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Plan for this course

I Lecture I: Algebraic modelling (Kinematics)
I Lecture II: Sampling algebraic varieties: the reach.
I Lecture III: Projective embeddings and Polar classes

(classical theory)
I Lecture IV: The Euclidian Distance Degree
I Lecture V: Bottleneck degree
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References:

I D. Eklund the numerical algebraic geometry of
bottlenecks. ArXiv

I DR-Eklund-Weinstein The bottleneck degree of a
variety. ArXiv
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Motivation

I Consider a growing
tubular neighborhood
of M.

I At some point it
becomes singular
(M 6= {p}).

I Half the black distance
is called the reach of
M.

I And the line is called a
bottleneck.
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Bottlenecks of algebraic varieties

I Let X ,Y ⊆ Cn be smooth algebraic varieties.

I A bottleneck is a line L ⊆ Cn normal to both X and Y .
I Here, x ⊥ y for x , y ∈ Cn means x ty = 0 where x and

y are viewed as column vectors.
I For (x , y) ∈ X × Y with x 6= y , the line joining x and y

is a bottleneck if (x − y) ⊥ TxX and (y − x) ⊥ TyY .
I The special case X = Y is of particular interest (see

motivation).
I Goal: efficient method to compute bottlenecks given

defining equations for X and Y .
I Important subgoal: count bottlenecks. Let
β(X ,Y ) := #isolated bottlenecks, β(X ) := β(X ,X ).
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Bottlenecks of algebraic varieties

Example

I A pair of generic lines X ,Y ⊂ C2 has no bottlenecks.

I A pair of (generic) parallel lines in C2 have a
1-dimensional family of bottlenecks.
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Bottlenecks of algebraic varieties

Example
let X ⊆ C2 be one of the two lines of the isotropic quadric

x2 + y2 = (x + iy)(x − iy) = 0,

say X = 〈(i ,1)〉.

I Since (i ,1) ⊥ (i ,1), X is orthogonal to itself,
I and X has one bottleneck, namely X .

7/21



Bottlenecks of algebraic varieties

Example
let X ⊆ C2 be one of the two lines of the isotropic quadric

x2 + y2 = (x + iy)(x − iy) = 0,

say X = 〈(i ,1)〉.
I Since (i ,1) ⊥ (i ,1), X is orthogonal to itself,

I and X has one bottleneck, namely X .

7/21



Bottlenecks of algebraic varieties

Example
let X ⊆ C2 be one of the two lines of the isotropic quadric

x2 + y2 = (x + iy)(x − iy) = 0,

say X = 〈(i ,1)〉.
I Since (i ,1) ⊥ (i ,1), X is orthogonal to itself,
I and X has one bottleneck, namely X .

7/21



Bottlenecks of algebraic varieties

Example

I Two generic conics X ,Y ⊆ C2 have 12 bottlenecks.

I In the case X = Y , there are 2 bottlenecks and there
exists a real X with both bottlenecks real.

Remark
For generic curves X ,Y ⊆ C2 of degree dX and dY :

β(X ,Y ) < d2
X d2

Y = EDD(X )EDD(Y )

8/21



Bottlenecks of algebraic varieties

Example

I Two generic conics X ,Y ⊆ C2 have 12 bottlenecks.
I In the case X = Y , there are 2 bottlenecks and there

exists a real X with both bottlenecks real.

Remark
For generic curves X ,Y ⊆ C2 of degree dX and dY :

β(X ,Y ) < d2
X d2

Y = EDD(X )EDD(Y )

8/21



Bottlenecks of algebraic varieties

Example

I Two generic conics X ,Y ⊆ C2 have 12 bottlenecks.
I In the case X = Y , there are 2 bottlenecks and there

exists a real X with both bottlenecks real.

Remark
For generic curves X ,Y ⊆ C2 of degree dX and dY :

β(X ,Y ) < d2
X d2

Y = EDD(X )EDD(Y )

8/21



Bottlenecks of algebraic varieties

Proposition (D. Eklund 2018)
For smooth curves X ,Y ⊆ Cn in general position of degree
dX and dY and genus gX and gY :

β(X ,Y ) = (3dX + 2gX − 2)(3dY + 2gY − 2)− |X ∩ Y | =

= EDD(X )EDD(Y )− |X ∩ Y |.

General position: transversal intersection with Q

Corollary
For generic curves X ,Y ⊆ C2 of degree dX and dY :

β(X ,Y ) < d2
X d2

Y − dX dY
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Bottlenecks of algebraic varieties

I When Y = {p} is a point not on X , bottlenecks of X
and Y reduce to the normal locus

NLX (p) = {x ∈ X : (x − p) ⊥ TxX}.

I For generic p,

β(X ,p) = EDD(X )

I Considering X = Y

β(X ,Y ) = isolated bottlenecks of X
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Bottlenecks of algebraic varieties

Theorem (D. Eklund)
For smooth varieties X ,Y ⊆ Cn in general position,

β(X ,Y ) 6 EDD(X )EDD(Y ).

I We may have EDD(X ) = 0; for example with
X = 〈(i ,1)〉 ⊆ C2 a line of the isotropic quadric as
above.

Consider the isotropic quadric Q = {
∑n

i=1 x2
i = 0} in Cn.

General position means:
I EDD(X ),EDD(Y ) 6= 0
I X and Y are smooth.
I X and Y intersect Q transversely.
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A numerical method for bottlenecks

I Let X ,Y ⊆ Cn be smooth varieties in general position.

I Let p,q ∈ Cn be general and γ ∈ C general.
I For t ∈ [0,1], impose the following conditions on

points x , y ∈ Cn: x ∈ X , y ∈ Y ,
γt(x − p) + (1− t)(x − y) ⊥ TxX ,
γt(y − q) + (1− t)(y − x) ⊥ TyY .

I At t = 1: x − p ⊥ TxX and y − q ⊥ TyY . That is
(x , y) ∈ NLX (p)× NLY (q).

I At t = 0: x − y ⊥ TxX ,TyY . That is the line xy is a
bottleneck! (If x 6= y )

I As t : 1→ 0 the start points (x , y) ∈ NLX (p)× NLY (q)
follow paths in Cn × Cn to endpoints (x , y) such that
xy is a bottleneck or x = y .
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A numerical method for bottlenecks

I This outlines an efficient numerical homotopy method
to compute all isolated bottlenecks of X and Y .

I Can use AG instead, inspired by the EDD
computation, in order to give a more general formula
for the bottlenecks of X , i.e. β(X ,X ) = β(X ).

β(X ) = EDD(X )2 − R = (p0 + . . .+ pn)2 − R

pi = deg(Pi)

I X ⊂ PN in general position.
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Basic idea

Consider a curve C ⊂ P2.
Bottlenecks (p,q) such that

(p,q) ∈ C × C \∆ and NpC = NqC.

where ∆ is the diagonal scheme in X × X .
Consider g : C → (P2)∨ = { lines in P2} assigning the line
NpC to p

The bottlenecks can be computed via the associated
Double Point Scheme
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Concrete algebraic formulation of the ideal of bottlenecks
and examples worked out in M2
MADDIE later today
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Assumption

Q isotropic quadric in PN .
X ⊂ PN is in general position (BN regular):

I X intersects Q transversally.
I X has only finitely many bottlenecks
I one additional (technical) assumption ...
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Theorem (DR-Eklund- Weinstein)
Assume X is in general position, then the number of
bottlenecks (counted with multiplicity) is given by explicit
polynomials in P0, . . . ,Pn,h where h id the hyperplane
class in PN

in particular:
I for a curve C in P2 :

β(C) = d4 − 4d2 + 3d
I for a curve C in P3 :

β(C) = p2
1 + 2d2 − 3p1 − 2d

I for a curve S in P5 :

β(S) = (p0 + p1 + p2)
2 + (p0 + p1)

2 + d2 − deg(3h2 + 6hp1 + 12p2
1 + p2)

pi = deg(Pi ) = Pi hN−i
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the affine case

Let X ⊂ CN , let X ⊂ PN be its projective closure. Let H∞
be the hyperplane at infinity and X∞ = X ∩ H∞.

Theorem (DR-Eklund-Weinstein)
Under the previous assumptions (for X and X∞):

β(X ) = β(X )− β(X∞)
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Polar calculus: example
DR-D. Eklund, C. Peterson. Adv. App. Math. 2018

code for pi , deg PiPj and deg(Pk
i Dm) for any divisor D.

J ⊆ C[x0, . . . , x5] generated by three general forms of
degree 2. D be the corresponding complete intersection
surface
I ideal generated by two general degree 2 elements of J,
defining a smooth quartic threefold X containing D.

Table:

P1 P2 P3 P1P2 P2
1 D P2D P1D2 D3

degree 8 12 16 24 32 24 32 32

EDD(X ) = 40 and β(X ) =?
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SUMMARY

I Sampling can be an efficient method of visualising
the variety of solutions of polynomial equations, if we
can recover the homology.

I Any sample of size ε < reach
2 recovers the homology of

the manifold
I An estimate of the reach requires an estimate of the

bottleneck degree of the variety.
I The bottleneck can be computed via classical

algebraic varieties: The polar classes. Generalizing
the EDD.
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Thanks to Maddie and Sascha

It’s been fun!
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