

Lecture II. The reach of a manifold

Algebraic Geometry with a view towards applications

Sandra Di Rocco, ICTP Trieste

Plan for this course

- Lecture I: Algebraic modelling (Kinematics)
- Lecture II: Sampling algebraic varieties: the reach.
- Lecture III: Projective embeddings and Polar classes (classical theory)
- Lecture IV: The Euclidian Distance Degree (closest point)
- Lecture V: Bottle Neck degree from classical geometry (back to sampling)

Main goals

- Definition of reach.
- Sampling.
- Recovering the topological signature.

The reach of a manifold

References:

- Estimating the reach of a Manifold. E. Aamari, J. Kim, F. Chazal, B. Michel, A. Rinaldo, et al.. Electronic journal of Statistics, Vol. 13, **2019** 1359-1399.
- Computing the homology of basic semialgebraic sets in weak exponential time P. Bürgisser, F. Cucker and P. Lairez. Journal of the ACM 66(1), 2019.
- Learning algebraic varieties from samples. P. Breiding, S. Kalisnik, B. Sturmfels and M. Weinstein. Revista Matemática Complutense. Vol. 31, 3, 2018, pp 545-593.
- Sampling Algebraic Varieties. DR, D. Eklund, O. Gävfert. In progress.

$$X \subset \mathbb{R}^N, I_X \Rightarrow$$
 Cloud data on $X \Rightarrow$
(CW) Complex \Rightarrow Invariants of X

$$X \subset \mathbb{R}^N, I_X \Rightarrow$$
 Cloud data on $X \Rightarrow$
(CW) Complex \Rightarrow Invariants of X
Two important steps

$$X \subset \mathbb{R}^N, I_X \Rightarrow$$
 Cloud data on $X \Rightarrow$
(CW) Complex \Rightarrow Invariants of X
Two important steps
 \blacktriangleright density

$$X \subset \mathbb{R}^N, I_X \Rightarrow$$
 Cloud data on $X \Rightarrow$
(CW) Complex \Rightarrow Invariants of X

Two important steps

- density
- complex

 Consider a compact submanifold *M* ⊆ ℝⁿ.

- Consider a compact submanifold *M* ⊆ ℝⁿ.
- And a point cloud $E \subset M$.

- Consider a compact submanifold *M* ⊆ ℝⁿ.
- And a point cloud $E \subset M$.
- Put growing balls around the points *E*.

- Consider a compact submanifold *M* ⊆ ℝⁿ.
- And a point cloud $E \subset M$.
- Put growing balls around the points *E*.

- Consider a compact submanifold M ⊆ ℝⁿ.
- And a point cloud $E \subset M$.
- Put growing balls around the points *E*.
- Geometry of M captured by union of balls for ball sizes in certain interval.

- Consider a compact submanifold M ⊆ ℝⁿ.
- And a point cloud $E \subset M$.
- Put growing balls around the points *E*.
- Geometry of M captured by union of balls for ball sizes in certain interval.

- Consider a compact submanifold M ⊆ ℝⁿ.
- And a point cloud $E \subset M$.
- Put growing balls around the points *E*.
- Geometry of M captured by union of balls for ball sizes in certain interval.

- Consider a compact submanifold M ⊆ ℝⁿ.
- And a point cloud $E \subset M$.
- Put growing balls around the points *E*.
- Geometry of M captured by union of balls for ball sizes in certain interval.

 Consider a growing tubular neighborhood of *M*.

- Consider a growing tubular neighborhood of *M*.
- At some point it becomes singular (M ≠ {p}).

- Consider a growing tubular neighborhood of *M*.
- At some point it becomes singular (M ≠ {p}).
- Half the black distance is called the *reach* of *M*.
- And the line is a bottleneck.

Set up

Consider \mathbb{R}^n , endowed with the euclidean inner product $\langle x, y \rangle = \sum x_i y_i$. Let $X \subset \mathbb{R}^N$ be a smooth compact algebraic variety defined by an ideal $I = (f_1, ..., f_k) \subset \mathbb{R}[x_1, ..., x_n]$. Let $p \in X$ and consider the Jacobian matrix

$$J(f_1,...,f_k)=(\frac{\partial f_i}{\partial x_j})_{i,j}$$

evaluated at p.

- Since X is smooth, the rows of the Jacobian matrix span an (n − d)-dimensional linear subspace of ℝⁿ, where d is the local dimension of X at p.
- This subspace translated to the point p is called the normal space of X at p, and is denoted N_p(X) (fibers of the Normal Bundle).

For $p \in \mathbb{R}^n$, Consider the **distance function** $d_X(p) = min_{x \in X} ||x - p||$ and

$$\pi_X(p) = \{x \in X \mid ||x - p|| = d_X(p)\}$$

For $p \in \mathbb{R}^n$, Consider the **distance function** $d_X(p) = min_{x \in X} ||x - p||$ and

$$\pi_X(p) = \{x \in X \, | \, ||x - p|| = d_X(p)\}$$

For $r \ge 0$ let X_r the *tubular neighborhood* of X of radius r $X_r = \{ p \in \mathbb{R}^n \, | \, d_X(p) < r \}$

For $p \in \mathbb{R}^n$, Consider the **distance function** $d_X(p) = min_{x \in X} ||x - p||$ and

$$\pi_X(p) = \{x \in X \mid ||x - p|| = d_X(p)\}$$

For $r \ge 0$ let X_r the *tubular neighborhood* of X of radius r $X_r = \{p \in \mathbb{R}^n \mid d_X(p) < r\}$

 $\Delta_X = \{ oldsymbol{p} \in \mathbb{R}^n : \pi_X(oldsymbol{p}) > 1 \}$, the medial axis $M_X = \overline{\Delta_X}$

$\Delta_X = \{ \pmb{p} \in \mathbb{R}^n : \pi_X(\pmb{p}) > 1 \}$, the medial axis

Picture: *International Conference on Cyberworlds (CW'07)*. Henning Naß, Franz-Erich Wolter and Hannes Thielhelm.DOI:10.1109/CW.2007.55

The Reach

Define the reach of X as:

$$\tau_X = \inf_{x \in X, y \in \Delta_X} \{ d(x, y) \}$$

The Reach

Define the reach of X as:

$$\tau_X = \inf_{x \in X, y \in \Delta_X} \{ d(x, y) \}$$

Notice that for each point $x \in X_r$ where $r < \tau |\pi_X(p)| = 1$. This point is called the **closest point** of p on X.

The Reach

Define the reach of X as:

$$\tau_X = \inf_{x \in X, y \in \Delta_X} \{ d(x, y) \}$$

Notice that for each point $x \in X_r$ where $r < \tau |\pi_X(p)| = 1$. This point is called the **closest point** of *p* on *X*. Facts:

- X is compact, thus $\tau_X > 0$.
- dim X > 0 (not convex) $\tau_X < \infty$.
- τ_X is a combination of local and global estimates:

Locally: ρ_X is the minimal radius of curvature on X (radius of curvature at x ∈ X is the reciprocal of the maximal curvature of a geodesic passing through x.)

- Locally: ρ_X is the minimal radius of curvature on X (radius of curvature at x ∈ X is the reciprocal of the maximal curvature of a geodesic passing through x.)
- Globally: bottlenecks:

$$\eta_X = \frac{1}{2} \inf\{||x-y|| : (x,y) \in X \times X, x \neq y, y \in N_x X, x \in N_y X\}.$$

- Locally: ρ_X is the minimal radius of curvature on X (radius of curvature at x ∈ X is the reciprocal of the maximal curvature of a geodesic passing through x.)
- Globally: bottlenecks:

$$\eta_X = \frac{1}{2} \inf\{||x-y|| : (x,y) \in X \times X, x \neq y, y \in N_x X, x \in N_y X\}.$$

$$\tau_{\boldsymbol{X}} = \min\{\rho_{\boldsymbol{X}}, \eta_{\boldsymbol{X}}\}$$

From:Estimating the reach of a Manifold

From:Estimating the reach of a Manifold

Picture: *Estimating the reach of a Manifold*. E. Aamari, J. Kim, F. Chazal, B. Michel, A. Rinaldo, et al.

15/24

Sample

 $X \subset \mathbb{R}^N$ smooth, compact variety.

Definition

Let $\varepsilon > 0$. A finite set of points $E \subset X$ is called an ε -sample of X if for every $x \in X$ there is a point $e \in E$ such that $IIx - eII < \varepsilon$.

Sample

 $X \subset \mathbb{R}^N$ smooth, compact variety.

Definition

Let $\varepsilon > 0$. A finite set of points $E \subset X$ is called an ε -sample of X if for every $x \in X$ there is a point $e \in E$ such that $IIx - eII < \varepsilon$.

Definition

- Let *q* ∈ ℝ^N and let *c*(*q*, ε) ⊂ ℝ^N denote the closed *ball* centered at *q* and of radius ε.
- Consider

$$C(\varepsilon, E) = \bigcup_{q \in E} c(q, \varepsilon).$$

Sample gives homology

Sample gives homology

Theorem

Let $\varepsilon > 0$ and consider E an $\frac{\varepsilon}{2}$ sample of X. If $\varepsilon < \frac{1}{2}\tau$ for all $p \in E$ then $X \hookrightarrow C(E, \varepsilon)$ is a homotopy equivalence.

Sample gives homology

Theorem

Let $\varepsilon > 0$ and consider E an $\frac{\varepsilon}{2}$ sample of X. If $\varepsilon < \frac{1}{2}\tau$ for all $p \in E$ then $X \hookrightarrow C(E, \varepsilon)$ is a homotopy equivalence. proof:

- $\pi_X : C(E, \varepsilon) \to X$ is continuous.
- ► $C(E, \varepsilon) \times [0, 1] \rightarrow C(E, \varepsilon)$ defines as $(x, t) \mapsto t\pi_X(x) + (1 - t)x$ is a deformation retract. To prove: $t\pi_X(x) + (1 - t)x \in C(E, \varepsilon)$.

Let $X \in \mathbb{R}^N$ be a variety of dimension d. Let $T_d \subset \{1, 2, ..., N\}$ be the set of unordered d-tuples. Let $e_1, ..., e_N$ be the standard basis. For $t = (t_1, ..., t_d) \in T_d$ we let $V_t = Span(e_{t_i}, ..., e_{t_d})$. For $\delta > 0$ consider the grid $G_t(\delta) = \delta \mathbb{Z} \cap V_t$

and the projection $\pi_t : \mathbb{R}^N \to V_t$. Then

$$E_{\delta} = igcup_{t \in \mathcal{T}_d, g \in G_t} X \cap \pi_t^{-1}(g)$$

is a finite sample (up to random perturbation).

Theorem

If $0 < \delta < \frac{\varepsilon}{\sqrt{N}}$ and $E_{\delta} \neq \emptyset$, then E_{δ} is ε sample of X.

Theorem

If $0 < \delta < \frac{\varepsilon}{\sqrt{N}}$ and $E_{\delta} \neq \emptyset$, then E_{δ} is ε sample of X. Use **numerical methods** to construct sample:

Theorem

If $0 < \delta < \frac{\varepsilon}{\sqrt{N}}$ and $E_{\delta} \neq \emptyset$, then E_{δ} is ε sample of X.

Use numerical methods to construct sample:

- Bertini: Bates-Hauenstein-Sommese-Wampler
- HomotopyContinuation.jl: Paul Breiding and Sascha Timme

Simplicial Complex

A *simplicial complex* on X is a collection K of subsets of X such that if $\sigma \in K$ and $\tau \subseteq \sigma$, then $\tau \in K$.

Figure: Geometric realization of a simplicial complex. Photo credit: Wikipedia

From Data to Simplicial Complexes

Consider a finite metric space (X, d). The Vietoris-Rips complex on X at scale ε , VR(X) $_{\varepsilon}$ consists of :

- singletons $\{x\}$, for all $x \in X$.
- ▶ sets $\{x_0, \ldots, x_n\} \subseteq X$, such that $d(x_i, x_j) \leq \varepsilon$ for all $0 \leq i, j \leq n$.

Figure: $VR(X)_{\epsilon}$, Photo credit: R. Ghrist, 2008, Barcodes: The Persistent Topology of Data.

From Data to Simplicial Complexes

If $\varepsilon \leqslant \varepsilon'$, VR(X) $_{\varepsilon}$ is a sub-complex of VR(X) $_{\varepsilon'}$. Therefore by considering increasing values of ε , we obtain a filtration of simplicial complexes.

Persistent Homology

Given a filtration of simplicial complexes:

fixed $n \in \mathbb{N}$ and a field *K*, we compute the n-th homology, with coefficients in *K*, of the filtration to obtain a parametrized vector space.

$$H_n(X_0) \stackrel{H_n(i_0)}{\rightarrow} H_n(X_1) \stackrel{H_n(i_1)}{\rightarrow} \dots \stackrel{H_n(i_{k-1})}{\rightarrow} H_n(X_k) \rightarrow \dots$$

Barcode

A parametrized vector space is completely described by a multi-set of half open intervals, commonly visualized as a barcode.

Figure: A filtration of simplicial complexes and associated barcode, Photo credit: R. Ghrist, 2008, Barcodes: The Persistent Topology of Data.

Summary

- Sampling provides data clouds to analyse
- The sampling recovers the underline topology if it is sufficiently fine
 - Reach
 - Complex
- Persistence may be applied in algebraic settings.