

Algebraic Geometry with a view towards applications

Sandra Di Rocco, ICTP Trieste

Plan for this course

- Lecture I: Algebraic modelling (Kinematics)
- Lecture II: Sampling algebraic varieties: the reach.
- Lecture III: Projective embeddings and Polar classes (classical theory)
- Lecture IV: The Euclidian Distance Degree
- Lecture V: Bottleneck degree

References:

- D. Eklund the numerical algebraic geometry of bottlenecks. ArXiv
- DR-Eklund-Weinstein The bottleneck degree of a variety. ArXiv

 Consider a growing tubular neighborhood of *M*.

- Consider a growing tubular neighborhood of *M*.
- At some point it becomes singular (M ≠ {p}).

- Consider a growing tubular neighborhood of *M*.
- At some point it becomes singular (M ≠ {p}).
- Half the black distance is called the *reach* of *M*.
- And the line is called a *bottleneck*.

• Let $X, Y \subseteq \mathbb{C}^n$ be smooth algebraic varieties.

- Let $X, Y \subseteq \mathbb{C}^n$ be smooth algebraic varieties.
- A *bottleneck* is a line $L \subseteq \mathbb{C}^n$ *normal* to both *X* and *Y*.

- Let $X, Y \subseteq \mathbb{C}^n$ be smooth algebraic varieties.
- A *bottleneck* is a line $L \subseteq \mathbb{C}^n$ *normal* to both X and Y.
- ▶ Here, $x \perp y$ for $x, y \in \mathbb{C}^n$ means $x^t y = 0$ where x and y are viewed as column vectors.

- Let $X, Y \subseteq \mathbb{C}^n$ be smooth algebraic varieties.
- A *bottleneck* is a line $L \subseteq \mathbb{C}^n$ *normal* to both X and Y.
- ► Here, $x \perp y$ for $x, y \in \mathbb{C}^n$ means $x^t y = 0$ where x and y are viewed as column vectors.
- For $(x, y) \in X \times Y$ with $x \neq y$, the line joining x and y is a bottleneck if $(x y) \perp T_x X$ and $(y x) \perp T_y Y$.

- Let $X, Y \subseteq \mathbb{C}^n$ be smooth algebraic varieties.
- A *bottleneck* is a line $L \subseteq \mathbb{C}^n$ *normal* to both *X* and *Y*.
- ► Here, $x \perp y$ for $x, y \in \mathbb{C}^n$ means $x^t y = 0$ where x and y are viewed as column vectors.
- ► For $(x, y) \in X \times Y$ with $x \neq y$, the line joining x and y is a bottleneck if $(x y) \perp T_x X$ and $(y x) \perp T_y Y$.
- The special case X = Y is of particular interest (see motivation).

- Let $X, Y \subseteq \mathbb{C}^n$ be smooth algebraic varieties.
- A *bottleneck* is a line $L \subseteq \mathbb{C}^n$ *normal* to both *X* and *Y*.
- ► Here, $x \perp y$ for $x, y \in \mathbb{C}^n$ means $x^t y = 0$ where x and y are viewed as column vectors.
- ► For $(x, y) \in X \times Y$ with $x \neq y$, the line joining x and y is a bottleneck if $(x y) \perp T_x X$ and $(y x) \perp T_y Y$.
- The special case X = Y is of particular interest (see motivation).
- Goal: efficient method to compute bottlenecks given defining equations for X and Y.

- Let $X, Y \subseteq \mathbb{C}^n$ be smooth algebraic varieties.
- A *bottleneck* is a line $L \subseteq \mathbb{C}^n$ *normal* to both *X* and *Y*.
- ► Here, $x \perp y$ for $x, y \in \mathbb{C}^n$ means $x^t y = 0$ where x and y are viewed as column vectors.
- ► For $(x, y) \in X \times Y$ with $x \neq y$, the line joining x and y is a bottleneck if $(x y) \perp T_x X$ and $(y x) \perp T_y Y$.
- The special case X = Y is of particular interest (see motivation).
- ► Goal: efficient method to compute bottlenecks given defining equations for *X* and *Y*.
- Important subgoal: count bottlenecks. Let β(X, Y) := #isolated bottlenecks, β(X) := β(X, X).

Example

▶ A pair of generic lines $X, Y \subset \mathbb{C}^2$ has no bottlenecks.

Example

- ▶ A pair of generic lines $X, Y \subset \mathbb{C}^2$ has no bottlenecks.
- A pair of (generic) parallel lines in C² have a 1-dimensional family of bottlenecks.

Example

let $X \subseteq \mathbb{C}^2$ be one of the two lines of the isotropic quadric

$$x^{2} + y^{2} = (x + iy)(x - iy) = 0,$$

say $X = \langle (i, 1) \rangle$.

Example

let $X \subseteq \mathbb{C}^2$ be one of the two lines of the isotropic quadric

$$x^{2} + y^{2} = (x + iy)(x - iy) = 0,$$

say $X = \langle (i, 1) \rangle$.

Since $(i, 1) \perp (i, 1)$, X is orthogonal to itself,

Example

let $X \subseteq \mathbb{C}^2$ be one of the two lines of the isotropic quadric

$$x^{2} + y^{2} = (x + iy)(x - iy) = 0,$$

say $X = \langle (i, 1) \rangle$.

- Since $(i, 1) \perp (i, 1)$, X is orthogonal to itself,
- ▶ and *X* has one bottleneck, namely *X*.

Example

▶ Two generic conics $X, Y \subseteq \mathbb{C}^2$ have 12 bottlenecks.

Example

- ▶ Two generic conics $X, Y \subseteq \mathbb{C}^2$ have 12 bottlenecks.
- ► In the case X = Y, there are 2 bottlenecks and there exists a real X with both bottlenecks real.

Example

- ▶ Two generic conics $X, Y \subseteq \mathbb{C}^2$ have 12 bottlenecks.
- ► In the case X = Y, there are 2 bottlenecks and there exists a real X with both bottlenecks real.

Remark

For generic curves $X, Y \subseteq \mathbb{C}^2$ of degree d_X and d_Y :

$$\beta(X, Y) < d_X^2 d_Y^2 = EDD(X)EDD(Y)$$

Proposition (D. Eklund 2018)

For smooth curves $X, Y \subseteq \mathbb{C}^n$ in general position of degree d_X and d_Y and genus g_X and g_Y :

$$eta(X, Y) = (3d_X + 2g_X - 2)(3d_Y + 2g_Y - 2) - |X \cap Y| =$$

= $EDD(X)EDD(Y) - |X \cap Y|.$

Corollary

For generic curves $X, Y \subseteq \mathbb{C}^2$ of degree d_X and d_Y :

$$\beta(X,Y) < d_X^2 d_Y^2 - d_X d_Y$$

Proposition (D. Eklund 2018)

For smooth curves $X, Y \subseteq \mathbb{C}^n$ in general position of degree d_X and d_Y and genus g_X and g_Y :

$$eta(X, Y) = (3d_X + 2g_X - 2)(3d_Y + 2g_Y - 2) - |X \cap Y| =$$

= $EDD(X)EDD(Y) - |X \cap Y|.$

General position: transversal intersection with Q

Corollary

For generic curves $X, Y \subseteq \mathbb{C}^2$ of degree d_X and d_Y :

$$\beta(X,Y) < d_X^2 d_Y^2 - d_X d_Y$$

When Y = {p} is a point not on X, bottlenecks of X and Y reduce to the *normal locus*

$$NL_X(\rho) = \{x \in X : (x - \rho) \perp T_x X\}.$$

When Y = {p} is a point not on X, bottlenecks of X and Y reduce to the *normal locus*

$$NL_X(\rho) = \{x \in X : (x - \rho) \perp T_x X\}.$$

► For generic *p*,

$$\beta(X,p) = EDD(X)$$

When Y = {p} is a point not on X, bottlenecks of X and Y reduce to the *normal locus*

$$NL_X(\rho) = \{x \in X : (x - \rho) \perp T_x X\}.$$

► For generic *p*,

$$\beta(X,p) = EDD(X)$$

Considering X = Y

 $\beta(X, Y) =$ isolated bottlenecks of X

Theorem (D. Eklund)

For smooth varieties $X, Y \subseteq \mathbb{C}^n$ in general position,

 $\beta(X, Y) \leq EDD(X)EDD(Y).$

Theorem (D. Eklund) For smooth varieties $X, Y \subseteq \mathbb{C}^n$ in general position,

 $\beta(X, Y) \leq EDD(X)EDD(Y).$

We may have *EDD*(X) = 0; for example with X = ⟨(i, 1)⟩ ⊆ C² a line of the isotropic quadric as above.

Theorem (D. Eklund)

For smooth varieties $X, Y \subseteq \mathbb{C}^n$ in general position,

 $\beta(X, Y) \leq EDD(X)EDD(Y).$

We may have *EDD*(X) = 0; for example with X = ⟨(i, 1)⟩ ⊆ C² a line of the isotropic quadric as above.

Theorem (D. Eklund)

For smooth varieties $X, Y \subseteq \mathbb{C}^n$ in general position,

 $\beta(X, Y) \leq EDD(X)EDD(Y).$

We may have *EDD*(X) = 0; for example with X = ⟨(i, 1)⟩ ⊆ C² a line of the isotropic quadric as above.

•
$$EDD(X), EDD(Y) \neq 0$$

Theorem (D. Eklund)

For smooth varieties $X, Y \subseteq \mathbb{C}^n$ in general position,

 $\beta(X, Y) \leq EDD(X)EDD(Y).$

We may have *EDD*(X) = 0; for example with X = ⟨(i, 1)⟩ ⊆ C² a line of the isotropic quadric as above.

- $EDD(X), EDD(Y) \neq 0$
- X and Y are smooth.

Theorem (D. Eklund)

For smooth varieties $X, Y \subseteq \mathbb{C}^n$ in general position,

 $\beta(X, Y) \leq EDD(X)EDD(Y).$

We may have *EDD*(X) = 0; for example with X = ⟨(i, 1)⟩ ⊆ C² a line of the isotropic quadric as above.

- $EDD(X), EDD(Y) \neq 0$
- X and Y are smooth.
- ► X and Y intersect Q transversely.

• Let $X, Y \subseteq \mathbb{C}^n$ be smooth varieties in general position.

- Let $X, Y \subseteq \mathbb{C}^n$ be smooth varieties in general position.
- Let $p, q \in \mathbb{C}^n$ be general and $\gamma \in \mathbb{C}$ general.

- Let $X, Y \subseteq \mathbb{C}^n$ be smooth varieties in general position.
- Let $p, q \in \mathbb{C}^n$ be general and $\gamma \in \mathbb{C}$ general.
- For $t \in [0, 1]$, impose the following conditions on points $x, y \in \mathbb{C}^n$: $x \in X, y \in Y$, $\gamma t(x - p) + (1 - t)(x - y) \perp T_x X$, $\gamma t(y - q) + (1 - t)(y - x) \perp T_y Y$.

- Let $X, Y \subseteq \mathbb{C}^n$ be smooth varieties in general position.
- Let $p, q \in \mathbb{C}^n$ be general and $\gamma \in \mathbb{C}$ general.
- For $t \in [0, 1]$, impose the following conditions on points $x, y \in \mathbb{C}^n$: $x \in X, y \in Y$, $\gamma t(x - p) + (1 - t)(x - y) \perp T_x X$, $\gamma t(y - q) + (1 - t)(y - x) \perp T_y Y$.
- At t = 1: $x p \perp T_x X$ and $y q \perp T_y Y$. That is $(x, y) \in NL_X(p) \times NL_Y(q)$.

- Let $X, Y \subseteq \mathbb{C}^n$ be smooth varieties in general position.
- Let $p, q \in \mathbb{C}^n$ be general and $\gamma \in \mathbb{C}$ general.
- For $t \in [0, 1]$, impose the following conditions on points $x, y \in \mathbb{C}^n$: $x \in X, y \in Y$, $\gamma t(x - p) + (1 - t)(x - y) \perp T_x X$, $\gamma t(y - q) + (1 - t)(y - x) \perp T_y Y$.
- At t = 1: $x p \perp T_x X$ and $y q \perp T_y Y$. That is $(x, y) \in NL_X(p) \times NL_Y(q)$.
- At t = 0: $x y \perp T_x X$, $T_y Y$. That is the line \overline{xy} is a bottleneck! (If $x \neq y$)

- Let $X, Y \subseteq \mathbb{C}^n$ be smooth varieties in general position.
- Let $p, q \in \mathbb{C}^n$ be general and $\gamma \in \mathbb{C}$ general.
- For $t \in [0, 1]$, impose the following conditions on points $x, y \in \mathbb{C}^n$: $x \in X, y \in Y$, $\gamma t(x - p) + (1 - t)(x - y) \perp T_x X$, $\gamma t(y - q) + (1 - t)(y - x) \perp T_y Y$.
- At t = 1: $x p \perp T_x X$ and $y q \perp T_y Y$. That is $(x, y) \in NL_X(p) \times NL_Y(q)$.
- At t = 0: $x y \perp T_x X$, $T_y Y$. That is the line \overline{xy} is a bottleneck! (If $x \neq y$)
- ▶ As $t : 1 \to 0$ the start points $(x, y) \in NL_X(p) \times NL_Y(q)$ follow paths in $\mathbb{C}^n \times \mathbb{C}^n$ to endpoints (x, y) such that \overline{xy} is a bottleneck or x = y.

This outlines an efficient numerical homotopy method to compute all isolated bottlenecks of X and Y.

- This outlines an efficient numerical homotopy method to compute all isolated bottlenecks of X and Y.
- Can use AG instead, inspired by the EDD computation, in order to give a more general formula for the bottlenecks of X, i.e. β(X, X) = β(X).

$$\beta(X) = EDD(X)^2 - R = (p_0 + \ldots + p_n)^2 - R$$

$$p_i = \deg(P_i)$$

- This outlines an efficient numerical homotopy method to compute all isolated bottlenecks of X and Y.
- Can use AG instead, inspired by the EDD computation, in order to give a more general formula for the bottlenecks of X, i.e. β(X, X) = β(X).

$$\beta(X) = EDD(X)^2 - R = (p_0 + \ldots + p_n)^2 - R$$

$$p_i = \deg(P_i)$$

•
$$X \subset \mathbb{P}^N$$
 in general position.

Consider a curve $\mathcal{C} \subset \mathbb{P}^2$.

Consider a curve $C \subset \mathbb{P}^2$. Bottlenecks (p, q) such that

 $(p,q) \in C \times C \setminus \Delta \text{ and } N_p C = N_q C.$

where Δ is the diagonal scheme in $X \times X$.

Consider a curve $C \subset \mathbb{P}^2$. Bottlenecks (p, q) such that

 $(p,q) \in C \times C \setminus \Delta \text{ and } N_p C = N_q C.$

where Δ is the diagonal scheme in $X \times X$. Consider $g : C \to (\mathbb{P}^2)^{\vee} = \{ \text{ lines in } \mathbb{P}^2 \}$ assigning the line N_pC to p

The bottlenecks can be computed via the associated *Double Point Scheme*

Concrete algebraic formulation of the ideal of bottlenecks and examples worked out in M2 MADDIE later today

Assumption

Q isotropic quadric in \mathbb{P}^N .

 $X \subset \mathbb{P}^N$ is in general position (BN regular):

- ► X intersects Q transversally.
- X has only finitely many bottlenecks
- one additional (technical) assumption ...

Theorem (DR-Eklund- Weinstein)

Assume X is in general position, then the number of bottlenecks (counted with multiplicity) is given by explicit polynomials in P_0, \ldots, P_n , h where h id the hyperplane class in \mathbb{P}^N

Theorem (DR-Eklund- Weinstein)

Assume X is in general position, then the number of bottlenecks (counted with multiplicity) is given by explicit polynomials in P_0, \ldots, P_n , h where h id the hyperplane class in \mathbb{P}^N

in particular:

▶ for a curve C in \mathbb{P}^2 :

$$\beta(C)=d^4-4d^2+3d$$

• for a curve C in \mathbb{P}^3 :

$$\beta(C) = p_1^2 + 2d^2 - 3p_1 - 2d$$

▶ for a curve S in P⁵:

 $\beta(S) = (p_0 + p_1 + p_2)^2 + (p_0 + p_1)^2 + d^2 - \deg(3h^2 + 6hp_1 + 12p_1^2 + p_2)$

$$p_i = \deg(P_i) = P_i h^{N-i}$$

the affine case

the affine case

Let $X \subset \mathbb{C}^N$, let $\overline{X} \subset \mathbb{P}^N$ be its projective closure. Let H_{∞} be the hyperplane at infinity and $X_{\infty} = \overline{X} \cap H_{\infty}$.

the affine case

Let $X \subset \mathbb{C}^N$, let $\overline{X} \subset \mathbb{P}^N$ be its projective closure. Let H_{∞} be the hyperplane at infinity and $X_{\infty} = \overline{X} \cap H_{\infty}$.

Theorem (DR-Eklund-Weinstein)

Under the previous assumptions (for \overline{X} and X_{∞}):

$$\beta(\boldsymbol{X}) = \beta(\overline{\boldsymbol{X}}) - \beta(\boldsymbol{X}_{\infty})$$

DR-D. Eklund, C. Peterson. Adv. App. Math. 2018

code for p_i , deg $P_i P_j$ and deg $(P_i^k D^m)$ for any divisor D.

DR-D. Eklund, C. Peterson. Adv. App. Math. 2018

code for p_i , deg P_iP_j and deg $(P_i^kD^m)$ for any divisor D. $J \subseteq \mathbb{C}[x_0, \ldots, x_5]$ generated by three general forms of degree 2. D be the corresponding complete intersection surface

DR-D. Eklund, C. Peterson. Adv. App. Math. 2018

code for p_i , deg P_iP_j and deg $(P_i^kD^m)$ for any divisor D. $J \subseteq \mathbb{C}[x_0, \ldots, x_5]$ generated by three general forms of degree 2. D be the corresponding complete intersection surface

I ideal generated by two general degree 2 elements of J, defining a smooth quartic threefold X containing D.

DR-D. Eklund, C. Peterson. Adv. App. Math. 2018

code for p_i , deg P_iP_j and deg $(P_i^kD^m)$ for any divisor D. $J \subseteq \mathbb{C}[x_0, \ldots, x_5]$ generated by three general forms of degree 2. D be the corresponding complete intersection surface

I ideal generated by two general degree 2 elements of J, defining a smooth quartic threefold X containing D.

	Table:									
	P_1	P_2	P_3	$P_{1}P_{2}$	$P_{1}^{2}D$	P_2D	$P_1 D^2$	D^3		
degree	8	12	16	24	32	24	32	32		

DR-D. Eklund, C. Peterson. Adv. App. Math. 2018

code for p_i , deg P_iP_j and deg $(P_i^kD^m)$ for any divisor D. $J \subseteq \mathbb{C}[x_0, \ldots, x_5]$ generated by three general forms of degree 2. D be the corresponding complete intersection surface

I ideal generated by two general degree 2 elements of J, defining a smooth quartic threefold X containing D.

Table:										
		P_1	P_2	P_3	P_1P_2	$P_1^2 D$	P_2D	$P_1 D^2$	D^3	
	degree	8	12	16	24	32	24	32	32	
$EDD(X) = 40$ and $\beta(X) = ?$										

SUMMARY

- Sampling can be an efficient method of visualising the variety of solutions of polynomial equations, if we can recover the homology.
- ► Any sample of size ε < reach/2 recovers the homology of the manifold</p>
- An estimate of the reach requires an estimate of the bottleneck degree of the variety.
- The bottleneck can be computed via classical algebraic varieties: The polar classes. Generalizing the EDD.

Thanks to Maddie and Sascha

It's been fun!

21/21