SF3674 DIFFERENTIAL GEOMETRY, GRADUATE COURSE, FALL 2016, READING INSTRUCTIONS AND EXERCISES

MATTIAS DAHL, HANS RINGSTRÖM

LECTURE 3, TUESDAY SEPTEMBER 20

Reading instructions. The central object of this lecture is the second fundamental form of a semi-Riemannian submanifold. It describes how a semi-Riemannian submanifold is shaped (or "curves") in an ambient semi-Riemannian manifold. Using it, the curvature of the ambient manifold can be related to that of the submanifold (via the Gauss and Codazzi equations). There is also a relation concerning the acceleration of a curve (as viewed in the submanifold/ambient manifold). Using these relations, the curvature and geodesics of the sphere, the hyperbolic space, and more general semi-Riemannian hypersurfaces called hyperquadrics can be computed.

The main material for the lecture is Chapter 4 of O'Neill's book [2]. However, Chapter 4 of Bär's lecture notes [1] is also highly recommended.

Exercises.

- (1) O'Neill [2] problems 4.1, 4.2, 4.4 (pp. 123–125).
- (2) Let $H^n_{\nu}(r)$ and $S^n_{\nu}(r)$ be the pseudohyperbolic space and pseudosphere respectively, cf. Definition 23, p. 110 of O'Neill's book. For a general semi-Riemannian manifold (M, g), let

$$G = \operatorname{Ric} - \frac{1}{2}Sg,$$

where Ric is the Ricci tensor and S is the scalar curvature of (M, g). G is called the *Einstein tensor*. Compute the Einstein tensor of $H_1^4(r)$ and of $S_1^4(r)$.

Note that $S_1^4(r)$ is de Sitter space, a Lorentz manifold of interest in general relativity. The universal covering space of $H_1^4(r)$ is called *anti de Sitter* space.

References

- [1] Christian Bär. Differential geometry, summer term 2013. http://www.math. uni-potsdam.de/fileadmin/user_upload/Prof-Geometrie/Dokumente/Lehre/ Lehrmaterialien/skript-DiffGeo-engl.pdf.
- [2] Barrett O'Neill. Semi-Riemannian geometry, volume 103 of Pure and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity.