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Plan for this course

» Lecture I: Algebraic modelling (Kinematics)

» Lecture Il: Sampling algebraic varieties: the reach.

» Lecture llI: Projective embeddings and Polar classes
(classical theory)

» Lecture IV: The Euclidian Distance Degree
(closest point)

» Lecture V: Bottle Neck degree from classical geometry
(back to sampling)
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Main goals

» Definition of reach.
» Sampling.
» Recovering the topological signature.
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The reach of a manifold

References:

» Estimating the reach of a Manifold. E. Aamari, J. Kim,
F. Chazal, B. Michel, A. Rinaldo, et al.. Electronic
journal of Statistics, Vol. 13, 2019 1359-1399.

» Computing the homology of basic semialgebraic sets
in weak exponential time P. Burgisser, F. Cucker and P.
Lairez. Journal of the ACM 66(1), 2019.

» Learning algebraic varieties from samples. P.
Breiding, S. Kalisnik, B. Sturmfels and M. Weinstein.
Revista Matematica Complutense. Vol. 31, 3, 2018,
pp 545-593.

» Sampling Algebraic Varieties. DR, D. Eklund, O.
Gavfert. In progress.
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(Real) Sampling
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(Real) Sampling

X c RN, Iy = Cloud data on X =
(CW) Complex = Invariants of X
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Application: Variety Sampling

» Consider a compact
submanifold M C R".
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Application: Variety Sampling

I
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Application: Variety Sampling

» Consider a growing
tubular neighborhood
of M.

» At some point it
becomes singular
(M # {p}).

» Half the black distance

is called the reach of
M.

» And the lineis a
bottleneck.




Set up

Consider R" , endowed with the euclidean inner product
<X, Y >= XY
Let X ¢ RN be a smooth compact algebraic variety defined
by anideal I = (fi, ..., fx) C R[xq, ..., Xn]-
Let p € X and consider the Jacobian matrix
of,

J(f1 PR fk) - (a_xj)l,/

evaluated at p.
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» Since X is smooth, the rows of the Jacobian matrix
span an (n — d)-dimensional linear subspace of R”,
where d is the local dimension of X at p.

» This subspace translated to the point p is called the
normal space of X at p, and is denoted N,(X) (fibers
of the Normal Bundle).
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For p € R”, Consider the distance function

dx(p) = mingex||x — pl|
and
mx(p) = {x € X[[|x — p|| = dx(p)}

10/24



For p € R”, Consider the distance function

dx(p) = mingex||x — pl|
and
mx(p) = {x € X[[|x — p|| = dx(p)}

For r > 0 let X, the tubular neighborhood of X of radius r
X ={p eR"|dx(p) < r}

10/24



For p € R”, Consider the distance function

dx(p) = minxex||x — pl|

and
mx(p) = {x € X|||x — p|| = dx(p)}

For r > 0 let X, the tubular neighborhood of X of radius r
X ={p eR"|dx(p) < r}

Ax ={p e R": wx(p) > 1}, the medial axis
Mx = Ax
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Ax ={peR":7wx(p) > 1}, the medial axis
My = Ax

Picture: International Conference on Cyberworlds (CW’07). Henning Naf3,
Franz-Erich Wolter and Hannes Thielhelm.DOI:10.1109/CW.2007.55




The Reach
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The Reach
Define the reach of X as:

X = ianGX,yEAx{d(Xay)}
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This point is called the closest point of p on X.
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The Reach
Define the reach of X as:

X = ianGX,yEAx{d(va)}

Notice that for each point x € X, where r < 7 |1x(p)| = 1.

This point is called the closest point of p on X.
Facts:

» X is compact, thus 7x > 0.
» dim X > 0 (not convex) 7x < oc.
» Tx is a combination of local and global estimates:
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» Locally: px is the minimal radius of curvature on X (
radius of curvature at x € X is the reciprocal of the maximal
curvature of a geodesic passing through x.)
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» Locally: px is the minimal radius of curvature on X (
radius of curvature at x € X is the reciprocal of the maximal
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» Globally: bottlenecks:

1.
nx = §|nf{||x—y|| (X y)e XxX, x#y, ye NeX, x e N X}
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» Locally: px is the minimal radius of curvature on X (
radius of curvature at x € X is the reciprocal of the maximal

curvature of a geodesic passing through x.)
» Globally: bottlenecks:

1.
nx = §|nf{||x—y|| (X y)e XxX, x#y, ye NeX, x e N X}

Tx = min{px,nx}
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From:Estimating the reach of a Manifold
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M | Med(M) M ! Med(M)

(b) A non-bottleneck reach attaining pair

Picture: Estimating the reach of a Manifold. E. Aamari, J. Kim, F. Chazal, B.
Michel, A. Rinaldo, et al.
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Sample

X c RN smooth, compact variety.
Definition
Let e > 0. A finite set of points E C X is called an e-sample

of X if for every x € X there is a point e € E such that
lIx —ell <e.
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Sample

X c RN smooth, compact variety.
Definition
Let e > 0. A finite set of points E C X is called an e-sample
of X if for every x € X there is a point e € E such that
lIx —ell <e.
Definition
» Let g € RN and let ¢(g, <) c RN denote the closed ball
centered at g and of radius ¢.
» Consider

C(e,E) = U c(q,e).

qeE
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Sample gives homology
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Sample gives homology

Theorem
Lete > 0 and consider E an 5 sample of X. If ¢ < %r for all
p € E then X — C(E,¢) is a homotopy equivalence.
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Sample gives homology

Theorem
Lete > 0 and consider E an 5 sample of X. If ¢ < %r for all
p € E then X — C(E,¢) is a homotopy equivalence.
proof:
» mx : C(E,e) — X is continuous.
» C(E,e) x [0,1] — C(E,¢) defines as
(x,1) — trx(x) + (1 — t)x is a deformation retract. To
prove: trx(x) + (1 —t)x € C(E,¢).
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One way to sample via Numerical AG
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One way to sample via Numerical AG

Let X € RN be a variety of dimension d. Let

Tqa C{1,2,..., N} be the set of unordered d-tuples. Let
ei,..., ey be the standard basis. For t = (t;,...,13) € Ty
we let V; = Span(ey, ..., e,). For § > 0 consider the grid

Gi(6) = 62NV,
and the projection 7; : RN — V;. Then

E; = U XN (9)
te Ty4,9€ Gy

is a finite sample (up to random perturbation).
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One way to sample via Numerical AG

Theorem

Ifo<d< ﬁ and Es + o, then Ej is e sample of X.
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Theorem
Ifo<d< ﬁ and Es + o, then Ej is e sample of X.
Use numerical methods to construct sample:
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One way to sample via Numerical

Theorem

AG

Ifo<d< ﬁ and Es + o, then Ej is e sample of X.
Use numerical methods to construct sample:

Solutions of
£(2)-0
(0]

et 4]

0

N

Known
solutions of
220

t=1 Hz0=(1-Dg@f2)

=0

» Bertini: Bates-Hauenstein-Sommese-Wampler

» HomotopyContinuation.jl: Paul Breiding and Sascha
Timme




Simplicial Complex

A simplicial complex on X is a collection K of subsets of X
such thatif c € Kand 7 C o, then 7 € K.

v
A

Figure: Geometric realization of a simplicial complex. Photo
credit: Wikipedia
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From Data to Simplicial Complexes

Consider a finite metric space (X, d).
The Vietoris-Rips complex on X at scale ¢, VR(X),

consists of :
» singletons {x}, for all x € X.
» sets {xg, ..., Xn} C X, such that d(x;, x;) < ¢ for all
0<i,j<n.

Figure: VR(X)., Photo credit: R. Ghrist, 2008, Barcodes: The Persistent
Topology of Data.
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From Data to Simplicial Complexes

If e <&, VR(X), is a sub-complex of VR(X).,.
Therefore by considering increasing values of =, we obtain
a filtration of simplicial complexes.




Persistent Homology

Given a filtration of simplicial complexes:

io i1
Xo =Xy = ... = Xe— ...

7 [ 95 i

fixed n € N and a field K, we compute the n-th homology, with coefficients in K,
of the filtration to obtain a parametrized vector space.

Hn(/k 1)

Hn .
Hn(X ) (IO) Hn(X1) (’1) B

Hn(Xk) —




Barcode

A parametrized vector space is completely described by a
multi-set of half open intervals, commonly visualized as a

Rt

Hy| — [—

o : H : -

Figure: Afiltration of simplicial complexes and associated barcode, Photo
credit: R. Ghrist, 2008, Barcodes: The Persistent Topology of Data.
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Summary

» Sampling provides data clouds to analyse

» The sampling recovers the underline topology if it is
sufficiently fine
» Reach
» Complex

» Persistence may be applied in algebraic settings.
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