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Data analysis

I Given a data cloud, discover the geometry (shape) of
the data. (DATA INTERPOLATION)

I Given a data cloud, give it a structure and deduce
useful information. (TOPOLOGICAL DATA ANALYSIS)
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Sampling

We will focus of certain algebraic aspects of data collection
coming from algebraic modelling:
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Plan for this course

I Lecture I: Algebraic modelling (Kinematics)
I Lecture II: Sampling algebraic varieties: the reach.
I Lecture III: Projective embeddings and Polar classes

(classical theory)
I Lecture IV: The Euclidian Distance Degree

(closest point)
I Lecture V: Bottleneck degree from classical geometry

(back to sampling)
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k -revolute serial chain linkage

a kR chain consists ok (k + 1) rigid links connected with k
revolute joints
Forward Kinematics Problem (FKP): Compute the position of
the end-effector, given the joint-angles
Inverse Kinematics Problem (IKP): Compute the joint-angles
taking the mechanism to a specified position of the end-effector

5/23



k -revolute serial chain linkage

a kR chain consists ok (k + 1) rigid links connected with k
revolute joints
Forward Kinematics Problem (FKP): Compute the position of
the end-effector, given the joint-angles
Inverse Kinematics Problem (IKP): Compute the joint-angles
taking the mechanism to a specified position of the end-effector

5/23



k -revolute serial chain linkage

a kR chain consists ok (k + 1) rigid links connected with k
revolute joints

Forward Kinematics Problem (FKP): Compute the position of
the end-effector, given the joint-angles
Inverse Kinematics Problem (IKP): Compute the joint-angles
taking the mechanism to a specified position of the end-effector

5/23



k -revolute serial chain linkage

a kR chain consists ok (k + 1) rigid links connected with k
revolute joints
Forward Kinematics Problem (FKP): Compute the position of
the end-effector, given the joint-angles

Inverse Kinematics Problem (IKP): Compute the joint-angles
taking the mechanism to a specified position of the end-effector

5/23



k -revolute serial chain linkage

a kR chain consists ok (k + 1) rigid links connected with k
revolute joints
Forward Kinematics Problem (FKP): Compute the position of
the end-effector, given the joint-angles
Inverse Kinematics Problem (IKP): Compute the joint-angles
taking the mechanism to a specified position of the end-effector

5/23



Rigid Body Motion

A rigid body motion in 3-space is a composition of a
rotation and a translation, i.e. an element of SE3(R), the
semi-direct product of R3 and SO3(R).
SE3(R) can be viewed as a quasi-projective variety:

SE3(R) ∼= Q′R ⊂ P7
R

QR = {(q,p) ∈ R8 \ {0} s.t. pq = 0} Study quadric.
Q′R = QR \ {q0 = q1 = q2 = q3 = 0}
QR ⊂ Q ⊂ P7

C
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6R-chain

I Fix an initial pose w.r.t.w. we measure the rotation
angles (θ1, . . . , θ6).

I Place a coordinate frame at the ground and one at the
"hand"

I The transformation from hand coordinates to ground
coordinates is a function of the θi ∈ S1 ∼= P1

R
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6R-chain

We have therefore a map:

ΦR : P1
R × . . .× P1

R → SE3(R) ⊂ QR

I The map ΦR is what we call the FKP.
I Determine the fiber Φ−1

R (p) for a p ∈ Q′ is what we call
the IKP.
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Solution of a general 6R-chain IKP

Consider complex angles

Φ : P1
C × . . .× P1

C → Q
By dimension count we expect the general fiber to be finite

1985 Tsai & Morgan proved that the degree of a general
fiber is 16

1988 Li & Liang Efficient algorithm (16 paths)
1988 Algebraic geometry (16 paths)
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Intersection theory

Split the mechanism:

Reduce to two 3R FKP, i.e two trilinear maps:

F ,G : P1
C × P1

C × P1
C → Q

The irreducible varieties 3-dimensional varieties ImF , ImG
intersect transversely and

ImF ∩ ImG = solutions of the general 6R IKP

So the problem is reduced to intersection theory on Q.
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Chow group of a quadric

I Consider the smooth quadric Q ⊂ P7 defined as:

x0x7 + x1x6 + x2x5 + x3x4 = 0.

I Q has an affine stratification, A(Q) is free and a basis
is given by the closures of the strata: Subvarieties are
formally a combination of the strata.

I Can be done f.ex via the BB "plus" and "minus"
decompositioncive by a C∗ action.
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Chow group of Q : x0x7 + x1x6 + x2x5 + x3x4 = 0.

I U0 = {x0 6= 0} ∩ Q (dim 6)
I U1 = {x0 = 0, x1 6= 0} ∩ Q (dim 5)
I U2 = {x0 = x1 = 0, x2 6= 0} ∩ Q (dim 4)
I U3 = {x0 = x1 = x2 = x4 = 0, x3 6= 0} and

U4 = {x0 = x1 = x2 = x3 = 0, x4 6= 0} (dim 3)
I U5 = {x0 = . . . = x4 = 0, x5 6= 0} (dim 2)
I U6 = {x0 = . . . = x5 = 0, x6 6= 0} (dim 1)
I U7 = {x0 = . . . = x6 = 0, x7 6= 0} (a point).
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A3(Q)

I the classes g1 = [U3] and g2 = [U4] form a basis for
A3(Q).

I g2
1 = g2

2 = 0 and g1g2 is the class of a point
I Let [ImF ] = [ImG] = ag1 + bg2
I We need to compute [ImF ] · [ImG] = 2ab.
I Consider the Segre model F : P1 × P1 × P1 → Q.

F (a0,a1,b0,b1, c0, c1) =



a0b0c0
a1b1c0
a1b0c1
a0b1c1
a1b0c0
a0b1c0
−a0b0c1
−a1b1c1


.
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A3(Q)

I The intersection U4 ∩ ImF is transverse and consists
of 4 points:

(a0,b0, c0),
(a0,b1, c1),
(a1,b0, c1),
(a1,b1, c0).

I This means that

4 = deg([ImF ] · g2) = deg(ag1g2 + bg2
2) = a.

I Moreover, ImF ⊂ P7 has degree 3! = 6.
I Let h ∈ A5(Q) be the hyperplane class. Then

6 = deg(h3[ImF ]) = a deg(h3g1) + b deg(h3g2) = a + b,

and hence b = 2 and 2ab = 16.
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kR IKP

Consider the map:

ΦR : P1
R × . . .× P1

R︸ ︷︷ ︸
k

→ SE3(R) ⊂ QR

I The map ΦR is what we call the FKP.
I Determine the fiber Φ−1

R (p) for a p ∈ Q′ is what we call
the IKP.

I For general mechanisms the IKP has a solution
variety of expected dimension k − 6.

How can we compute and present its solution?
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Visualization

I Currently: Bertini real: D. Brake,
Bates-Hauenstein-Sommese-Wampler

I Cell decomposition of almost smooth real algebraic
surfaces
Besana, Di Rocco, Hauenstein, Sommese, Wampler
Numerical Algorithms (2013)

http://www.bertinireal.com 3D printed
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Cycloalkane

A cycloalkane consists only of hydrogen and carbon atoms
arranged in a structure containing a single ring (possibly
with side chains), and all of the carbon-carbon bonds are
single. [Wikipedia] The cyclooctane molecule for ex.
consists of eight carbon atoms in a ring with two hydrogen
atoms bound to each carbon atom.

https://commons.wikimedia.org/wiki/File:Cyclooctane_ballandstick.png.
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Model: Cycloalkane=Closed 8-R mechanism

Special 8R IKP, with a lot of symmetry.
I Equal edge length and equal angles between

consecutive edges.
I Algebraic model involving 13 quadratic polynomials in

15 variables, so we expect the solution set to be a
surface.

I {pi : i ∈ Z8} ⊂ R3 positions of the vertices.

I enbedded via dihedral angles δi ∈ [−π, π).
I Pi plane spanned by {pi ,pi+1,pi+2} for i ∈ Z8.
I ni : normal direction.
I for i ∈ Z8, δi is the angle between ni and ni+1.
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Cyclo-octane

I The cyclo-octane surface permits a whole range of
symmetries. Consider the transformation

(δ0, δ1, δ2, δ3, δ4, δ5, δ6, δ7) 7→ (δ4, δ5, δ6, δ7, δ0, δ1, δ2, δ3).

I there is a component, the spherical component,
pointwise fixed by this transformation, actually
contained in a linear subspace R4 ⊂ R8.

I Topology of cyclo-octane energy landscape, Martin S,
Thompson A, Coutsias EA, Watson JP. J Chem Phys.
2010. The surface has two components: one with the
homology of a sphere and one with the homology of a
Klein bottle.
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Sampling a cyclo-octane

This is the result of a (rather basic) sampling, based on
Bottleneck-estimates

spherical component Klein component

Two irreducible components. The surface is connected!

20/23



Sampling a cyclo-octane

This is the result of a (rather basic) sampling, based on
Bottleneck-estimates

spherical component Klein component

Two irreducible components. The surface is connected!

20/23



Sampling a cyclo-octane

This is the result of a (rather basic) sampling, based on
Bottleneck-estimates

spherical component Klein component

Two irreducible components. The surface is connected!

20/23



Sampling a cyclo-octane

This is the result of a (rather basic) sampling, based on
Bottleneck-estimates

spherical component Klein component

Two irreducible components. The surface is connected!

20/23



The complex

I W one of the components of X , E ⊂W a sampling of
a W .

I Lattice εZ8 ⊂ R8, ε > 0.
I Let r(p) in the lattice εZ8 be the unique closest point

to p ∈ E .
I Complex:

C(ε,E) =
⋃
p∈E

H(r(p), ε)

where H(q, ε) is the hypercube in R8 centered at q
with side length ε.
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Invariants

Homology of the cube complex: CHomP
M. Gameiro, T. Gedeon, H. Kokubu, J.-P. Lessard, K.
Mischaikow, M. Mrozek, P. Pilarczykm.

spherical component Klein component

Blue corresponding to the homology of a sphere in the case of
the spherical component (H0 = Z, H1 = 0, H2 = Z) and that of a
Klein bottle in the other case (H0 = Z, H1 = Z⊕ Z2, H2 = 0).
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Summary

I Algebraic Models
I Kinematics
I Intersection theory

I Presenting (visualising) a solution
I Numerical methods
I Sampling

I Combining the two approaches: Cycloalkane
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