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Introduction

The subject of plane wave propagation in turbulent internal flows
has been investigated both theoretically and experimentally since the
1970s, and various theoretical models for computing the wave propa-
gation constants are available. However, there is a lack of knowledge
on how higher order acoustic modes propagate in turbulent flows, and
such knowledge is becoming more important in nowadays-industrial
applications. For example, the size of a turbofan aeroengine deter-
mines that the higher modes can be excited even with relatively low
frequency sound source, which necessitates the need for taking these
modes into account in the liner design process. The present work
aims for providing a sound-turbulent interaction model in the presence
of the higher order modes. In addition, an efficient numerical scheme
for computing the propagation constants for the higher order modes
are proposed, where the mean flow convection, refraction, and the
turbulent absorption effects are all taken into account.

Governing equations

The numerical formulation is based on the compressible linearized
Navier-Stokes equations (LNSE), i.e., the conservation of mass, the
conservation of momentum, and the conservation of (internal) energy.
A mean flow velocity profile is computed from a different incompress-
ible solver, which is used in the LNSE to count for the mean flow con-
vection and refraction effects. In addition, the turbulent stresses and
heat fluxes are also included in the LNSE, in the preliminary results
shown here, however, these two quantities are set to be zero, which is
the so-called “quasi-laminar” treatment.
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Fig. 1. Demonstration of acoustic pressure field of (a) the first non-
axisymmetric mode, (b) the second non-axisymmetric mode, and (c) the sec-
ond axisymmetric mode, in a circular pipe. The mode shapes are computed
from the LNSE, without mean flow.

Methodology

For an axis-symmetric circular duct, each mode should be peri-
odic in the azimuthal (θ ) direction, therefore the ansatz of the solution
reads

ϕ̃ = ϕ exp (iωt − ikx + imθ) , m= 0,±1,±2... (1)

Then LNSE turn into an eigenvalue problem, with respect to the
eigenvalue k, in the form

(A+ kB)ϕ = 0, (2)

With proper boundary conditions, the wavenumber, i.e., the propaga-
tion constant, k, can be obtained for each mode.

Preliminary results for the first non-axisymmetric
(m> 0) modes propagation in hard-wall pipe
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Fig. 2. Dispersion relation for the first non-axisymmetric modes, showing the
mean flow convection effects, and possibly the refraction effects, on the phase
velocity and attenuation of the sound wave. Since the attenuation factors (the
imaginary part of the wavenumber) of the propagated modes have small val-
ues, part of the graph for Imag(k) is zoomed in. The blue and green curves
denote the downstream and upstream propagating waves, respectively.
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Fig. 3. Mode shapes for the first non-axisymmetric modes, with Helmholtz
number 3.5, showing the mean flow refraction effects on the sound wave mode
shapes. The blue and green curves denote the downstream and upstream
propagating waves, respectively, and u, v, and w here denote the axial, ra-
dial, and azimuthal components of the perturbation velocity, respectively.


