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Plan for this course

» Lecture I: Algebraic modelling (Kinematics)
» Lecture Il: Sampling algebraic varieties: the reach.

» Lecture lll: Projective embeddings and Polar classes
(classical theory)

» Lecture IV: The Euclidian Distance Degree
» Lecture V: Bottleneck degree
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References:

» D. Eklund the numerical algebraic geometry of
bottlenecks. ArXiv

» DR-Eklund-Weinstein The bottleneck degree of a
variety. ArXiv
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» Consider a growing
tubular neighborhood
of M.

» At some point it
becomes singular
(M # {p}).

» Half the black distance

is called the reach of
M.

» And the line is called a
bottleneck.
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Let X, Y C C" be smooth algebraic varieties.

A bottleneck is a line L C C" normal to both X and Y.
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» Let X, Y C C" be smooth algebraic varieties.

» A bottleneck is a line L C C" normalto both X and Y.

» Here, x L y for x, y € C" means x'y = 0 where x and
y are viewed as column vectors.

» For (x,y) € X x Y with x # y, the line joining x and y
is a bottleneck if (x —y) L TxyXand (y —x) L T, Y.

» The special case X = Y is of particular interest (see
motivation).

» Goal: efficient method to compute bottlenecks given
defining equations for X and Y.

» Important subgoal: count bottlenecks. Let
B(X,Y) = #isolated bottlenecks, 5(X) := (X, X).
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Bottlenecks of algebraic varieties
Example

» A pair of generic lines X, Y c C? has no bottlenecks.
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Bottlenecks of algebraic varieties
Example

» A pair of generic lines X, Y c C? has no bottlenecks.

» A pair of (generic) parallel lines in C? have a
1-dimensional family of bottlenecks.
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Bottlenecks of algebraic varieties

Example
let X C C? be one of the two lines of the isotropic quadric

X2+ y? = (x+iy)(x —iy) =0,
say X = ((/,1)).
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Bottlenecks of algebraic varieties

Example
let X C C? be one of the two lines of the isotropic quadric

X2 +y? = (x+iy)(x —iy) =0,

say X = ((/,1)).
» Since (/,1) L (i, 1), X is orthogonal to itself,
» and X has one bottleneck, namely X.
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Bottlenecks of algebraic varieties
Example

» Two generic conics X, Y C C? have 12 bottlenecks.
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» Two generic conics X, Y C C? have 12 bottlenecks.

» Inthe case X = Y, there are 2 bottlenecks and there
exists a real X with both bottlenecks real.
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Bottlenecks of algebraic varieties
Example

» Two generic conics X, Y C C? have 12 bottlenecks.

» Inthe case X = Y, there are 2 bottlenecks and there
exists a real X with both bottlenecks real.

Remark

For generic curves X, Y C C? of degree dy and dy :

B(X,Y) < d%d2 = EDD(X)EDD(Y)
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Bottlenecks of algebraic varieties

Proposition (D. Eklund 2018)

For smooth curves X, Y C C" in general position of degree
dx and dy and genus gx and gy:

B(X,Y) = (3dx +2gx —2)(3dy +2gy —2) - [XN Y| =
_ EDD(X)EDD(Y) — [XN Y|.

Corollary
For generic curves X, Y C C? of degree dy and dy:

B(X,Y) < d2d2 — dydy
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Bottlenecks of algebraic varieties

Proposition (D. Eklund 2018)

For smooth curves X, Y C C" in general position of degree
dx and dy and genus gx and gy:

B(X,Y) = (3dx +2gx —2)(3dy +2gy —2) - [XN Y| =
_ EDD(X)EDD(Y) — [XN Y|.

General position: transversal intersection with Q

Corollary
For generic curves X, Y C C? of degree dy and dy:

B(X,Y) < d2d2 — dydy
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Bottlenecks of algebraic varieties

» When Y = {p} is a point not on X, bottlenecks of X
and Y reduce to the normal locus

NLx(p) ={x € X : (x —p) L TxX}.
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and Y reduce to the normal locus

NLx(p) ={x € X : (x —p) L TxX}.
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Bottlenecks of algebraic varieties

» When Y = {p} is a point not on X, bottlenecks of X
and Y reduce to the normal locus

NLx(p) = {x € X : (x —p) L TxX}.
» For generic p,
B(X,p) = EDD(X)
» Considering X =Y
B(X,Y) = isolated bottlenecks of X
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Bottlenecks of algebraic varieties

Theorem (D. Eklund)
For smooth varieties X, Y C C" in general position,

B(X,Y) < EDD(X)EDD(Y).

» We may have EDD(X) = 0; for example with
X = ((i,1)) C C? aline of the isotropic quadric as
above.
Consider the isotropic quadric Q = {>"7 ; x? = 0} in C".
General position means:
» EDD(X),EDD(Y) #0
» X and Y are smooth.
» X and Y intersect Q transversely.
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A numerical method for bottlenecks

» Let X, Y C C" be smooth varieties in general position.
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A numerical method for bottlenecks

» Let X, Y C C" be smooth varieties in general position.

» Let p,q € C" be general and v € C general.

» For t € [0, 1], impose the following conditions on
points x,y e C": x e X,y €Y,
Yx —p)+ (1 - ) (x —y) L TuX,
Wy -9+ -ty -x) LTY.

» Att=1:x—pl TxXandy —qL T,Y. Thatis
(x,¥) € NLx(p) x NLy(q).

» Att=0:x—y L T,X, T,Y. Thatis the line Xy is a
bottleneck! (If x # y)

» As t: 1 — 0the start points (x,y) € NLx(p) x NLy(q)
follow paths in C" x C" to endpoints (x, y) such that
Xy is a bottleneck or x = y.
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A numerical method for bottlenecks
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to compute all isolated bottlenecks of X and Y.
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A numerical method for bottlenecks

» This outlines an efficient numerical homotopy method
to compute all isolated bottlenecks of X and Y.

» Can use AG instead, inspired by the EDD
computation, in order to give a more general formula
for the bottlenecks of X, i.e. 8(X, X) = B(X).

B(X) = EDD(X)?2 —~R=(po+...+pn)>— R
pi = deg(P)

» X c PN in general position.
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Basic idea

Consider a curve C C P?.
Bottlenecks (p, q) such that

(p,q) € Cx C\ Aand N,C = NyC.

where A is the diagonal scheme in X x X.
Consider g : C — (P?)V = { lines in P2} assigning the line
NpCtop

The bottlenecks can be computed via the associated
Double Point Scheme
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Concrete algebraic formulation of the ideal of bottlenecks
and examples worked out in M2
MADDIE later today
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Assumption

Q isotropic quadric in PN,

X c PN is in general position (BN regular):
» X intersects Q transversally.
» X has only finitely many bottlenecks
» one additional (technical) assumption ...
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Theorem (DR-Eklund- Weinstein)
Assume X is in general position, then the number of
bottlenecks (counted with multiplicity) is given by explicit

polynomials in Py, ..., Pn, h where h id the hyperplane
class in PN
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Theorem (DR-Eklund- Weinstein)
Assume X is in general position, then the number of
bottlenecks (counted with multiplicity) is given by explicit
polynomials in Py, ..., Pn, h where h id the hyperplane
class in PN
in particular:

» foracurve CinP? :

B(C) = d* — 4d? + 3d
» foracurve CinP3 :
B(C) = p} +2d° — 3p; — 2d
» foracurve SinP5:

B(S) = (po + p1 + P2)? + (Po + p1)? + d? — deg(3H + 6hpy + 122 + po)

p; = deg(P;) = Pih"~'
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Let X c CN, let X c PN be its projective closure. Let Hy,
be the hyperplane at infinity and X, = X N Hx.

18/21



the affine case

Let X c CN, let X c PN be its projective closure. Let Hy,
be the hyperplane at infinity and X, = X N Hx.

Theorem (DR-Eklund-Weinstein)
Under the previous assumptions (for X and X..):

B(X) = B(X) — B(Xx)
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Polar calculus: example
DR-D. Eklund, C. Peterson. Adv. App. Math. 2018

code for p;, deg P;P; and deg(PkD™) for any divisor D.
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Polar calculus: example

DR-D. Eklund, C. Peterson. Adv. App. Math. 2018

code for p;, deg P;P; and deg(PkD™) for any divisor D.

J C Clxo, - - -, X5] generated by three general forms of
degree 2. D be the corresponding complete intersection
surface

I ideal generated by two general degree 2 elements of J,
defining a smooth quartic threefold X containing D.

Table:

Py P, Py PP, P?D P,D PD*> D?
degree 8 12 16 24 32 24 32 32

EDD(X) = 40 and B(X) =?
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SUMMARY

» Sampling can be an efficient method of visualising
the variety of solutions of polynomial equations, if we
can recover the homology.

» Any sample of size € < % recovers the homology of
the manifold

» An estimate of the reach requires an estimate of the
bottleneck degree of the variety.

» The bottleneck can be computed via classical
algebraic varieties: The polar classes. Generalizing
the EDD.
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Thanks to Maddie and Sascha

It's been fun!
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