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Plan for this course

» Lecture I: Algebraic modelling (Kinematics)

» Lecture Il: Sampling algebraic varieties: the reach.

» Lecture llI: Projective embeddings and Polar classes
(classical theory)

» Lecture IV: The Euclidian Distance Degree

» Lecture V: Bottle Neck degree from classical geometry
(back to sampling)
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Equivalently one looks at the circles admitting tangent
solutions with the curve.




Equivalently one looks at the circles admitting tangent
solutions with the curve.

C is a conic: 3x3 matrix My = (cj)

the circle given by the the 3x3 symmetric matrix

My = M(U, r).

2x3x3 hyperderminant: H(cj, u, r) = 0 of degree 4 in r2.
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Theorem (Cayley)

Let C be an irreducible conic, then
» EDD(Circle) = 2
» EDD(Parabola) = 3
» EDD =4 otherwise
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Theorem (Cayley)
Let C be an irreducible conic, then
» EDD(Circle) = 2
» EDD(Parabola) = 3
» EDD = 4 otherwise
The key tool is the use of Schléfli decomposition

MD(A+, A2) = Hyperdet([M;, Ma]) = Disci(det(M; + tM>)).
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Polarity with respect to Q

» Let Q = (3 x2 = 0) c PN be the isotropic quadric
» p=(ap,...,an) € PV, pt =( g—ff-a,-:O) e (PN)*.
» Llinear of dim = k, L+ = Npe pt has dim= N—k —1.

x L yifandonlyif x € y*i.e. Zx,-y,- =0.

Observe that x € X is a critical point for dy,(X) if and only if
u-xe Ty,
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Projective case

(*) for technical reasons we assume that X N Q = @. Let
X c PN be a smooth variety of dimension n.

EDD,(X) = EDD,(C(X))

where C(X) is the affine cone of X in CN+1,
critical points x € X w.r.t u € PN satisfy:

u
rank | x| <c+1

Jx
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Plane curve

Let I(C) = (F), F € C[xo, X1, X2], of degree d.
Look for y such that

Uop ty U
F(y)=det| ¥o Y1 Yo =0
W) W) W)

EDD, = d?.
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the Euclidean Normal space

Let X c PN be a smooth variety of dimension n.
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the Euclidean Normal space

Let X c PN be a smooth variety of dimension n.

Let L, M two linear spaces in PN. < M, L > is the linear
span in P".

p € X, NoX =< TpoX*, p>=PN-"s called the Euclidean
Normal Space.
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The projective Euclidean Normal Bundle
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The projective Euclidean Normal Bundle

N
0—>K—>@(’)X—>J1—>O
0

Ky = {u e TyX*} Consider:
ohOx - KV @ Ox(1) = E
X =< T)J(_’X,X >,]P)(Ex) = Nxx

P(E) is the Euclidean Normal bundle
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The end point map
N
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0
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The end point map

N
P(E) = P(E 0x) = X x PV
0

7 : P(E) — X bundle map:
71 (X) = {(x,u) |ue< TEX, x >}

e : P(E) — PN is called the end point map
e '(u) ={(x,u)|ue< T+X, x >}
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Finite general EDD

Theorem
Let u € PN be a generic point, Then EDD,(X) is finite and
constant.
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Finite general EDD

Theorem
Let u € PN be a generic point, Then EDD,(X) is finite and
constant.

EDD,(X) = EDD(X)
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Polar classes

Theorem
Under the previous assumptions:

EDD(X) = zn: Pi(X)
0
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Polar classes

Theorem
Under the previous assumptions:

EDD(X) = zn: Pi(X)
0

(*) True in much more generality!
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Polar calculus: example
DR-D. Eklund, C. Peterson. Adv. App. Math. 2018
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Polar calculus: example
DR-D. Eklund, C. Peterson. Adv. App. Math. 2018

J C Clxo, ..., Xs] generated by three general forms of
degree 2. D be the corresponding complete intersection
surface

| ideal generated by two general degree 2 elements of J,
defining a smooth quartic threefold X containing D.

Table:

Py P, Py PP, P?D P,D PD*> D?
degree 8 12 16 24 32 24 32 32

EDD(X) = 40 and B(X) =?
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