

Algebraic Geometry with a view towards applications

Sandra Di Rocco, ICTP Trieste

Plan for this course

- Lecture I: Algebraic modelling (Kinematics)
- ► Lecture II: Sampling algebraic varieties: the reach.
- Lecture III: Projective embeddings and Polar classes (classical theory)
- Lecture IV: The Euclidian Distance Degree
- Lecture V: Bottle Neck degree from classical geometry (back to sampling)

Consider $X \subset \mathbb{R}^n$. The Euclidian Distance Degree, $EDD_u(X)$,

Consider $X \subset \mathbb{R}^n$. The Euclidian Distance Degree, $EDD_u(X)$,

number of critical points of:

 $u \mapsto d_u(X) = min_{x \in X}(d_u(x))$ for $u \in \mathbb{R}^n$ generic.

Consider $X \subset \mathbb{R}^n$. The Euclidian Distance Degree, $EDD_u(X)$,

number of critical points of:

 $u \mapsto d_u(X) = min_{x \in X}(d_u(x))$ for $u \in \mathbb{R}^n$ generic.

Equivalently one looks at the circles admitting tangent solutions with the curve.

Equivalently one looks at the circles admitting tangent solutions with the curve.

C is a conic: 3x3 matrix $M_1 = (c_{ij})$ the circle given by the the 3x3 symmetric matrix $M_2 = M(u, r)$. 2x3x3 hyperderminant: $H(c_{ij}, u, r) = 0$ of degree 4 in r^2 .

Theorem (Cayley)

Let C be an irreducible conic, then

- EDD(Circle) = 2
- EDD(Parabola) = 3
- EDD = 4 otherwise

Theorem (Cayley)

Let C be an irreducible conic, then

- EDD(Circle) = 2
- EDD(Parabola) = 3
- EDD = 4 otherwise

The key tool is the use of Schläfli decomposition

 $\textit{MD}(\textit{A}_1,\textit{A}_2) = \textit{Hyperdet}([\textit{M}_1,\textit{M}_2]) = \textit{Disc}_t(\textit{det}(\textit{M}_1 + \textit{tM}_2)).$

References

- R. Thomas, *Euclidean Distance Degree*, SIAM News October 2014
- J. Draisma, E. Horobet, G. Ottaviani, B. Sturmfels, R. Thomas, *The Euclidean Distance Degree of a variety*, Fo.C.M 2015.
- R. Piene, Polar Varieties Revisited, Computer Algebra and Polynomials Springer, 2015.

Polarity with respect to Q

.

- Let $Q = (\sum x_i^2 = 0) \subset \mathbb{P}^N$ be the *isotropic quadric*
- ► $p = (a_0, ..., a_N) \in \mathbb{P}^N, p^{\perp} = (\sum \frac{\partial Q}{\partial x_i} \cdot a_i = 0) \in (\mathbb{P}^N)^*.$
- ► L linear of dim = k, $L^{\perp} = \bigcap_{p \in L} p^{\perp}$ has dim = N k 1.

$$x \perp y$$
 if and only if $x \in y^{\perp}$ i.e. $\sum x_i y_i = 0$.

Observe that $x \in X$ is a critical point for $d_u(X)$ if and only if $u - x \in T_{X,x}^{\perp}$.

Projective case

(*) for technical reasons we assume that $X \cap Q = \emptyset$. Let $X \subset \mathbb{P}^N$ be a smooth variety of dimension *n*.

 $EDD_u(X) = EDD_u(C(X))$ where C(X) is the affine cone of X in \mathbb{C}^{N+1} . critical points $x \in X$ w.r.t $u \in \mathbb{P}^N$ satisfy:

$$rank \begin{bmatrix} u \\ x \\ J_x \end{bmatrix} < c+1$$

Plane curve

Let $I(C) = (F), F \in \mathbb{C}[x_0, x_1, x_2]$, of degree *d*. Look for *y* such that

$$F(y) = \det \begin{bmatrix} u_0 & u_1 & u_2 \\ y_0 & y_1 & y_2 \\ \frac{\partial F}{\partial x_0}(y) & \frac{\partial F}{\partial x_1}(y) & \frac{\partial F}{\partial x_2}(y) \end{bmatrix} = 0$$

$$EDD_u = d^2.$$

the Euclidean Normal space

Let $X \subset \mathbb{P}^N$ be a smooth variety of dimension *n*.

the Euclidean Normal space

Let $X \subset \mathbb{P}^N$ be a smooth variety of dimension *n*.

Let L, M two linear spaces in $\mathbb{P}^{N} \cdot \langle M, L \rangle$ is the linear span in \mathbb{P}^{n} .

the Euclidean Normal space

Let $X \subset \mathbb{P}^N$ be a smooth variety of dimension *n*.

Let *L*, *M* two linear spaces in \mathbb{P}^{N} . < M, L > is the linear span in \mathbb{P}^{n} . $p \in X, N_{p}X = < T_{p}X^{\perp}, p > \cong \mathbb{P}^{N-n}$ is called the *Euclidean Normal Space*.

$$0 o K o igoplus_0^N \mathcal{O}_X o J_1 o 0$$

 $\mathcal{K}_x^{ee} = \{ u \in T_x X^{\perp} \}$

$$0 \to \mathcal{K} \to \bigoplus_{0}^{N} \mathcal{O}_{X} \to J_{1} \to 0$$
$$\mathcal{K}_{x}^{\vee} = \{ u \in T_{x} X^{\perp} \} \text{ Consider:}$$
$$\oplus_{0}^{N} \mathcal{O}_{X} \twoheadrightarrow \mathcal{K}^{\vee} \oplus \mathcal{O}_{X}(1) = E$$

$$0 \to \mathcal{K} \to \bigoplus_{0}^{N} \mathcal{O}_{X} \to J_{1} \to 0$$
$$\mathcal{K}_{x}^{\vee} = \{ u \in T_{x} X^{\perp} \} \text{ Consider:}$$
$$\bigoplus_{0}^{N} \mathcal{O}_{X} \twoheadrightarrow \mathcal{K}^{\vee} \oplus \mathcal{O}_{X}(1) = E$$
$$E_{x} = \langle T_{X,x}^{\perp}, x \rangle, \mathbb{P}(E_{x}) = N_{x} X$$

$$0 \to \mathcal{K} \to \bigoplus_{0}^{N} \mathcal{O}_{X} \to J_{1} \to 0$$
$$\mathcal{K}_{x}^{\vee} = \{ u \in T_{x} X^{\perp} \} \text{ Consider:}$$
$$\bigoplus_{0}^{N} \mathcal{O}_{X} \twoheadrightarrow \mathcal{K}^{\vee} \oplus \mathcal{O}_{X}(1) = E$$
$$E_{x} = \langle T_{X,x}^{\perp}, x \rangle, \mathbb{P}(E_{x}) = N_{x} X$$

 $\mathbb{P}(E)$ is the Euclidean Normal bundle

$$\mathbb{P}(E) \hookrightarrow \mathbb{P}(igoplus_0^N \mathcal{O}_X) \cong X imes \mathbb{P}^N$$

$$\pi : \mathbb{P}(E) \to X \text{ bundle map:} \\ \pi^{-1}(x) = \{(x, u) \mid u \in \langle T_x^{\perp}X, x \rangle\}.$$

$$\mathbb{P}(E) \hookrightarrow \mathbb{P}(igoplus_0^N \mathcal{O}_X) \cong X imes \mathbb{P}^N$$

 $\pi : \mathbb{P}(E) \to X \text{ bundle map:} \\ \pi^{-1}(x) = \{(x, u) \mid u \in T_x^{\perp} X, x > \}.$

 $e : \mathbb{P}(E) \to \mathbb{P}^N$ is called the **end point map** $e^{-1}(u) = \{(x, u) \mid u \in \langle T_x^{\perp}X, x \rangle\}.$

Finite general EDD

Theorem

Let $u \in \mathbb{P}^N$ be a generic point, Then $EDD_u(X)$ is finite and constant.

Finite general EDD

Theorem

Let $u \in \mathbb{P}^N$ be a generic point, Then $EDD_u(X)$ is finite and constant.

 $EDD_u(X) = EDD(X)$

Polar classes

Theorem

Under the previous assumptions:

$$EDD(X) = \sum_{0}^{n} P_i(X)$$

Polar classes

Theorem

Under the previous assumptions:

$$EDD(X) = \sum_{0}^{n} P_i(X)$$

(*) True in much more generality!

DR-D. Eklund, C. Peterson. Adv. App. Math. 2018

DR-D. Eklund, C. Peterson. Adv. App. Math. 2018

 $J \subseteq \mathbb{C}[x_0, \ldots, x_5]$ generated by three general forms of degree 2. *D* be the corresponding complete intersection surface

DR-D. Eklund, C. Peterson. Adv. App. Math. 2018

 $J \subseteq \mathbb{C}[x_0, \ldots, x_5]$ generated by three general forms of degree 2. *D* be the corresponding complete intersection surface

I ideal generated by two general degree 2 elements of J, defining a smooth quartic threefold X containing D.

DR-D. Eklund, C. Peterson. Adv. App. Math. 2018

 $J \subseteq \mathbb{C}[x_0, \ldots, x_5]$ generated by three general forms of degree 2. *D* be the corresponding complete intersection surface

I ideal generated by two general degree 2 elements of J, defining a smooth quartic threefold X containing D.

Table:										
	P_1	P_2	P_3	$P_{1}P_{2}$	$P_1^2 D$	P_2D	$P_1 D^2$	D^3		
degree	8	12	16	24	32	24	32	32		

DR-D. Eklund, C. Peterson. Adv. App. Math. 2018

 $J \subseteq \mathbb{C}[x_0, \ldots, x_5]$ generated by three general forms of degree 2. *D* be the corresponding complete intersection surface

I ideal generated by two general degree 2 elements of J, defining a smooth quartic threefold X containing D.

Table:										
degree	P ₁ 8	<i>P</i> ₂ 12	<i>P</i> ₃ 16	P ₁ P ₂ 24	P ₁ ² D 32	P ₂ D 24	P ₁ D ² 32	D ³ 32		

EDD(X) = 40 and $\beta(X) = ?$