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Abstract

* Given a highly skewed input stream,
minimize the load imbalance across the
machines to achieve better hardware
utilization, higher throughput and lower
processing latency

* We propose two novel algorithms : a) D-
Choices and b) W-Choices. Both the
algorithms operate by identifying the head of
the input stream and placing the head on
more than two workers
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Dataset

Dataset Symbol Messages Keys p1(%)
Wikipedia WP 22M 2.9M 9.32
Twitter T™W 1.2G 31M 2.67
Cashtags CT 690k 2.9k 3.29

Zipf ZF 107 10%,10%,10° o ==

Algorithms

Symbol  Algorithm Head vs. Tail

D-C  D-Choices
w-C  W-Choices Specialized on head
RR Round-Robin

Partial Key Grouping
SG  Shuffle Grouping

Treats all keys equally

Analysis
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Expanding the constraint we get:
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where L () = Number of messages
Optimization problem
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Solution Overview

Observation

PKG guarantees nearly perfect
load balance for p1 <1/(5n)
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D-Choices: W-Choices:
* adapts to the frequencies * Independent of frequencies
* allows subset of workers < allows all the workers

Algorithm:
* Assign head to the set of d/w workers
e Handle tail using power of both choices
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Estimation
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Conclusion

 We propose two algorithms to achieve
load balance at scale for DSPEs

Use heavy hitters to separate the head
of the distribution and process on larger
set of workers

Improvement translates into 150% gain
in throughput and 60% gain in latency
over PKG
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Abstract—We study the problem of load balancing in dis-
tributed stream processing engines, which is exacerbated in the
presence of skew. We introduce PARTIAL KEY GROUPING (PKG),
a new stream partitioning scheme that adapts the classical “power
of two choices” to a distributed streaming setting by leveraging
two novel techniques: key splitting and local load estimation. In so
doing, it achieves better load balancing than key grouping while
being more scalable than shuffie grouping.

We test PKG on several large datasets, both real-world and
synthetic. Compared to standard hashing, PKG reduces the load
imbalance by up to several orders of magnitude, and often ) ) o
achieves nearly-perfect load balance. This result translates into Fig. 1: Load imbalance generated by skew in the key distri-
an improvement of up to 60% in throughput and up to 45% in  bution when using key grouping. The color of each message
latency when deployed on a real Storm cluster. represents its key.

I. INTRODUCTION

Solution Overview

Pseudocode
Algorithm 1: Stream partitioning algorithm.

upon message m = {k,v)
H « UPDATESPACESAVING(k)
d+ 2 // Default as in pxsG
if k € ‘H then
if D-CHOICES then
| d + FINDOPTIMALCHOICES()
else if W—CHOICES then
d<n
w +— MINLOAD(F(k),...,Fa(k))
send(w, m)
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Experimental
Results

Latency
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Imbalance over time
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Future Work

* Dynamic Load Balancing for stateful
operators
* Key Migration
* Partition Migration
 Queuing Theory

* Load Balancing in Heterogeneous
Cluster
* Load Prediction
 Worker Communication




