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KTH Royal Institute of Technology 2018.11 — Present
Ph.D. Student in CCGEx & Engineering Design Department

(Defense time scheduled on Nov. 26, 2023)

Research Topic: Exergy Analysis on Propulsion System Applications

Major Work Content: Engine and propulsion system modelling, Exergy losses analysis

KTH Royal Institute of Technology 2016.02 - 2018.05

Research Engineer in Transport Department

Project Topic: Sustainable Construction Operations for Reduced Emissions

Major Work Content: Vehicle path optimization, Construction operations simulation, Emission model

Cummins East Asian Research & Development Center 2014.06 — 2015.12
Development Engineer in Advanced Engine & Technology Department
Major Work Content: Engine simulation & calibration, Pneumatic boost system, Driving cycle analysis

Wuhan University of Technology 2008.09 — 2014.06
Master in Marine and Power Machinery Engineering
Bachelor in Energy Power System and Automation
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Research Topic: Exergy Analysis on Propulsion System Applications
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*Exergy refers to the maximum part of energy that can be obtained from a system.



PR Research Topic: Exergy Analysis on Propulsion System Applications
Q0 Combustion assessment of a lean-burn ethanol-fueled HD Sl engine

Purpose: to analyze the lean-burn combustion efficiency and losses in a HD SI ethanol-fueled engine

= ~ 1 1.8 ;3 W T
ta 2 = B s = oy T 476% ¢ B & i p - 48
= ’ { y / 47.3% KLSA
é arge Al Cooker | (KI=1.23)/ v _
i ko) LI . (OO Ao . ,} Ko e 5
- - / " 473
f e anitold 1 ntake Air Flow S L6 W ara% \Y 408% 2
i - [} Knock Combustion ) / (KI=1.48) '
& L e [ ke ;| Integral Timing Controller 2 ’:' 45 g
| o 1 . | Charge © S
3_ i os ol Air Cooler Spork Timing £ Lap ’,‘ ?,SZ?‘GQ) g
% - PO In-Cylinder Process | ) 9 ’ MBTaT 43%’
-l I~ ¢ f 15T l1(r2|ng) 3
" e 1 Intake Port Fuel Combustion o 1.2 Pas 8% {knock/FE8 P 08
§ e ¢ Manifold Injection modelling  fou L TC _ i (KI=2.23) Knoclg@ E
i I i, 144.4% (KI=334) 39
1 i 1.0 .0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
e = = CA50 [°CA ATDC]
Manifold
St ol {1 | Control logic for lean burn application Efficiency comparison of KLSA and knock-free MBT
e Gk rler across excess air ratios up toA=1.8
. . st
Tested Scania D12 research engine and GT-Power model 100 “T @int-em )
1.3% Incomplete 3 B Qint - fuel 7
Z e ‘ S 20 {/.
c z
o -
O Combustion assessment of lean-burn at 20 bar IMEP R 3210 Ehuast g b
o 3 -7
[=] @ -
. . .. . 40 10 -
O Experimentally calibrated two-zone predictive combustion model g B ,—‘I
E a7 Net Work "6: 5 I"/ L]
. R . ) 20 EEY Net Worl X I
O Lean-burn combustion at KLSA with excess air ratios up to 1.8 e
_—
. 0 A=12 A=14 A=16 °%o 1z 1a 16 18
O Exhaust exergy recovery through turbocharging at lean burn Excess Air Ratio [-] Excess air ratio A [-]

Exergy recovery rate across the dilution range.
The error bar of @jni—exh represents the variation
caused by sweeping n¢c from 0.5t0 0.7.

Energy distribution per cylinder at KLSA timing across
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Cylinder Connected
to Single-Pipe.

K Cylinder and
Exhaust Port

Static
Pressure

Single-Pipe (Length=400mm, L/D=10)

Y Fast Temperature
(D=50.8 um, 76.2 um,
254 um)

Measurement Channel of Static Pressure 44 3
= “ Exhaust Vent

Exhaust Port Outlet (to Atmosphere)

Pitot Tube Flow Direction

Schematic of experimental setup and the single-pipe measurement system

O Pitot tube for measuring time-resolved engine exhaust flows
O A single-pipe system for on-engine pulsating flow measurement

O Pulse characteristics in blow-down and scavenge phases

Research Topic: Exergy Analysis on Propulsion System Applications
U Engine exhaust pulses measurement and analysis (Scania D13 at KTH engine lab)

The dynamic pressure between total and
static pressures indicates the exhaust flow.
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Due to increased thermal inertia, the attenuation
of the thermocouples’ response became more
obvious as the wire diameters increased.
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Pressure and temperature of the engine exhaust pulsation at 1500rpm / 12 bar nIMEP
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Mass flow rates over the pulse duration. The
dashed line is the cycle-averaged mass flow rate
of 300 cycles, while the shaded area represents
the variation in mass flow pulses over cycles.
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Outlet Exhaust pulses

Wartsila 31 single cylinder engine
operated in spark ignited gas mode

Pitot tubes

Experimental setup and the single-pipe measurement system

Rotate 45° 1

< 0.y,

g

Spatial measurement with different P,T sensors traversal lengths

O Pitot tube and thin-wire thermocouples for capturing time-resolved exhaust flows

-

surface X 4

O Exhaust flow field characteristics related to loads, backpressures, exhaust valve timings and profiles

O A single-pipe system to temporally and spatially measure on-engine pulsating flow
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Research Topic: Exergy Analysis on Propulsion System Applications
U Engine exhaust pulses measurement and analysis (Wartsila single-cylinder marine engine)
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Simscape model of coolant flow control for battery pack
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Ph.D. student in Mechatronics Unit SE+— =—

Project Topic: Hybrid Powertrain System Modeling and Control ~5— |

+  Electric powertrains modeling and optimization e 3 et ]
* Model-based dynamics and control for a motor system B e et
- Model Building and Parameters Estimation for Li-ion Battery = - ’
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Optimizing coolant flows under various driving conditions
Case #1 at 45 degC

—e- Measurement
Anode Separator Cathode 4o = seM
3.35 T T T T C T T T T - - - 1 .
Measurement 100 Model error [mV] » @1~ Hnu‘»l:lc\b .
Soli
< 33 ECM (2RC) = e <
n E Li' e
5 "
o @ L 232
£ 325 g 50 ] :
=] ° Vv
% E (1) © .
[ I
2 a2 o \ ¢ (1) 26 1c 1
£ E of 1 " Y 5 i
@ = Li Li
+ 315 ) 0 500 1000 1500 2000 2500 3000 3500
- Time [s]
p R, . r Case #10 at 45 degC
a1 . . . . . . . 0 55
0 2000 4000 6000 8000 10000 12000 14000 16000

—e— Measurement

] 2000 4000 6000 8000 10000 12000 14000 16000
Time [s]

Time [s]

&)l PuBaMM

Battery Characterization using Equivalent Circuit Model (ECM)
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Battery Single Particle Model
(simplified Doyle-Fuller-Newman model) :
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KTH Royal Institute of Technology (2016.02 — 2018.05)

Research engineer in Transport Department (Funded by Volvo CE)

Project Topic: Sustainable Construction Operations for Reduced Emissions

«  Emission model of HDVs according to real-world measurement

» Discrete-event simulation platform for evaluating construction project

«  Optimal construction operations of an autonomous wheel loader

Queue
Loader: cycle #4
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Discrete-event simulation platform for evaluating

Truck Haul on Road #2 Queue and Wash Dumping Operation g fa d
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Optimal control strategy of an autonomous wheel loader

construction project
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Covariance matrix update after iteration

KTH KTH Royal Institute of Technology (2016.02 — 2018.05)

Research engineer in Transport Department (Funded by Volvo CE)
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Prediction step

Rijk—1 = Fie * Xpe—qjk—1 + B * U1 + g
Pyje—1 = Fie * Pr—qjk—1* Fi + Qx

Update step

Zy = Hy * Xgje—1 + v

Rijie = Riee—1 + Kie * (2 — Hic - Riepe—1)

Py = (I — Ky - Hy) * Prje—1

Extend Kalman filter method to
estimate engine-out NOx map
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Major Work Content: Engine simulation & calibration, Pneumatic boost system, Driving cycle analysis

Matlab/Simulink Flow chart of engine

E transient simulation
7
[

£ g | GT-Power

m | PBS
| Compressor I
- | T
1 \;c':' Engine model | — Transmission model&
. _"-_"|- 9 <+<—— | Vehicle dynamics
Air supply contro| unit

_*éAir valve

Pneumatic boost system (PBS) for . . . . .
reducing turbocharger lag O Engine simulation with PBS system in GT-Power

This assignment involves:

U PBS flap valve design and its control method for boosting
O Experimental data analysis to evaluate engines and vehicle

transient performances by using PBS system
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Experimental investigation on time-resolved mass flow characterization of engine exhaust pulses using Pitot tube and unsheathed thin-wire
thermocouple, Applied Thermal Engineering, 2023.

Analyzing engine exhaust gas temperature pulsations and gas-dynamics using thin-wire thermocouples, submitted & under review, 2023.

Energy and exergy characteristics of an ethanol-fueled heavy-duty Sl engine at high-load operation using lean-burn combustion, Applied
Thermal Engineering, 2023.

Numerical analysis of engine exhaust flow parameters for resolving pre-turbine pulsating flow enthalpy and exergy, Energies, 2021.

Quantification of losses and irreversibilities in a marine engine for gas and diesel fueled operation using an exergy analysis approach, in
Internal Combustion Engine Division Fall Technical Conference, American Society of Mechanical Engineers, 2020.

Assessment of emissions and energy consumption for construction machinery in earthwork activities by incorporating real-world measurement
and discrete-event simulation, Sustainability, 2022

Path optimization for a wheel loader considering construction site terrain, in 2018 IEEE Intelligent Vehicles Symposium (1V), IEEE, 2018, pp.
098-2103.

Path planning for wheel loaders: A discrete optimization approach, in 2017 IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC), IEEE, 2017, pp. 1-6.

Quantification of emissions for non-road machinery in earthwork: Modeling and simulation approaches, in Transportation Research Board
(TRB) 96th Annual Meeting, Transportation Research Board (TRB), 2017.

Modeling of dynamic NOx emission for nonroad machinery: A study on wheel loader using engine test data and on-board measurement, in
Transportation Research Board (TRB) 95th Annual Meeting, Transportation Research Board (TRB), 2016
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Comments & Questions
Welcome!

Thanks for your time!
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