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Plan for this course

I Lecture I: Algebraic modelling (Kinematics)
I Lecture II: Sampling algebraic varieties: the reach.
I Lecture III: Projective embeddings and Polar classes

(classical theory)
I Lecture IV: The Euclidian Distance Degree

(closest point)
I Lecture V: Bottle Neck degree from classical geometry

(back to sampling)
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Main goals

I Definition of reach.
I Sampling.
I Recovering the topological signature.
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The reach of a manifold

References:
I Estimating the reach of a Manifold. E. Aamari, J. Kim,

F. Chazal, B. Michel, A. Rinaldo, et al.. Electronic
journal of Statistics, Vol. 13, 2019 1359-1399.

I Computing the homology of basic semialgebraic sets
in weak exponential time P. Bürgisser, F. Cucker and P.
Lairez. Journal of the ACM 66(1), 2019.

I Learning algebraic varieties from samples. P.
Breiding, S. Kalisnik, B. Sturmfels and M. Weinstein.
Revista Matemática Complutense. Vol. 31, 3, 2018,
pp 545-593.

I Sampling Algebraic Varieties. DR, D. Eklund, O.
Gävfert. In progress.
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(Real) Sampling

X ⊂ RN , IX ⇒ Cloud data on X ⇒
(CW) Complex ⇒ Invariants of X

Two important steps
I density
I complex
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Application: Variety Sampling

I Consider a compact
submanifold M ⊆ Rn.

I And a point cloud
E ⊂ M.

I Put growing balls
around the points E .

I Geometry of M
captured by union of
balls for ball sizes in
certain interval.
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Application: Variety Sampling

I Consider a growing
tubular neighborhood
of M.

I At some point it
becomes singular
(M 6= {p}).

I Half the black distance
is called the reach of
M.

I And the line is a
bottleneck.
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Set up

Consider Rn , endowed with the euclidean inner product
< x , y >=

∑
xiyi .

Let X ⊂ RN be a smooth compact algebraic variety defined
by an ideal I = (f1, ..., fk ) ⊂ R[x1, ..., xn].
Let p ∈ X and consider the Jacobian matrix

J(f1, ..., fk ) = (
∂fi
∂xj

)i,j

evaluated at p.
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I Since X is smooth, the rows of the Jacobian matrix
span an (n − d)-dimensional linear subspace of Rn,
where d is the local dimension of X at p.

I This subspace translated to the point p is called the
normal space of X at p, and is denoted Np(X ) (fibers
of the Normal Bundle).
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For p ∈ Rn, Consider the distance function

dX (p) = minx∈X ||x − p||
and

πX (p) = {x ∈ X | ||x − p|| = dX (p)}

For r > 0 let Xr the tubular neighborhood of X of radius r

Xr = {p ∈ Rn |dX (p) < r}

∆X = {p ∈ Rn : πX (p) > 1} , the medial axis

MX = ∆X
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∆X = {p ∈ Rn : πX (p) > 1} , the medial axis

MX = ∆X

Picture: International Conference on Cyberworlds (CW’07). Henning Naß,

Franz-Erich Wolter and Hannes Thielhelm.DOI:10.1109/CW.2007.55
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The Reach

Define the reach of X as:

τX = infx∈X ,y∈∆X {d(x , y)}

Notice that for each point x ∈ Xr where r < τ |πX (p)| = 1.
This point is called the closest point of p on X .
Facts:

I X is compact, thus τX > 0.
I dim X > 0 (not convex) τX <∞.
I τX is a combination of local and global estimates:
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I Locally: ρX is the minimal radius of curvature on X (
radius of curvature at x ∈ X is the reciprocal of the maximal
curvature of a geodesic passing through x .)

I Globally: bottlenecks:

ηX =
1
2

inf{||x−y || : (x , y) ∈ X×X , x 6= y , y ∈ NxX , x ∈ Ny X}.

τX = min{ρX , ηX}
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From:Estimating the reach of a Manifold

Picture: Estimating the reach of a Manifold. E. Aamari, J. Kim, F. Chazal, B.

Michel, A. Rinaldo, et al.
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Sample

X ⊂ RN smooth, compact variety.

Definition
Let ε > 0. A finite set of points E ⊂ X is called an ε-sample
of X if for every x ∈ X there is a point e ∈ E such that
IIx − eII < ε.

Definition

I Let q ∈ RN and let c(q, ε) ⊂ RN denote the closed ball
centered at q and of radius ε.

I Consider
C(ε,E) =

⋃

q∈E

c(q, ε).
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Sample gives homology

Theorem
Let ε > 0 and consider E an ε

2 sample of X . If ε < 1
2τ for all

p ∈ E then X ↪→ C(E , ε) is a homotopy equivalence.
proof:

I πX : C(E , ε)→ X is continuous.
I C(E , ε)× [0,1]→ C(E , ε) defines as

(x , t) 7→ tπX (x) + (1− t)x is a deformation retract. To
prove: tπX (x) + (1− t)x ∈ C(E , ε).
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One way to sample via Numerical AG

Let X ∈ RN be a variety of dimension d . Let
Td ⊂ {1,2, . . . ,N} be the set of unordered d-tuples. Let
e1, . . . ,eN be the standard basis. For t = (t1, . . . , td ) ∈ Td
we let Vt = Span(eti , . . . ,etd ). For δ > 0 consider the grid

Gt (δ) = δZ ∩ Vt

and the projection πt : RN → Vt . Then

Eδ =
⋃

t∈Td ,g∈Gt

X ∩ π−1
t (g)

is a finite sample (up to random perturbation).
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One way to sample via Numerical AG

Theorem
If 0 < δ < ε√

N
and Eδ 6= ∅, then Eδ is ε sample of X .

Use numerical methods to construct sample:

I Bertini: Bates-Hauenstein-Sommese-Wampler
I HomotopyContinuation.jl: Paul Breiding and Sascha

Timme
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Simplicial Complex

A simplicial complex on X is a collection K of subsets of X
such that if σ ∈ K and τ ⊆ σ, then τ ∈ K .

Figure: Geometric realization of a simplicial complex. Photo
credit: Wikipedia
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From Data to Simplicial Complexes

Consider a finite metric space (X ,d).
The Vietoris-Rips complex on X at scale ε, VR(X)ε
consists of :

I singletons {x}, for all x ∈ X .
I sets {x0, . . . , xn} ⊆ X , such that d(xi , xj) 6 ε for all

0 6 i , j 6 n.
4 ROBERT GHRIST

RεCε

ε

Figure 2. A fixed set of points [upper left] can be completed to
a a Čech complex Cε [lower left] or to a Rips complex Rε [lower
right] based on a proximity parameter ε [upper right]. This Čech
complex has the homotopy type of the ε/2 cover (S1 ∨ S1 ∨ S1),
while the Rips complex has a wholly different homotopy type (S1∨
S2).

needed for a Čech complex. This virtue — that coarse proximity data on pairs of
nodes determines the Rips complex — is not without cost. The penalty for this
simplicity is that it is not immediately clear what is encoded in the homotopy type
of R. In general, it is neither a subcomplex of En

nor does it necessarily behave
like an n-dimensional space at all (Figure 2).

1.4. Which ε? Converting a point cloud data set into a global complex (whether
Rips, Čech, or other) requires a choice of parameter ε. For ε sufficiently small,
the complex is a discrete set; for ε sufficiently large, the complex is a single high-
dimensional simplex. Is there an optimal choice for ε which best captures the
topology of the data set? Consider the point cloud data set and a sequence of Rips
complexes as illustrated in Figure 3. This point cloud is a sampling of points on
a planar annulus. Can this be deduced? From the figure, it certainly appears as
though an ideal choice of ε, if it exists, is rare: by the time ε is increased so as
to remove small holes from within the annulus, the large hole distinguishing the
annulus from the disk is filled in.

2. Algebraic topology for data

Algebraic topology offers a mature set of tools for counting and collating holes
and other topological features in spaces and maps between them. In the context of
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nodes determines the Rips complex — is not without cost. The penalty for this
simplicity is that it is not immediately clear what is encoded in the homotopy type
of R. In general, it is neither a subcomplex of En

nor does it necessarily behave
like an n-dimensional space at all (Figure 2).

1.4. Which ε? Converting a point cloud data set into a global complex (whether
Rips, Čech, or other) requires a choice of parameter ε. For ε sufficiently small,
the complex is a discrete set; for ε sufficiently large, the complex is a single high-
dimensional simplex. Is there an optimal choice for ε which best captures the
topology of the data set? Consider the point cloud data set and a sequence of Rips
complexes as illustrated in Figure 3. This point cloud is a sampling of points on
a planar annulus. Can this be deduced? From the figure, it certainly appears as
though an ideal choice of ε, if it exists, is rare: by the time ε is increased so as
to remove small holes from within the annulus, the large hole distinguishing the
annulus from the disk is filled in.

2. Algebraic topology for data

Algebraic topology offers a mature set of tools for counting and collating holes
and other topological features in spaces and maps between them. In the context of

Figure: VR(X)ε, Photo credit: R. Ghrist, 2008, Barcodes: The Persistent
Topology of Data.
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From Data to Simplicial Complexes

If ε 6 ε′, VR(X)ε is a sub-complex of VR(X)ε′ .
Therefore by considering increasing values of ε, we obtain
a filtration of simplicial complexes.

21/24



Persistent Homology

Given a filtration of simplicial complexes:

X0
i0
↪→ X1

i1
↪→ . . .

ik−1
↪→ Xk ↪→ . . .

PERSISTENT TOPOLOGY OF DATA 67

which come into existence at parameter ti and which persist for all future parame-
ter values. The torsional elements correspond to those homology generators which
appear at parameter rj and disappear at parameter rj + sj . At the chain level,
the Structure Theorem provides a birth-death pairing of generators of C (excepting
those that persist to infinity).

2.3. Barcodes. The parameter intervals arising from the basis for H∗(C; F ) in
Equation (2.3) inspire a visual snapshot of Hk(C; F ) in the form of a barcode. A
barcode is a graphical representation of Hk(C; F ) as a collection of horizontal line
segments in a plane whose horizontal axis corresponds to the parameter and whose
vertical axis represents an (arbitrary) ordering of homology generators. Figure 4
gives an example of barcode representations of the homology of the sampling of
points in an annulus from Figure 3 (illustrated in the case of a large number of
parameter values εi).

H0

H1

H2
ε

ε

ε

Figure 4. [bottom] An example of the barcodes for H∗(R) in the
example of Figure 3. [top] The rank of Hk(Rεi

) equals the number
of intervals in the barcode for Hk(R) intersecting the (dashed) line
ε = εi.

Theorem 2.3 yields the fundamental characterization of barcodes.

Theorem 2.4 ([22]). The rank of the persistent homology group Hi→j
k (C; F ) is

equal to the number of intervals in the barcode of Hk(C; F ) spanning the parameter
interval [i, j]. In particular, H∗(Ci

∗; F ) is equal to the number of intervals which
contain i.

A barcode is best thought of as the persistence analogue of a Betti number.
Recall that the kth Betti number of a complex, βk := rank(Hk), acts as a coarse
numerical measure of Hk. As with βk, the barcode for Hk does not give any in-
formation about the finer structure of the homology, but merely a continuously

fixed n ∈ N and a field K , we compute the n-th homology, with coefficients in K ,

of the filtration to obtain a parametrized vector space.

Hn(X0)
Hn(i0)→ Hn(X1)

Hn(i1)→ . . .
Hn(ik−1)→ Hn(Xk )→ . . .
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Barcode

A parametrized vector space is completely described by a
multi-set of half open intervals, commonly visualized as a
barcode.

PERSISTENT TOPOLOGY OF DATA 7

Theorem 2.3 ([22]). For a finite persistence module C with field F coefficients,

(2.3) H∗(C; F ) ∼=
⊕

i

xti · F [x] ⊕


⊕

j

xrj · (F [x]/(xsj · F [x]))


 .

This classification theorem has a natural interpretation. The free portions of
Equation (2.3) are in bijective correspondence with those homology generators
which come into existence at parameter ti and which persist for all future parame-
ter values. The torsional elements correspond to those homology generators which
appear at parameter rj and disappear at parameter rj + sj . At the chain level,
the Structure Theorem provides a birth-death pairing of generators of C (excepting
those that persist to infinity).

2.3. Barcodes. The parameter intervals arising from the basis for H∗(C; F ) in
Equation (2.3) inspire a visual snapshot of Hk(C; F ) in the form of a barcode. A
barcode is a graphical representation of Hk(C; F ) as a collection of horizontal line
segments in a plane whose horizontal axis corresponds to the parameter and whose
vertical axis represents an (arbitrary) ordering of homology generators. Figure 4
gives an example of barcode representations of the homology of the sampling of
points in an annulus from Figure 3 (illustrated in the case of a large number of
parameter values εi).

H0

H1

H2

ε

ε

ε

Figure 4. [bottom] An example of the barcodes for H∗(R) in the
example of Figure 3. [top] The rank of Hk(Rεi) equals the number
of intervals in the barcode for Hk(R) intersecting the (dashed) line
ε = εi.

Figure: A filtration of simplicial complexes and associated barcode, Photo
credit: R. Ghrist, 2008, Barcodes: The Persistent Topology of Data.
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Summary

I Sampling provides data clouds to analyse
I The sampling recovers the underline topology if it is

sufficiently fine
I Reach
I Complex

I Persistence may be applied in algebraic settings.
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