0 + q1π1)k

]−1
 .

(27)

Now, considering the optimization problem

max
q0,q1

0≤q0≤q1≤1

Σ , (28)

the objective function Σ is a decreasing function of q0 (note
that q0 only appears in the argument of the summation) and
its maxima is attained when q0 = 0, and therefore the problem
in (28) reduces to the following problem,

max
0≤q1≤1

Λ , (29)

where,

Λ , Σ
∣∣∣
q0=0

= q1

1−

[
1 +

K∑
k=1

pke(1− q1π1)k−1

(1− pe)k(q1π1)k

]−1
 .

(30)

In what follows we will show that the objective function
Λ is an increasing function of q1 and therefore its maxima is
attained when q1 = 1, which proves the theorem. Our aim is
now to show

dΛ

dq1
≥ 0,

when 0 ≤ q1 ≤ 1. By evaluating the summation in (30) and
introducing

λ ,
pe(1− q1π1)

(1− pe)q1π1
,
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we obtain

Λ =

(
pe
π1

)
1− λK

1− peλK − (1− pe)λK+1
.

According to the chain rule we have

dΛ

dq1
=
dΛ

dλ

dλ

dq1
,

and using first principles we can straightforwardly show

dλ

dq1
≤ 0,

for 0 ≤ q1 ≤ 1. To complete the proof, we need to show

dΛ

dλ
≤ 0 , (31)

for λ ≥ 0. To this end, note that

dΛ

dλ
=

(
pe
π1

)
λK−1

(
(K + 1)λ−K − λK+1

)
(1− p)(

(1− p)λK+1 + pλK − 1
)2 .

Thus, proving (31) is equivalent to proving that

g(λ) , (K + 1)λ−K − λK+1 ≤ 0 .

To prove this, we first show g(λ) (for any K ≥ 0) has
its optima at λ = 1 (where g (1) = 0), by setting its first
derivative dg

dλ equal to zero, i.e.,

dg

dλ
= (K + 1)− (K + 1)λK = (K + 1)(1− λK) = 0 .

Then, we show this optima is a maxima (i.e., maxλ g(λ) =
g(1) = 0) by finding its second derivative, i.e.,

d2g

dλ2
= −K(K + 1)λK−1 ≤ 0 .

This completes the proof of dΛ
dλ ≤ 0 and therefore the proof

of Theorem 1.
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