SF3674 DIFFERENTIAL GEOMETRY, GRADUATE COURSE, FALL 2016, FIRST SET OF HAND IN EXERCISES

MATTIAS DAHL, HANS RINGSTRÖM

EXERCISES

The following is the first set of hand in exercises. They should be handed in by October 7 2016.

- (1) Geodesics in the hyperbolic plane.
 - a) Calculate the Christoffel symbols of $g_{\mathbb{H}} = y^{-2}(dx^2 + dy^2)$ defined on $\mathbb{H} = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}$ and find at least one geodesic.
 - b) Prove that translations in x are isometries; that dilations $(x, y) \mapsto c(x, y), 0 < c \in \mathbb{R}$, are isometries; and that the inversion $(x, y) \mapsto \frac{(x, y)}{x^2 + y^2}$ is an isometry.
 - c) Prove that isometries map geodesics to geodesics, and use a) and b) to construct all geodesics on $(\mathbb{H}, g_{\mathbb{H}})$.
- (2) Exercise 3.21, page 96 of [1].
- (3) Let $H^n_{\nu}(r)$ and $S^n_{\nu}(r)$ be the pseudohyperbolic space and pseudosphere respectively, cf. Definition 23, p. 110 of O'Neill's book. For a general semi-Riemannian manifold (M, g), let

$$G = \operatorname{Ric} - \frac{1}{2}Sg,$$

where Ric is the Ricci tensor and S is the scalar curvature of (M, g). G is called the *Einstein tensor*. Compute the Einstein tensor of $H_1^4(r)$ and of $S_1^4(r)$.

Note that $S_1^4(r)$ is de Sitter space, a Lorentz manifold of interest in general relativity. The universal covering space of $H_1^4(r)$ is called *anti de Sitter* space.

References

 Barrett O'Neill. Semi-Riemannian geometry, volume 103 of Pure and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity.