SF3674 DIFFERENTIAL GEOMETRY, GRADUATE COURSE, FALL 2016, READING INSTRUCTIONS AND EXERCISES

MATTIAS DAHL, HANS RINGSTRÖM

LECTURE 6, TUESDAY OCTOBER 11

Reading instructions. The sixth lecture was an overview of homogeneous spaces, symmetric spaces, and the holonomy of a Riemannian manifold. The contents roughly corresponds to:

- Lie groups, basics, [3, Appendix B, pp. 446-452].
- Killing fields, the isometry group of a Riemannian manifold as a Lie group, homogeneous spaces, [3, Chapter 9, pp. 249-262].
- Symmetric spaces [4, Chapter 10.1-10.2] (but not the details of the Lie algebra description in Section 10.1.3).
- Holonomy [4, Chapter 10.3]

Symmetric spaces are also treated in [3, Chapter 11]. Further reading on holonomy can be found in [1] and [2].

Exercises.

- (1) O'Neill [3] problems 9.14, 9.15 (p. 260).
- (2) Petersen [4] exercises 10.5.1, 10.5.2, 10.5.9, 10.5.11, 10.5.13 (pp. 392-393).

References

- Robert Bryant. Recent advances in the theory of holonomy. Astérisque, (266):Exp. No. 861, 5, 351–374, 2000. Séminaire Bourbaki, Vol. 1998/99.
- [2] Dominic D. Joyce. *Riemannian holonomy groups and calibrated geometry*, volume 12 of *Oxford Graduate Texts in Mathematics*. Oxford University Press, Oxford, 2007.
- [3] Barrett O'Neill. Semi-Riemannian geometry, volume 103 of Pure and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity.
- [4] Peter Petersen. Riemannian geometry, volume 171 of Graduate Texts in Mathematics. Springer, Cham, third edition, 2016. URL: http://dx.doi.org/10.1007/ 978-3-319-26654-1, doi:10.1007/978-3-319-26654-1.