Algebraic Geometry with a view towards applications

Sandra Di Rocco, ICTP Trieste

Plan for this course

- Lecture I: Algebraic modelling (Kinematics)
- Lecture II: Sampling algebraic varieties: the reach.
- Lecture III: Projective embeddings and Polar classes (classical theory)
- Lecture IV: The Euclidian Distance Degree
- Lecture V: Bottleneck degree

References:

- D. Eklund the numerical algebraic geometry of bottlenecks. ArXiv
- DR-Eklund-Weinstein The bottleneck degree of a variety. ArXiv

Motivation

Motivation

- Consider a growing tubular neighborhood of M.

Motivation

- Consider a growing tubular neighborhood of M.
- At some point it becomes singular ($M \neq\{p\}$).

Motivation

- Consider a growing tubular neighborhood of M.
- At some point it becomes singular ($M \neq\{p\}$).
- Half the black distance is called the reach of M.
- And the line is called a bottleneck.

Bottlenecks of algebraic varieties

- Let $X, Y \subseteq \mathbb{C}^{n}$ be smooth algebraic varieties.

Bottlenecks of algebraic varieties

- Let $X, Y \subseteq \mathbb{C}^{n}$ be smooth algebraic varieties.
- A bottleneck is a line $L \subseteq \mathbb{C}^{n}$ normal to both X and Y.

Bottlenecks of algebraic varieties

- Let $X, Y \subseteq \mathbb{C}^{n}$ be smooth algebraic varieties.
- A bottleneck is a line $L \subseteq \mathbb{C}^{n}$ normal to both X and Y.
- Here, $x \perp y$ for $x, y \in \mathbb{C}^{n}$ means $x^{t} y=0$ where x and y are viewed as column vectors.

Bottlenecks of algebraic varieties

- Let $X, Y \subseteq \mathbb{C}^{n}$ be smooth algebraic varieties.
- A bottleneck is a line $L \subseteq \mathbb{C}^{n}$ normal to both X and Y.
- Here, $x \perp y$ for $x, y \in \mathbb{C}^{n}$ means $x^{t} y=0$ where x and y are viewed as column vectors.
- For $(x, y) \in X \times Y$ with $x \neq y$, the line joining x and y is a bottleneck if $(x-y) \perp T_{x} X$ and $(y-x) \perp T_{y} Y$.

Bottlenecks of algebraic varieties

- Let $X, Y \subseteq \mathbb{C}^{n}$ be smooth algebraic varieties.
- A bottleneck is a line $L \subseteq \mathbb{C}^{n}$ normal to both X and Y.
- Here, $x \perp y$ for $x, y \in \mathbb{C}^{n}$ means $x^{t} y=0$ where x and y are viewed as column vectors.
- For $(x, y) \in X \times Y$ with $x \neq y$, the line joining x and y is a bottleneck if $(x-y) \perp T_{x} X$ and $(y-x) \perp T_{y} Y$.
- The special case $X=Y$ is of particular interest (see motivation).

Bottlenecks of algebraic varieties

- Let $X, Y \subseteq \mathbb{C}^{n}$ be smooth algebraic varieties.
- A bottleneck is a line $L \subseteq \mathbb{C}^{n}$ normal to both X and Y.
- Here, $x \perp y$ for $x, y \in \mathbb{C}^{n}$ means $x^{t} y=0$ where x and y are viewed as column vectors.
- For $(x, y) \in X \times Y$ with $x \neq y$, the line joining x and y is a bottleneck if $(x-y) \perp T_{x} X$ and $(y-x) \perp T_{y} Y$.
- The special case $X=Y$ is of particular interest (see motivation).
- Goal: efficient method to compute bottlenecks given defining equations for X and Y.

Bottlenecks of algebraic varieties

- Let $X, Y \subseteq \mathbb{C}^{n}$ be smooth algebraic varieties.
- A bottleneck is a line $L \subseteq \mathbb{C}^{n}$ normal to both X and Y.
- Here, $x \perp y$ for $x, y \in \mathbb{C}^{n}$ means $x^{t} y=0$ where x and y are viewed as column vectors.
- For $(x, y) \in X \times Y$ with $x \neq y$, the line joining x and y is a bottleneck if $(x-y) \perp T_{x} X$ and $(y-x) \perp T_{y} Y$.
- The special case $X=Y$ is of particular interest (see motivation).
- Goal: efficient method to compute bottlenecks given defining equations for X and Y.
- Important subgoal: count bottlenecks. Let $\beta(X, Y):=$ \#isolated bottlenecks, $\beta(X):=\beta(X, X)$.

Bottlenecks of algebraic varieties

Example

- A pair of generic lines $X, Y \subset \mathbb{C}^{2}$ has no bottlenecks.

Bottlenecks of algebraic varieties

Example

- A pair of generic lines $X, Y \subset \mathbb{C}^{2}$ has no bottlenecks.
- A pair of (generic) parallel lines in \mathbb{C}^{2} have a 1-dimensional family of bottlenecks.

Bottlenecks of algebraic varieties

Example

let $X \subseteq \mathbb{C}^{2}$ be one of the two lines of the isotropic quadric

$$
x^{2}+y^{2}=(x+i y)(x-i y)=0
$$

say $X=\langle(i, 1)\rangle$.

Bottlenecks of algebraic varieties

Example

let $X \subseteq \mathbb{C}^{2}$ be one of the two lines of the isotropic quadric

$$
x^{2}+y^{2}=(x+i y)(x-i y)=0
$$

say $X=\langle(i, 1)\rangle$.

- Since $(i, 1) \perp(i, 1), X$ is orthogonal to itself,

Bottlenecks of algebraic varieties

Example

let $X \subseteq \mathbb{C}^{2}$ be one of the two lines of the isotropic quadric

$$
x^{2}+y^{2}=(x+i y)(x-i y)=0
$$

say $X=\langle(i, 1)\rangle$.

- Since $(i, 1) \perp(i, 1), X$ is orthogonal to itself,
- and X has one bottleneck, namely X.

Bottlenecks of algebraic varieties

Example

- Two generic conics $X, Y \subseteq \mathbb{C}^{2}$ have 12 bottlenecks.

Bottlenecks of algebraic varieties

Example

- Two generic conics $X, Y \subseteq \mathbb{C}^{2}$ have 12 bottlenecks.
- In the case $X=Y$, there are 2 bottlenecks and there exists a real X with both bottlenecks real.

Bottlenecks of algebraic varieties

Example

- Two generic conics $X, Y \subseteq \mathbb{C}^{2}$ have 12 bottlenecks.
- In the case $X=Y$, there are 2 bottlenecks and there exists a real X with both bottlenecks real.

Remark
For generic curves $X, Y \subseteq \mathbb{C}^{2}$ of degree d_{X} and d_{Y} :

$$
\beta(X, Y)<d_{X}^{2} d_{Y}^{2}=E D D(X) E D D(Y)
$$

Bottlenecks of algebraic varieties

Proposition (D. Eklund 2018)

For smooth curves $X, Y \subseteq \mathbb{C}^{n}$ in general position of degree d_{X} and d_{Y} and genus g_{X} and g_{Y} :

$$
\begin{gathered}
\beta(X, Y)=\left(3 d_{X}+2 g_{X}-2\right)\left(3 d_{Y}+2 g_{Y}-2\right)-|X \cap Y|= \\
=E D D(X) E D D(Y)-|X \cap Y|
\end{gathered}
$$

Corollary
For generic curves $X, Y \subseteq \mathbb{C}^{2}$ of degree d_{X} and d_{Y} :

$$
\beta(X, Y)<d_{X}^{2} d_{Y}^{2}-d_{X} d_{Y}
$$

Bottlenecks of algebraic varieties

Proposition (D. Eklund 2018)

For smooth curves $X, Y \subseteq \mathbb{C}^{n}$ in general position of degree d_{X} and d_{Y} and genus g_{X} and g_{Y} :

$$
\begin{gathered}
\beta(X, Y)=\left(3 d_{X}+2 g_{X}-2\right)\left(3 d_{Y}+2 g_{Y}-2\right)-|X \cap Y|= \\
=E D D(X) E D D(Y)-|X \cap Y|
\end{gathered}
$$

General position: transversal intersection with Q
Corollary
For generic curves $X, Y \subseteq \mathbb{C}^{2}$ of degree d_{X} and d_{Y} :

$$
\beta(X, Y)<d_{X}^{2} d_{Y}^{2}-d_{X} d_{Y}
$$

Bottlenecks of algebraic varieties

- When $Y=\{p\}$ is a point not on X, bottlenecks of X and Y reduce to the normal locus

$$
N L_{X}(p)=\left\{x \in X:(x-p) \perp T_{x} X\right\}
$$

Bottlenecks of algebraic varieties

- When $Y=\{p\}$ is a point not on X, bottlenecks of X and Y reduce to the normal locus

$$
N L_{X}(p)=\left\{x \in X:(x-p) \perp T_{x} X\right\}
$$

- For generic p,

$$
\beta(X, p)=E D D(X)
$$

Bottlenecks of algebraic varieties

- When $Y=\{p\}$ is a point not on X, bottlenecks of X and Y reduce to the normal locus

$$
N L_{X}(p)=\left\{x \in X:(x-p) \perp T_{x} X\right\}
$$

- For generic p,

$$
\beta(X, p)=E D D(X)
$$

- Considering $X=Y$
$\beta(X, Y)=$ isolated bottlenecks of X

Bottlenecks of algebraic varieties

Theorem (D. Eklund)
For smooth varieties $X, Y \subseteq \mathbb{C}^{n}$ in general position,

$$
\beta(X, Y) \leqslant E D D(X) E D D(Y)
$$

Bottlenecks of algebraic varieties

Theorem (D. Eklund)
For smooth varieties $X, Y \subseteq \mathbb{C}^{n}$ in general position,

$$
\beta(X, Y) \leqslant E D D(X) E D D(Y)
$$

- We may have $E D D(X)=0$; for example with $X=\langle(i, 1)\rangle \subseteq \mathbb{C}^{2}$ a line of the isotropic quadric as above.

Bottlenecks of algebraic varieties

Theorem (D. Eklund)
For smooth varieties $X, Y \subseteq \mathbb{C}^{n}$ in general position,

$$
\beta(X, Y) \leqslant E D D(X) E D D(Y)
$$

- We may have $E D D(X)=0$; for example with $X=\langle(i, 1)\rangle \subseteq \mathbb{C}^{2}$ a line of the isotropic quadric as above.
Consider the isotropic quadric $Q=\left\{\sum_{i=1}^{n} x_{i}^{2}=0\right\}$ in \mathbb{C}^{n}. General position means:

Bottlenecks of algebraic varieties

Theorem (D. Eklund)
For smooth varieties $X, Y \subseteq \mathbb{C}^{n}$ in general position,

$$
\beta(X, Y) \leqslant E D D(X) E D D(Y)
$$

- We may have $E D D(X)=0$; for example with $X=\langle(i, 1)\rangle \subseteq \mathbb{C}^{2}$ a line of the isotropic quadric as above.
Consider the isotropic quadric $Q=\left\{\sum_{i=1}^{n} x_{i}^{2}=0\right\}$ in \mathbb{C}^{n}.
General position means:
- $E D D(X), E D D(Y) \neq 0$

Bottlenecks of algebraic varieties

Theorem (D. Eklund)
For smooth varieties $X, Y \subseteq \mathbb{C}^{n}$ in general position,

$$
\beta(X, Y) \leqslant E D D(X) E D D(Y)
$$

- We may have $E D D(X)=0$; for example with $X=\langle(i, 1)\rangle \subseteq \mathbb{C}^{2}$ a line of the isotropic quadric as above.
Consider the isotropic quadric $Q=\left\{\sum_{i=1}^{n} x_{i}^{2}=0\right\}$ in \mathbb{C}^{n}.
General position means:
- $E D D(X), E D D(Y) \neq 0$
- X and Y are smooth.

Bottlenecks of algebraic varieties

Theorem (D. Eklund)
For smooth varieties $X, Y \subseteq \mathbb{C}^{n}$ in general position,

$$
\beta(X, Y) \leqslant E D D(X) E D D(Y)
$$

- We may have $E D D(X)=0$; for example with $X=\langle(i, 1)\rangle \subseteq \mathbb{C}^{2}$ a line of the isotropic quadric as above.
Consider the isotropic quadric $Q=\left\{\sum_{i=1}^{n} x_{i}^{2}=0\right\}$ in \mathbb{C}^{n}.
General position means:
- $E D D(X), E D D(Y) \neq 0$
- X and Y are smooth.
- X and Y intersect Q transversely.

A numerical method for bottlenecks

- Let $X, Y \subseteq \mathbb{C}^{n}$ be smooth varieties in general position.

A numerical method for bottlenecks

- Let $X, Y \subseteq \mathbb{C}^{n}$ be smooth varieties in general position.
- Let $p, q \in \mathbb{C}^{n}$ be general and $\gamma \in \mathbb{C}$ general.

A numerical method for bottlenecks

- Let $X, Y \subseteq \mathbb{C}^{n}$ be smooth varieties in general position.
- Let $p, q \in \mathbb{C}^{n}$ be general and $\gamma \in \mathbb{C}$ general.
- For $t \in[0,1]$, impose the following conditions on points $x, y \in \mathbb{C}^{n}: x \in X, y \in Y$, $\gamma t(x-p)+(1-t)(x-y) \perp T_{x} X$, $\gamma t(y-q)+(1-t)(y-x) \perp T_{y} Y$.

A numerical method for bottlenecks

- Let $X, Y \subseteq \mathbb{C}^{n}$ be smooth varieties in general position.
- Let $p, q \in \mathbb{C}^{n}$ be general and $\gamma \in \mathbb{C}$ general.
- For $t \in[0,1]$, impose the following conditions on points $x, y \in \mathbb{C}^{n}: x \in X, y \in Y$, $\gamma t(x-p)+(1-t)(x-y) \perp T_{x} X$, $\gamma t(y-q)+(1-t)(y-x) \perp T_{y} Y$.
- At $t=1: x-p \perp T_{x} X$ and $y-q \perp T_{y} Y$. That is $(x, y) \in N L_{X}(p) \times N L_{Y}(q)$.

A numerical method for bottlenecks

- Let $X, Y \subseteq \mathbb{C}^{n}$ be smooth varieties in general position.
- Let $p, q \in \mathbb{C}^{n}$ be general and $\gamma \in \mathbb{C}$ general.
- For $t \in[0,1]$, impose the following conditions on points $x, y \in \mathbb{C}^{n}: x \in X, y \in Y$, $\gamma t(x-p)+(1-t)(x-y) \perp T_{x} X$, $\gamma t(y-q)+(1-t)(y-x) \perp T_{y} Y$.
- At $t=1: x-p \perp T_{x} X$ and $y-q \perp T_{y} Y$. That is $(x, y) \in N L_{X}(p) \times N L_{Y}(q)$.
- At $t=0: x-y \perp T_{x} X, T_{y} Y$. That is the line $\overline{x y}$ is a bottleneck! (If $x \neq y$)

A numerical method for bottlenecks

- Let $X, Y \subseteq \mathbb{C}^{n}$ be smooth varieties in general position.
- Let $p, q \in \mathbb{C}^{n}$ be general and $\gamma \in \mathbb{C}$ general.
- For $t \in[0,1]$, impose the following conditions on points $x, y \in \mathbb{C}^{n}: x \in X, y \in Y$, $\gamma t(x-p)+(1-t)(x-y) \perp T_{x} X$, $\gamma t(y-q)+(1-t)(y-x) \perp T_{y} Y$.
- At $t=1: x-p \perp T_{x} X$ and $y-q \perp T_{y} Y$. That is $(x, y) \in N L_{X}(p) \times N L_{Y}(q)$.
- At $t=0: x-y \perp T_{x} X, T_{y} Y$. That is the line $\overline{x y}$ is a bottleneck! (If $x \neq y$)
- As $t: 1 \rightarrow 0$ the start points $(x, y) \in N L_{X}(p) \times N L_{Y}(q)$ follow paths in $\mathbb{C}^{n} \times \mathbb{C}^{n}$ to endpoints (x, y) such that $\overline{x y}$ is a bottleneck or $x=y$.

A numerical method for bottlenecks

- This outlines an efficient numerical homotopy method to compute all isolated bottlenecks of X and Y.

A numerical method for bottlenecks

- This outlines an efficient numerical homotopy method to compute all isolated bottlenecks of X and Y.
- Can use AG instead, inspired by the EDD computation, in order to give a more general formula for the bottlenecks of X, i.e. $\beta(X, X)=\beta(X)$.

$$
\begin{gathered}
\beta(X)=E D D(X)^{2}-R=\left(p_{0}+\ldots+p_{n}\right)^{2}-R \\
p_{i}=\operatorname{deg}\left(P_{i}\right)
\end{gathered}
$$

A numerical method for bottlenecks

- This outlines an efficient numerical homotopy method to compute all isolated bottlenecks of X and Y.
- Can use AG instead, inspired by the EDD computation, in order to give a more general formula for the bottlenecks of X, i.e. $\beta(X, X)=\beta(X)$.

$$
\beta(X)=E D D(X)^{2}-R=\left(p_{0}+\ldots+p_{n}\right)^{2}-R
$$

$$
p_{i}=\operatorname{deg}\left(P_{i}\right)
$$

- $X \subset \mathbb{P}^{N}$ in general position.

Basic idea

14/21

Basic idea

Consider a curve $C \subset \mathbb{P}^{2}$.

Basic idea

Consider a curve $C \subset \mathbb{P}^{2}$. Bottlenecks (p, q) such that

$$
(p, q) \in C \times C \backslash \Delta \text { and } N_{p} C=N_{q} C
$$

where Δ is the diagonal scheme in $X \times X$.

Basic idea

Consider a curve $C \subset \mathbb{P}^{2}$.
Bottlenecks (p, q) such that

$$
(p, q) \in C \times C \backslash \Delta \text { and } N_{p} C=N_{q} C
$$

where Δ is the diagonal scheme in $X \times X$.
Consider $g: C \rightarrow\left(\mathbb{P}^{2}\right)^{\vee}=\left\{\right.$ lines in $\left.\mathbb{P}^{2}\right\}$ assigning the line $N_{p} C$ to p

The bottlenecks can be computed via the associated Double Point Scheme

Concrete algebraic formulation of the ideal of bottlenecks and examples worked out in M2 MADDIE later today

Assumption

Q isotropic quadric in \mathbb{P}^{N}.
$X \subset \mathbb{P}^{N}$ is in general position (BN regular):

- X intersects Q transversally.
- X has only finitely many bottlenecks
- one additional (technical) assumption ...

17/21

Theorem (DR-Eklund- Weinstein)

Assume X is in general position, then the number of bottlenecks (counted with multiplicity) is given by explicit polynomials in P_{0}, \ldots, P_{n}, h where h id the hyperplane class in \mathbb{P}^{N}

Theorem (DR-Eklund- Weinstein)

Assume X is in general position, then the number of bottlenecks (counted with multiplicity) is given by explicit polynomials in P_{0}, \ldots, P_{n}, h where h id the hyperplane class in \mathbb{P}^{N}
in particular:

- for a curve C in \mathbb{P}^{2} :

$$
\beta(C)=d^{4}-4 d^{2}+3 d
$$

- for a curve C in \mathbb{P}^{3} :

$$
\beta(C)=p_{1}^{2}+2 d^{2}-3 p_{1}-2 d
$$

- for a curve S in \mathbb{P}^{5} :

$$
\begin{gathered}
\beta(S)=\left(p_{0}+p_{1}+p_{2}\right)^{2}+\left(p_{0}+p_{1}\right)^{2}+d^{2}-\operatorname{deg}\left(3 h^{2}+6 h p_{1}+12 p_{1}^{2}+p_{2}\right) \\
p_{i}=\operatorname{deg}\left(P_{i}\right)=P_{i} h^{N-i}
\end{gathered}
$$

the affine case

18/21

the affine case

Let $X \subset \mathbb{C}^{N}$, let $\bar{X} \subset \mathbb{P}^{N}$ be its projective closure. Let H_{∞} be the hyperplane at infinity and $X_{\infty}=\bar{X} \cap H_{\infty}$.

the affine case

Let $X \subset \mathbb{C}^{N}$, let $\bar{X} \subset \mathbb{P}^{N}$ be its projective closure. Let H_{∞} be the hyperplane at infinity and $X_{\infty}=\bar{X} \cap H_{\infty}$.

Theorem (DR-Eklund-Weinstein)
Under the previous assumptions (for \bar{X} and X_{∞}):

$$
\beta(X)=\beta(\bar{X})-\beta\left(X_{\infty}\right)
$$

Polar calculus: example
DR-D. Eklund, C. Peterson. Adv. App. Math. 2018 code for $p_{i}, \operatorname{deg} P_{i} P_{j}$ and $\operatorname{deg}\left(P_{i}^{k} D^{m}\right)$ for any divisor D.

Polar calculus: example

DR-D. Eklund, C. Peterson. Adv. App. Math. 2018 code for p_{i}, $\operatorname{deg} P_{i} P_{j}$ and $\operatorname{deg}\left(P_{i}^{k} D^{m}\right)$ for any divisor D. $J \subseteq \mathbb{C}\left[x_{0}, \ldots, x_{5}\right]$ generated by three general forms of degree 2. D be the corresponding complete intersection surface

Polar calculus: example

DR-D. Eklund, C. Peterson. Adv. App. Math. 2018
code for p_{i}, $\operatorname{deg} P_{i} P_{j}$ and $\operatorname{deg}\left(P_{i}^{k} D^{m}\right)$ for any divisor D. $J \subseteq \mathbb{C}\left[x_{0}, \ldots, x_{5}\right]$ generated by three general forms of degree 2. D be the corresponding complete intersection surface
I ideal generated by two general degree 2 elements of J, defining a smooth quartic threefold X containing D.

Polar calculus: example

DR-D. Eklund, C. Peterson. Adv. App. Math. 2018
code for p_{i}, deg $P_{i} P_{j}$ and deg $\left(P_{i}^{k} D^{m}\right)$ for any divisor D. $J \subseteq \mathbb{C}\left[x_{0}, \ldots, x_{5}\right]$ generated by three general forms of degree 2. D be the corresponding complete intersection surface
I ideal generated by two general degree 2 elements of J, defining a smooth quartic threefold X containing D.

Table:

	P_{1}	P_{2}	P_{3}	$P_{1} P_{2}$	$P_{1}^{2} D$	$P_{2} D$	$P_{1} D^{2}$	D^{3}
degree	8	12	16	24	32	24	32	32

Polar calculus: example

DR-D. Eklund, C. Peterson. Adv. App. Math. 2018
code for p_{i}, $\operatorname{deg} P_{i} P_{j}$ and $\operatorname{deg}\left(P_{i}^{k} D^{m}\right)$ for any divisor D. $J \subseteq \mathbb{C}\left[x_{0}, \ldots, x_{5}\right]$ generated by three general forms of degree 2. D be the corresponding complete intersection surface
I ideal generated by two general degree 2 elements of J, defining a smooth quartic threefold X containing D.

Table:

	P_{1}	P_{2}	P_{3}	$P_{1} P_{2}$	$P_{1}^{2} D$	$P_{2} D$	$P_{1} D^{2}$	D^{3}
degree	8	12	16	24	32	24	32	32

$E D D(X)=40$ and $\beta(X)=$?

SUMMARY

- Sampling can be an efficient method of visualising the variety of solutions of polynomial equations, if we can recover the homology.
- Any sample of size $\varepsilon<\frac{\text { reach }}{2}$ recovers the homology of the manifold
- An estimate of the reach requires an estimate of the bottleneck degree of the variety.
- The bottleneck can be computed via classical algebraic varieties: The polar classes. Generalizing the EDD.

Thanks to Maddie and Sascha

It's been fun!

