Lecture II. The reach of a manifold

Algebraic Geometry with a view towards applications

Sandra Di Rocco,
ICTP Trieste

Plan for this course

- Lecture I: Algebraic modelling (Kinematics)
- Lecture II: Sampling algebraic varieties: the reach.
- Lecture III: Projective embeddings and Polar classes (classical theory)
- Lecture IV: The Euclidian Distance Degree (closest point)
- Lecture V: Bottle Neck degree from classical geometry (back to sampling)

Main goals

- Definition of reach.
- Sampling.
- Recovering the topological signature.

The reach of a manifold

References:

- Estimating the reach of a Manifold. E. Aamari, J. Kim, F. Chazal, B. Michel, A. Rinaldo, et al.. Electronic journal of Statistics, Vol. 13, 2019 1359-1399.
- Computing the homology of basic semialgebraic sets in weak exponential time P. Bürgisser, F. Cucker and P. Lairez. Journal of the ACM 66(1), 2019.
- Learning algebraic varieties from samples. P. Breiding, S. Kalisnik, B. Sturmfels and M. Weinstein. Revista Matemática Complutense. Vol. 31, 3, 2018, pp 545-593.
- Sampling Algebraic Varieties. DR, D. Eklund, O. Gävfert. In progress.
(Real) Sampling

5/24
(Real) Sampling

5/24
(Real) Sampling

$X \subset \mathbb{R}^{N}, I_{X} \Rightarrow$ Cloud data on $X \Rightarrow$ (CW) Complex \Rightarrow Invariants of X
(Real) Sampling

$X \subset \mathbb{R}^{N}, I_{X} \Rightarrow$ Cloud data on $X \Rightarrow$ (CW) Complex \Rightarrow Invariants of X
Two important steps
(Real) Sampling

$X \subset \mathbb{R}^{N}, I_{X} \Rightarrow$ Cloud data on $X \Rightarrow$ (CW) Complex \Rightarrow Invariants of X
Two important steps

- density
(Real) Sampling

$X \subset \mathbb{R}^{N}, I_{X} \Rightarrow$ Cloud data on $X \Rightarrow$ (CW) Complex \Rightarrow Invariants of X
Two important steps
- density
- complex

Application: Variety Sampling

- Consider a compact submanifold $M \subseteq \mathbb{R}^{n}$.

Application: Variety Sampling

- Consider a compact submanifold $M \subseteq \mathbb{R}^{n}$.
- And a point cloud $E \subset M$.

Application: Variety Sampling

- Consider a compact submanifold $M \subseteq \mathbb{R}^{n}$.
- And a point cloud $E \subset M$.
- Put growing balls around the points E.

Application: Variety Sampling

- Consider a compact submanifold $M \subseteq \mathbb{R}^{n}$.
- And a point cloud $E \subset M$.
- Put growing balls around the points E.

Application: Variety Sampling

- Consider a compact submanifold $M \subseteq \mathbb{R}^{n}$.
- And a point cloud $E \subset M$.
- Put growing balls around the points E.
- Geometry of M captured by union of balls for ball sizes in certain interval.

Application: Variety Sampling

- Consider a compact submanifold $M \subseteq \mathbb{R}^{n}$.
- And a point cloud $E \subset M$.
- Put growing balls around the points E.
- Geometry of M captured by union of balls for ball sizes in certain interval.

Application: Variety Sampling

- Consider a compact submanifold $M \subseteq \mathbb{R}^{n}$.
- And a point cloud $E \subset M$.
- Put growing balls around the points E.
- Geometry of M captured by union of balls for ball sizes in certain interval.

Application: Variety Sampling

- Consider a compact submanifold $M \subseteq \mathbb{R}^{n}$.
- And a point cloud $E \subset M$.
- Put growing balls around the points E.
- Geometry of M captured by union of balls for ball sizes in certain interval.

Application: Variety Sampling

Application: Variety Sampling

- Consider a growing tubular neighborhood of M.

Application: Variety Sampling

- Consider a growing tubular neighborhood of M.
- At some point it becomes singular $(M \neq\{p\})$.

Application: Variety Sampling

- Consider a growing tubular neighborhood of M.
- At some point it becomes singular $(M \neq\{p\})$.
- Half the black distance is called the reach of M.
- And the line is a bottleneck.

Set up

Consider \mathbb{R}^{n}, endowed with the euclidean inner product
$<x, y>=\sum x_{i} y_{i}$.
Let $X \subset \mathbb{R}^{N}$ be a smooth compact algebraic variety defined by an ideal $I=\left(f_{1}, \ldots, f_{k}\right) \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.
Let $p \in X$ and consider the Jacobian matrix

$$
J\left(f_{1}, \ldots, f_{k}\right)=\left(\frac{\partial f_{i}}{\partial x_{j}}\right)_{i, j}
$$

evaluated at p.

- Since X is smooth, the rows of the Jacobian matrix span an $(n-d)$-dimensional linear subspace of \mathbb{R}^{n}, where d is the local dimension of X at p.
- This subspace translated to the point p is called the normal space of X at p, and is denoted $N_{p}(X)$ (fibers of the Normal Bundle).

10/24

For $p \in \mathbb{R}^{n}$, Consider the distance function

$$
d_{x}(p)=\min _{x \in X}\|x-p\|
$$

and

$$
\pi_{X}(p)=\left\{x \in X \mid\|x-p\|=d_{X}(p)\right\}
$$

For $p \in \mathbb{R}^{n}$, Consider the distance function

$$
d_{x}(p)=\min _{x \in X}\|x-p\|
$$

and

$$
\pi_{x}(p)=\left\{x \in X \mid\|x-p\|=d_{X}(p)\right\}
$$

For $r \geqslant 0$ let X_{r} the tubular neighborhood of X of radius r

$$
X_{r}=\left\{p \in \mathbb{R}^{n} \mid d_{X}(p)<r\right\}
$$

For $p \in \mathbb{R}^{n}$, Consider the distance function

$$
d_{x}(p)=\min _{x \in X}\|x-p\|
$$

and

$$
\pi_{x}(p)=\left\{x \in X \mid\|x-p\|=d_{X}(p)\right\}
$$

For $r \geqslant 0$ let X_{r} the tubular neighborhood of X of radius r

$$
X_{r}=\left\{p \in \mathbb{R}^{n} \mid d_{X}(p)<r\right\}
$$

$\Delta_{X}=\left\{p \in \mathbb{R}^{n}: \pi_{X}(p)>1\right\}$, the medial axis

$$
M_{X}=\overline{\Delta_{X}}
$$

11/24

$$
\Delta_{X}=\left\{p \in \mathbb{R}^{n}: \pi_{X}(p)>1\right\}, \text { the medial axis }
$$

$$
M_{X}=\overline{\Delta_{X}}
$$

Picture: International Conference on Cyberworlds (CW'07). Henning Naß, Franz-Erich Wolter and Hannes Thielhelm.DOI:10.1109/CW.2007.55

The Reach

The Reach

Define the reach of X as:

$$
\tau_{X}=\inf _{x \in X, y \in \Delta_{X}}\{d(x, y)\}
$$

The Reach
Define the reach of X as:

$$
\tau_{X}=\inf _{x \in X, y \in \Delta_{X}}\{d(x, y)\}
$$

Notice that for each point $x \in X_{r}$ where $r<\tau\left|\pi_{x}(p)\right|=1$. This point is called the closest point of p on X.

The Reach

Define the reach of X as:

$$
\tau_{X}=\inf _{x \in X, y \in \Delta_{x}}\{d(x, y)\}
$$

Notice that for each point $x \in X_{r}$ where $r<\tau\left|\pi_{X}(p)\right|=1$. This point is called the closest point of p on X.
Facts:

- X is compact, thus $\tau_{X}>0$.
- $\operatorname{dim} X>0$ (not convex) $\tau_{X}<\infty$.
- τ_{X} is a combination of local and global estimates:

13/24

- Locally: ρ_{X} is the minimal radius of curvature on X (radius of curvature at $x \in X$ is the reciprocal of the maximal curvature of a geodesic passing through x.)
- Locally: ρ_{X} is the minimal radius of curvature on X (radius of curvature at $x \in X$ is the reciprocal of the maximal curvature of a geodesic passing through x.)
- Globally: bottlenecks:

$$
\eta_{X}=\frac{1}{2} \inf \left\{\|x-y\|:(x, y) \in X \times X, x \neq y, y \in N_{x} X, x \in N_{y} X\right\} .
$$

- Locally: ρ_{X} is the minimal radius of curvature on X (radius of curvature at $x \in X$ is the reciprocal of the maximal curvature of a geodesic passing through x.)
- Globally: bottlenecks:

$$
\eta_{X}=\frac{1}{2} \inf \left\{\|x-y\|:(x, y) \in X \times X, x \neq y, y \in N_{x} X, x \in N_{y} X\right\} .
$$

$$
\tau_{X}=\min \left\{\rho_{X}, \eta_{X}\right\}
$$

From:Estimating the reach of a Manifold

From:Estimating the reach of a Manifold

Picture: Estimating the reach of a Manifold. E. Aamari, J. Kim, F. Chazal, B. Michel, A. Rinaldo, et al.

Sample

15／24

Sample

$X \subset \mathbb{R}^{N}$ smooth, compact variety.

Definition

Let $\varepsilon>0$. A finite set of points $E \subset X$ is called an ε-sample of X if for every $x \in X$ there is a point $e \in E$ such that $\|x-e\|<\varepsilon$.

Sample

$X \subset \mathbb{R}^{N}$ smooth, compact variety.

Definition

Let $\varepsilon>0$. A finite set of points $E \subset X$ is called an ε-sample of X if for every $x \in X$ there is a point $e \in E$ such that $\| x-e l l<\varepsilon$.

Definition

- Let $q \in \mathbb{R}^{N}$ and let $c(q, \varepsilon) \subset \mathbb{R}^{N}$ denote the closed ball centered at q and of radius ε.
- Consider

$$
C(\varepsilon, E)=\bigcup_{q \in E} c(q, \varepsilon) .
$$

Sample gives homology

Sample gives homology

Theorem
Let $\varepsilon>0$ and consider E an $\frac{\varepsilon}{2}$ sample of X. If $\varepsilon<\frac{1}{2} \tau$ for all $p \in E$ then $X \hookrightarrow C(E, \varepsilon)$ is a homotopy equivalence.

Sample gives homology

Theorem

Let $\varepsilon>0$ and consider E an $\frac{\varepsilon}{2}$ sample of X. If $\varepsilon<\frac{1}{2} \tau$ for all $p \in E$ then $X \hookrightarrow C(E, \varepsilon)$ is a homotopy equivalence. proof:

- $\pi_{X}: C(E, \varepsilon) \rightarrow X$ is continuous.
- $C(E, \varepsilon) \times[0,1] \rightarrow C(E, \varepsilon)$ defines as $(x, t) \mapsto t \pi_{X}(x)+(1-t) x$ is a deformation retract. To prove: $t \pi_{x}(x)+(1-t) x \in C(E, \varepsilon)$.

One way to sample via Numerical AG

One way to sample via Numerical AG

Let $X \in \mathbb{R}^{N}$ be a variety of dimension d. Let
$T_{d} \subset\{1,2, \ldots, N\}$ be the set of unordered d-tuples. Let e_{1}, \ldots, e_{N} be the standard basis. For $t=\left(t_{1}, \ldots, t_{d}\right) \in T_{d}$ we let $V_{t}=\operatorname{Span}\left(e_{t_{i}}, \ldots, e_{t_{d}}\right)$. For $\delta>0$ consider the grid

$$
G_{t}(\delta)=\delta \mathbb{Z} \cap V_{t}
$$

and the projection $\pi_{t}: \mathbb{R}^{N} \rightarrow V_{t}$. Then

$$
E_{\delta}=\bigcup_{t \in T_{d}, g \in G_{t}} X \cap \pi_{t}^{-1}(g)
$$

is a finite sample (up to random perturbation).

One way to sample via Numerical AG

One way to sample via Numerical AG

Theorem
If $0<\delta<\frac{\varepsilon}{\sqrt{N}}$ and $E_{\delta} \neq \varnothing$, then E_{δ} is ε sample of X.

One way to sample via Numerical AG

Theorem If $0<\delta<\frac{\varepsilon}{\sqrt{N}}$ and $E_{\delta} \neq \varnothing$, then E_{δ} is ε sample of X. Use numerical methods to construct sample:

One way to sample via Numerical AG

Theorem If $0<\delta<\frac{\varepsilon}{\sqrt{N}}$ and $E_{\delta} \neq \varnothing$, then E_{δ} is ε sample of X. Use numerical methods to construct sample:

- Bertini: Bates-Hauenstein-Sommese-Wampler
- HomotopyContinuation.jl: Paul Breiding and Sascha Timme

Simplicial Complex

A simplicial complex on X is a collection K of subsets of X such that if $\sigma \in K$ and $\tau \subseteq \sigma$, then $\tau \in K$.

Figure: Geometric realization of a simplicial complex. Photo credit: Wikipedia

From Data to Simplicial Complexes

Consider a finite metric space (X, d). The Vietoris-Rips complex on X at scale $\varepsilon, \operatorname{VR}(X)_{\varepsilon}$ consists of :

- singletons $\{x\}$, for all $x \in X$.
- sets $\left\{x_{0}, \ldots, x_{n}\right\} \subseteq X$, such that $d\left(x_{i}, x_{j}\right) \leqslant \varepsilon$ for all $0 \leqslant i, j \leqslant n$.

Figure: $\operatorname{VR}(\mathrm{X})_{\varepsilon}$, Photo credit: R. Ghrist, 2008, Barcodes: The Persistent Topology of Data.

From Data to Simplicial Complexes

If $\varepsilon \leqslant \varepsilon^{\prime}, \operatorname{VR}(\mathrm{X})_{\varepsilon}$ is a sub-complex of $\mathrm{VR}(\mathrm{X})_{\varepsilon^{\prime}}$.
Therefore by considering increasing values of ε, we obtain a filtration of simplicial complexes.

Persistent Homology

Given a filtration of simplicial complexes:

$$
x_{0} \xrightarrow{i_{0}} x_{1} \xrightarrow{i_{1}} \ldots \xrightarrow{i_{k-1}} x_{k} \hookrightarrow \ldots
$$

fixed $n \in \mathbb{N}$ and a field K, we compute the n-th homology, with coefficients in K, of the filtration to obtain a parametrized vector space.

$$
H_{n}\left(X_{0}\right) \xrightarrow{H_{n}\left(i_{0}\right)} H_{n}\left(X_{1}\right) \xrightarrow{H_{n}\left(i_{1}\right)} \ldots \xrightarrow{H_{n}\left(i_{k-1}\right)} H_{n}\left(X_{k}\right) \rightarrow \ldots
$$

Barcode

A parametrized vector space is completely described by a multi-set of half open intervals, commonly visualized as a barcode.

Figure: A filtration of simplicial complexes and associated barcode, Photo credit: R. Ghrist, 2008, Barcodes: The Persistent Topology of Data.

Summary

24/24

Summary

- Sampling provides data clouds to analyse
- The sampling recovers the underline topology if it is sufficiently fine
- Reach
- Complex
- Persistence may be applied in algebraic settings.

