

WHEN TWO CHOICES ARE NOT ENOUGH

Balancing at Scale in Distributed Stream Processing

Muhammad Anis Uddin Nasir¹⁵, Gianmarco de Francisci Morales³⁰, Nicolas Kourtellis²⁴, Marco Serafini³⁰ TKTH Royal Institute of Technology, Telefonica Research Barcelona, Qatar Computing Research Institute anisu@kth.se^{\$}, gdfm@acm.org^{\$}, nicolas.kourtellis@telefonica.com^{\$}, mserafini@qf.org.qa^{\$}

Abstract

- Given a highly skewed input stream, minimize the load imbalance across the machines to achieve better hardware utilization, higher throughput and lower processing latency
- We propose two novel algorithms : a) **D**-Choices and b) W-Choices. Both the algorithms operate by identifying the head of the input stream and placing the head on more than two workers

Solution Overview

Tail

Rank

splits head from the tail

kn (pn)

Past Work: ICDE 2015

The Power of Both Choices: Practical Load Balancing for Distributed Stream Processing Engines

> Muhammad Anis Uddin Nasir#1, Gianmarco De Francisci Morales*2, David García-Soriano* Nicolas Kourtellis*4, Marco Serafini*5 #KTH Royal Institute of Technology, Stockholm, Sweden *Yahoo Labs, Barcelona, Spain [§]Qatar Computing Research Institute, Doha, Qatar anisu@kth.se, 2gdfm@apache.org, 3davidgs@yahoo-inc.com

resence of skew. We introduce PARTIAL KEY GROUPING (PKG). of two choices" to a distributed streaming setting by leveraging an improvement of up to 60% in throughput and up to 45% in bution when using key grouping. The color of each message

I. Introduction

o kafka

Solution Overview

Observation

PKG guarantees nearly perfect load balance for $p1 \le 1/(5n)$

Solution

Stream Summary to handle the Head

W-Choices:

D-Choices: adapts to the frequencies
Independent of frequencies allows subset of workers
allows all the workers

Algorithm:

 Assign head to the set of d/w workers Handle tail using power of both choices/

Algorithm 1: Stream partitioning algorithm.

upon message $m = \langle k, v \rangle$ $\mathcal{H} \leftarrow \text{UPDATESPACESAVING}(k)$ $d \leftarrow 2$ // Default as in PKG if $k \in \mathcal{H}$ then if D-CHOICES then $d \leftarrow \text{FINDOPTIMALCHOICES}()$ else if W-CHOICES then $d \leftarrow n$ $w \leftarrow \text{MinLoad}(\mathcal{F}_1(k), \dots, \mathcal{F}_d(k))$

Memory Overhead

Experimental Setup

Dataset

Frequency

k1 (p1)

Head

Dataset	Symbol	Messages	Keys	$p_1(\%)$
Wikipedia Twitter Cashtags	WP TW CT	22M 1.2G 690k	2.9M 31M 2.9k	$9.32 \\ 2.67 \\ 3.29$
Zipf	ZF	10 ⁷	$10^4, 10^5, 10^6$	$\propto \frac{1}{\sum x^{-z}}$

Algorithms

Symbol	Algorithm	Head vs. Tail
W-C	D-Choices W-Choices Round-Robin	Specialized on head
PKG SG	Partial Key Grouping Shuffle Grouping	Treats all keys equally

Experimental Results

Estimation

Latency

Experimental

Results

Throughput

Analysis

minimize $f(d; \mathcal{D}, \theta) = d \times |\mathcal{H}_{\mathcal{D}, \theta}|$ subject to $\mathbb{E}_{d}[I(m)] \leq \epsilon$.

Expanding the constraint we get:

$$\sum_{i \leq h} p_i + \left(\frac{b}{n}\right)^d \sum_{h < i \leq |H|} p_i + \left(\frac{b}{n}\right)^2 \sum_{i > |H|} p_i \leq \left(\frac{b}{n}\right) + \varepsilon$$
 where
$$b = n - n \left(\frac{n-1}{n}\right)^{h \times d}$$

Conclusion

- We propose two algorithms to achieve load balance at scale for DSPEs
- Use heavy hitters to separate the head of the distribution and process on larger set of workers
- Improvement translates into 150% gain in throughput and 60% gain in latency over PKG

Future Work

- Dynamic Load Balancing for stateful operators
 - Key Migration
 - Partition Migration
 - Queuing Theory
- Load Balancing in Heterogeneous Cluster
 - Load Prediction
 - Worker Communication