Algebraic Numerics and Sampling:

Algebraic Geometry with a view towards applications

Sandra Di Rocco, ICTP Trieste

Data analysis

- Given a data cloud, discover the geometry (shape) of the data. (DATA INTERPOLATION)
- Given a data cloud, give it a structure and deduce useful information. (TOPOLOGICAL DATA ANALYSIS)

Sampling

We will focus of certain algebraic aspects of data collection coming from algebraic modelling:

Plan for this course

- Lecture I: Algebraic modelling (Kinematics)
- Lecture II: Sampling algebraic varieties: the reach.
- Lecture III: Projective embeddings and Polar classes (classical theory)
- Lecture IV: The Euclidian Distance Degree (closest point)
- Lecture V: Bottleneck degree from classical geometry (back to sampling)
k-revolute serial chain linkage

k-revolute serial chain linkage

k-revolute serial chain linkage

a $k \mathbf{R}$ chain consists ok $(k+1)$ rigid links connected with k revolute joints

k-revolute serial chain linkage

a k R chain consists ok $(k+1)$ rigid links connected with k revolute joints
Forward Kinematics Problem (FKP): Compute the position of the end-effector, given the joint-angles

k-revolute serial chain linkage

a k R chain consists $o k(k+1)$ rigid links connected with k revolute joints
Forward Kinematics Problem (FKP): Compute the position of the end-effector, given the joint-angles Inverse Kinematics Problem (IKP): Compute the joint-angles taking the mechanism to a specified position of the end-effector

Rigid Body Motion

Rigid Body Motion

A rigid body motion in 3-space is a composition of a rotation and a translation, i.e. an element of $S E_{3}(\mathbb{R})$, the semi-direct product of \mathbb{R}^{3} and $\mathrm{SO}_{3}(\mathbb{R})$.

Rigid Body Motion

A rigid body motion in 3-space is a composition of a rotation and a translation, i.e. an element of $S E_{3}(\mathbb{R})$, the semi-direct product of \mathbb{R}^{3} and $\mathrm{SO}_{3}(\mathbb{R})$. $S E_{3}(\mathbb{R})$ can be viewed as a quasi-projective variety:

$$
S E_{3}(\mathbb{R}) \cong \mathcal{Q}_{\mathbb{R}}^{\prime} \subset \mathbb{P}_{\mathbb{R}}^{7}
$$

Rigid Body Motion

A rigid body motion in 3-space is a composition of a rotation and a translation, i.e. an element of $S E_{3}(\mathbb{R})$, the semi-direct product of \mathbb{R}^{3} and $\mathrm{SO}_{3}(\mathbb{R})$. $S E_{3}(\mathbb{R})$ can be viewed as a quasi-projective variety:

$$
S E_{3}(\mathbb{R}) \cong \mathcal{Q}_{\mathbb{R}}^{\prime} \subset \mathbb{P}_{\mathbb{R}}^{7}
$$

$\mathcal{Q}_{\mathbb{R}}=\left\{(q, p) \in \mathbb{R}^{8} \backslash\{0\}\right.$ s.t. $\left.p q=0\right\}$ Study quadric.

Rigid Body Motion

A rigid body motion in 3-space is a composition of a rotation and a translation, i.e. an element of $S E_{3}(\mathbb{R})$, the semi-direct product of \mathbb{R}^{3} and $\mathrm{SO}_{3}(\mathbb{R})$. $S E_{3}(\mathbb{R})$ can be viewed as a quasi-projective variety:

$$
S E_{3}(\mathbb{R}) \cong \mathcal{Q}_{\mathbb{R}}^{\prime} \subset \mathbb{P}_{\mathbb{R}}^{7}
$$

$$
\begin{aligned}
& \mathcal{Q}_{\mathbb{R}}=\left\{(q, p) \in \mathbb{R}^{8} \backslash\{0\} \text { s.t. } p q=0\right\} \text { Study quadric. } \\
& \mathcal{Q}_{\mathbb{R}}^{\prime}=\mathcal{Q}_{\mathbb{R}} \backslash\left\{q_{0}=q_{1}=q_{2}=q_{3}=0\right\}
\end{aligned}
$$

Rigid Body Motion

A rigid body motion in 3-space is a composition of a rotation and a translation, i.e. an element of $S E_{3}(\mathbb{R})$, the semi-direct product of \mathbb{R}^{3} and $\mathrm{SO}_{3}(\mathbb{R})$. $S E_{3}(\mathbb{R})$ can be viewed as a quasi-projective variety:

$$
S E_{3}(\mathbb{R}) \cong \mathcal{Q}_{\mathbb{R}}^{\prime} \subset \mathbb{P}_{\mathbb{R}}^{7}
$$

$$
\begin{aligned}
& \mathcal{Q}_{\mathbb{R}}=\left\{(q, p) \in \mathbb{R}^{8} \backslash\{0\} \text { s.t. } p q=0\right\} \text { Study quadric. } \\
& \mathcal{Q}_{\mathbb{R}}^{\prime}=\mathcal{Q}_{\mathbb{R}} \backslash\left\{q_{0}=q_{1}=q_{2}=q_{3}=0\right\} \\
& \mathcal{Q}_{\mathbb{R}} \subset \mathcal{Q} \subset \mathbb{P}_{\mathbb{C}}^{7}
\end{aligned}
$$

6R-chain

7/23

6R-chain

6R-chain

- Fix an initial pose w.r.t.w. we measure the rotation angles $\left(\theta_{1}, \ldots, \theta_{6}\right)$.

6R-chain

- Fix an initial pose w.r.t.w. we measure the rotation angles $\left(\theta_{1}, \ldots, \theta_{6}\right)$.
- Place a coordinate frame at the ground and one at the "hand"

6R-chain

- Fix an initial pose w.r.t.w. we measure the rotation angles $\left(\theta_{1}, \ldots, \theta_{6}\right)$.
- Place a coordinate frame at the ground and one at the "hand"
- The transformation from hand coordinates to ground coordinates is a function of the $\theta_{i} \in S^{1} \cong \mathbb{P}_{\mathbb{R}}^{1}$

6R-chain

6R-chain

We have therefore a map:

$$
\Phi_{\mathbb{R}}: \mathbb{P}_{\mathbb{R}}^{1} \times \ldots \times \mathbb{P}_{\mathbb{R}}^{1} \rightarrow S E_{3}(\mathbb{R}) \subset \mathcal{Q}_{\mathbb{R}}
$$

6R-chain

We have therefore a map:

$$
\Phi_{\mathbb{R}}: \mathbb{P}_{\mathbb{R}}^{1} \times \ldots \times \mathbb{P}_{\mathbb{R}}^{1} \rightarrow S E_{3}(\mathbb{R}) \subset \mathcal{Q}_{\mathbb{R}}
$$

- The map $\Phi_{\mathbb{R}}$ is what we call the FKP.

6R-chain

We have therefore a map:

$$
\Phi_{\mathbb{R}}: \mathbb{P}_{\mathbb{R}}^{1} \times \ldots \times \mathbb{P}_{\mathbb{R}}^{1} \rightarrow S E_{3}(\mathbb{R}) \subset \mathcal{Q}_{\mathbb{R}}
$$

- The map $\Phi_{\mathbb{R}}$ is what we call the FKP.
- Determine the fiber $\Phi_{\mathbb{R}}^{-1}(p)$ for a $p \in \mathcal{Q}^{\prime}$ is what we call the IKP.

Solution of a general 6R-chain IKP

Solution of a general 6R-chain IKP

Consider complex angles

$$
\Phi: \mathbb{P}_{\mathbb{C}}^{1} \times \ldots \times \mathbb{P}_{\mathbb{C}}^{1} \rightarrow \mathcal{Q}
$$

Solution of a general 6R-chain IKP

Consider complex angles

$$
\Phi: \mathbb{P}_{\mathbb{C}}^{1} \times \ldots \times \mathbb{P}_{\mathbb{C}}^{1} \rightarrow \mathcal{Q}
$$

By dimension count we expect the general fiber to be finite

Solution of a general 6R-chain IKP

Consider complex angles

$$
\Phi: \mathbb{P}_{\mathbb{C}}^{1} \times \ldots \times \mathbb{P}_{\mathbb{C}}^{1} \rightarrow \mathcal{Q}
$$

By dimension count we expect the general fiber to be finite
1985 Tsai \& Morgan proved that the degree of a general fiber is 16

Solution of a general 6R-chain IKP

Consider complex angles

$$
\Phi: \mathbb{P}_{\mathbb{C}}^{1} \times \ldots \times \mathbb{P}_{\mathbb{C}}^{1} \rightarrow \mathcal{Q}
$$

By dimension count we expect the general fiber to be finite
1985 Tsai \& Morgan proved that the degree of a general fiber is 16
1988 Li \& Liang Efficient algorithm (16 paths)
1988 Algebraic geometry (16 paths)

Intersection theory

10/23

Intersection theory

Split the mechanism:

Intersection theory

Split the mechanism:

Reduce to two 3R FKP, i.e two trilinear maps:

$$
F, G: \mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1} \rightarrow \mathcal{Q}
$$

Intersection theory

Split the mechanism:

Reduce to two 3R FKP, i.e two trilinear maps:

$$
F, G: \mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1} \rightarrow \mathcal{Q}
$$

The irreducible varieties 3-dimensional varieties ImF, ImG intersect transversely and

$$
\operatorname{ImF} \cap \operatorname{ImG}=\text { solutions of the general } 6 \mathrm{R} \operatorname{IKP}
$$

Intersection theory

Split the mechanism:

Reduce to two 3R FKP, i.e two trilinear maps:

$$
F, G: \mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1} \rightarrow \mathcal{Q}
$$

The irreducible varieties 3-dimensional varieties ImF, ImG intersect transversely and
$\operatorname{ImF} \cap \operatorname{ImG}=$ solutions of the general 6R IKP
So the problem is reduced to intersection theory on \mathcal{Q}.

Chow group of a quadric

Chow group of a quadric

- Consider the smooth quadric $\mathcal{Q} \subset \mathbb{P}^{7}$ defined as:

$$
x_{0} x_{7}+x_{1} x_{6}+x_{2} x_{5}+x_{3} x_{4}=0
$$

Chow group of a quadric

- Consider the smooth quadric $\mathcal{Q} \subset \mathbb{P}^{7}$ defined as:

$$
x_{0} x_{7}+x_{1} x_{6}+x_{2} x_{5}+x_{3} x_{4}=0
$$

- \mathcal{Q} has an affine stratification, $A(\mathcal{Q})$ is free and a basis is given by the closures of the strata: Subvarieties are formally a combination of the strata.

Chow group of a quadric

- Consider the smooth quadric $\mathcal{Q} \subset \mathbb{P}^{7}$ defined as:

$$
x_{0} x_{7}+x_{1} x_{6}+x_{2} x_{5}+x_{3} x_{4}=0
$$

- \mathcal{Q} has an affine stratification, $A(\mathcal{Q})$ is free and a basis is given by the closures of the strata: Subvarieties are formally a combination of the strata.
- Can be done f.ex via the BB "plus" and "minus" decompositioncive by a \mathbb{C}^{*} action.

Chow group of $\mathcal{Q}: x_{0} x_{7}+x_{1} x_{6}+x_{2} x_{5}+x_{3} x_{4}=0$.

Chow group of $\mathcal{Q}: x_{0} x_{7}+x_{1} x_{6}+x_{2} x_{5}+x_{3} x_{4}=0$.

- $U_{0}=\left\{x_{0} \neq 0\right\} \cap \mathcal{Q}(\operatorname{dim} 6)$

Chow group of $\mathcal{Q}: x_{0} x_{7}+x_{1} x_{6}+x_{2} x_{5}+x_{3} x_{4}=0$.

- $U_{0}=\left\{x_{0} \neq 0\right\} \cap \mathcal{Q}(\operatorname{dim} 6)$
- $U_{1}=\left\{x_{0}=0, x_{1} \neq 0\right\} \cap \mathcal{Q}(\operatorname{dim} 5)$

Chow group of $\mathcal{Q}: x_{0} x_{7}+x_{1} x_{6}+x_{2} x_{5}+x_{3} x_{4}=0$.

- $U_{0}=\left\{x_{0} \neq 0\right\} \cap \mathcal{Q}(\operatorname{dim} 6)$
- $U_{1}=\left\{x_{0}=0, x_{1} \neq 0\right\} \cap \mathcal{Q}(\operatorname{dim} 5)$
- $U_{2}=\left\{x_{0}=x_{1}=0, x_{2} \neq 0\right\} \cap \mathcal{Q}(\operatorname{dim} 4)$

Chow group of $\mathcal{Q}: x_{0} x_{7}+x_{1} x_{6}+x_{2} x_{5}+x_{3} x_{4}=0$.

- $U_{0}=\left\{x_{0} \neq 0\right\} \cap \mathcal{Q}(\operatorname{dim} 6)$
- $U_{1}=\left\{x_{0}=0, x_{1} \neq 0\right\} \cap \mathcal{Q}(\operatorname{dim} 5)$
- $U_{2}=\left\{x_{0}=x_{1}=0, x_{2} \neq 0\right\} \cap \mathcal{Q}(\operatorname{dim} 4)$
- $U_{3}=\left\{x_{0}=x_{1}=x_{2}=x_{4}=0, x_{3} \neq 0\right\}$ and $U_{4}=\left\{x_{0}=x_{1}=x_{2}=x_{3}=0, x_{4} \neq 0\right\}(\operatorname{dim} 3)$

Chow group of $\mathcal{Q}: x_{0} x_{7}+x_{1} x_{6}+x_{2} x_{5}+x_{3} x_{4}=0$.

- $U_{0}=\left\{x_{0} \neq 0\right\} \cap \mathcal{Q}(\operatorname{dim} 6)$
- $U_{1}=\left\{x_{0}=0, x_{1} \neq 0\right\} \cap \mathcal{Q}(\operatorname{dim} 5)$
- $U_{2}=\left\{x_{0}=x_{1}=0, x_{2} \neq 0\right\} \cap \mathcal{Q}(\operatorname{dim} 4)$
- $U_{3}=\left\{x_{0}=x_{1}=x_{2}=x_{4}=0, x_{3} \neq 0\right\}$ and $U_{4}=\left\{x_{0}=x_{1}=x_{2}=x_{3}=0, x_{4} \neq 0\right\}(\operatorname{dim} 3)$
- $U_{5}=\left\{x_{0}=\ldots=x_{4}=0, x_{5} \neq 0\right\}(\operatorname{dim} 2)$

Chow group of $\mathcal{Q}: x_{0} x_{7}+x_{1} x_{6}+x_{2} x_{5}+x_{3} x_{4}=0$.

- $U_{0}=\left\{x_{0} \neq 0\right\} \cap \mathcal{Q}(\operatorname{dim} 6)$
- $U_{1}=\left\{x_{0}=0, x_{1} \neq 0\right\} \cap \mathcal{Q}(\operatorname{dim} 5)$
- $U_{2}=\left\{x_{0}=x_{1}=0, x_{2} \neq 0\right\} \cap \mathcal{Q}(\operatorname{dim} 4)$
- $U_{3}=\left\{x_{0}=x_{1}=x_{2}=x_{4}=0, x_{3} \neq 0\right\}$ and $U_{4}=\left\{x_{0}=x_{1}=x_{2}=x_{3}=0, x_{4} \neq 0\right\}(\operatorname{dim} 3)$
- $U_{5}=\left\{x_{0}=\ldots=x_{4}=0, x_{5} \neq 0\right\}(\operatorname{dim} 2)$
- $U_{6}=\left\{x_{0}=\ldots=x_{5}=0, x_{6} \neq 0\right\}(\operatorname{dim} 1)$

Chow group of $\mathcal{Q}: x_{0} x_{7}+x_{1} x_{6}+x_{2} x_{5}+x_{3} x_{4}=0$.

- $U_{0}=\left\{x_{0} \neq 0\right\} \cap \mathcal{Q}(\operatorname{dim} 6)$
- $U_{1}=\left\{x_{0}=0, x_{1} \neq 0\right\} \cap \mathcal{Q}(\operatorname{dim} 5)$
- $U_{2}=\left\{x_{0}=x_{1}=0, x_{2} \neq 0\right\} \cap \mathcal{Q}(\operatorname{dim} 4)$
- $U_{3}=\left\{x_{0}=x_{1}=x_{2}=x_{4}=0, x_{3} \neq 0\right\}$ and $U_{4}=\left\{x_{0}=x_{1}=x_{2}=x_{3}=0, x_{4} \neq 0\right\}(\operatorname{dim} 3)$
- $U_{5}=\left\{x_{0}=\ldots=x_{4}=0, x_{5} \neq 0\right\}(\operatorname{dim} 2)$
- $U_{6}=\left\{x_{0}=\ldots=x_{5}=0, x_{6} \neq 0\right\}(\operatorname{dim} 1)$
- $U_{7}=\left\{x_{0}=\ldots=x_{6}=0, x_{7} \neq 0\right\}$ (a point).
$A_{3}(\mathcal{Q})$

13/23
$A_{3}(\mathcal{Q})$

- the classes $g_{1}=\left[\overline{U_{3}}\right]$ and $g_{2}=\left[\overline{U_{4}}\right]$ form a basis for $A_{3}(\mathcal{Q})$.
$A_{3}(\mathcal{Q})$
- the classes $g_{1}=\left[\overline{U_{3}}\right]$ and $g_{2}=\left[\overline{U_{4}}\right]$ form a basis for $A_{3}(\mathcal{Q})$.
- $g_{1}^{2}=g_{2}^{2}=0$ and $g_{1} g_{2}$ is the class of a point
$A_{3}(\mathcal{Q})$
- the classes $g_{1}=\left[\overline{U_{3}}\right]$ and $g_{2}=\left[\overline{U_{4}}\right]$ form a basis for $A_{3}(\mathcal{Q})$.
- $g_{1}^{2}=g_{2}^{2}=0$ and $g_{1} g_{2}$ is the class of a point
- Let $[I m F]=[I m G]=a g_{1}+b g_{2}$
$A_{3}(\mathcal{Q})$
- the classes $g_{1}=\left[\overline{U_{3}}\right]$ and $g_{2}=\left[\overline{U_{4}}\right]$ form a basis for $A_{3}(\mathcal{Q})$.
- $g_{1}^{2}=g_{2}^{2}=0$ and $g_{1} g_{2}$ is the class of a point
- Let $[I m F]=[I m G]=a g_{1}+b g_{2}$
- We need to compute $[I m F] \cdot[I m G]=2 a b$.
$A_{3}(\mathcal{Q})$
- the classes $g_{1}=\left[\overline{U_{3}}\right]$ and $g_{2}=\left[\overline{U_{4}}\right]$ form a basis for $A_{3}(\mathcal{Q})$.
- $g_{1}^{2}=g_{2}^{2}=0$ and $g_{1} g_{2}$ is the class of a point
- Let $[I m F]=[I m G]=a g_{1}+b g_{2}$
- We need to compute $[I m F] \cdot[I m G]=2 a b$.
- Consider the Segre model $F: \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathcal{Q}$.

$$
F\left(a_{0}, a_{1}, b_{0}, b_{1}, c_{0}, c_{1}\right)=\left(\begin{array}{c}
a_{0} b_{0} c_{0} \\
a_{1} b_{1} c_{0} \\
a_{1} b_{0} c_{1} \\
a_{0} b_{1} c_{1} \\
a_{1} b_{0} c_{0} \\
a_{0} b_{1} c_{0} \\
-a_{0} b_{0} c_{1} \\
-a_{1} b_{1} c_{1}
\end{array}\right)
$$

$A_{3}(\mathcal{Q})$

14/23
$A_{3}(\mathcal{Q})$

- The intersection $\overline{U_{4}} \cap I m F$ is transverse and consists of 4 points:

$$
\begin{aligned}
& \left(a_{0}, b_{0}, c_{0}\right), \\
& \left(a_{0}, b_{1}, c_{1}\right) \\
& \left(a_{1}, b_{0}, c_{1}\right), \\
& \left(a_{1}, b_{1}, c_{0}\right)
\end{aligned}
$$

$A_{3}(\mathcal{Q})$

- The intersection $\overline{U_{4}} \cap I m F$ is transverse and consists of 4 points:

$$
\begin{aligned}
& \left(a_{0}, b_{0}, c_{0}\right), \\
& \left(a_{0}, b_{1}, c_{1}\right), \\
& \left(a_{1}, b_{0}, c_{1}\right), \\
& \left(a_{1}, b_{1}, c_{0}\right)
\end{aligned}
$$

- This means that

$$
4=\operatorname{deg}\left([I m F] \cdot g_{2}\right)=\operatorname{deg}\left(a g_{1} g_{2}+b g_{2}^{2}\right)=a
$$

$A_{3}(\mathcal{Q})$

- The intersection $\overline{U_{4}} \cap I m F$ is transverse and consists of 4 points:

$$
\begin{aligned}
& \left(a_{0}, b_{0}, c_{0}\right), \\
& \left(a_{0}, b_{1}, c_{1}\right), \\
& \left(a_{1}, b_{0}, c_{1}\right), \\
& \left(a_{1}, b_{1}, c_{0}\right)
\end{aligned}
$$

- This means that

$$
4=\operatorname{deg}\left([I m F] \cdot g_{2}\right)=\operatorname{deg}\left(a g_{1} g_{2}+b g_{2}^{2}\right)=a
$$

- Moreover, $\operatorname{ImF} \subset \mathbb{P}^{7}$ has degree $3!=6$.
$A_{3}(\mathcal{Q})$
- The intersection $\overline{U_{4}} \cap I m F$ is transverse and consists of 4 points:

$$
\begin{aligned}
& \left(a_{0}, b_{0}, c_{0}\right), \\
& \left(a_{0}, b_{1}, c_{1}\right), \\
& \left(a_{1}, b_{0}, c_{1}\right), \\
& \left(a_{1}, b_{1}, c_{0}\right)
\end{aligned}
$$

- This means that

$$
4=\operatorname{deg}\left([I m F] \cdot g_{2}\right)=\operatorname{deg}\left(a g_{1} g_{2}+b g_{2}^{2}\right)=a
$$

- Moreover, $\operatorname{ImF} \subset \mathbb{P}^{7}$ has degree $3!=6$.
- Let $h \in A_{5}(\mathcal{Q})$ be the hyperplane class. Then

$$
6=\operatorname{deg}\left(h^{3}[/ m F]\right)=\operatorname{adeg}\left(h^{3} g_{1}\right)+b \operatorname{deg}\left(h^{3} g_{2}\right)=a+b,
$$

and hence $b=2$ and $2 a b=16$.
kR IKP

15/23
kR IKP

15/23

kR IKP

Consider the map:

$$
\Phi_{\mathbb{R}}: \underbrace{\mathbb{P}_{\mathbb{R}}^{1} \times \ldots \times \mathbb{P}_{\mathbb{R}}^{1}}_{k} \rightarrow S E_{3}(\mathbb{R}) \subset \mathcal{Q}_{\mathbb{R}}
$$

kR IKP

Consider the map:

$$
\Phi_{\mathbb{R}}: \underbrace{\mathbb{P}_{\mathbb{R}}^{1} \times \ldots \times \mathbb{P}_{\mathbb{R}}^{1}}_{k} \rightarrow S E_{3}(\mathbb{R}) \subset \mathcal{Q}_{\mathbb{R}}
$$

- The map $\Phi_{\mathbb{R}}$ is what we call the FKP.

kR IKP

Consider the map:

$$
\Phi_{\mathbb{R}}: \underbrace{\mathbb{P}_{\mathbb{R}}^{1} \times \ldots \times \mathbb{P}_{\mathbb{R}}^{1}}_{k} \rightarrow S E_{3}(\mathbb{R}) \subset \mathcal{Q}_{\mathbb{R}}
$$

- The map $\Phi_{\mathbb{R}}$ is what we call the FKP.
- Determine the fiber $\Phi_{\mathbb{R}}^{-1}(p)$ for a $p \in \mathcal{Q}^{\prime}$ is what we call the IKP.

kR IKP

Consider the map:

$$
\Phi_{\mathbb{R}}: \underbrace{\mathbb{P}_{\mathbb{R}}^{1} \times \ldots \times \mathbb{P}_{\mathbb{R}}^{1}}_{k} \rightarrow S E_{3}(\mathbb{R}) \subset \mathcal{Q}_{\mathbb{R}}
$$

- The map $\Phi_{\mathbb{R}}$ is what we call the FKP.
- Determine the fiber $\Phi_{\mathbb{R}}^{-1}(p)$ for a $p \in \mathcal{Q}^{\prime}$ is what we call the IKP.
- For general mechanisms the IKP has a solution variety of expected dimension $k-6$.

kR IKP

Consider the map:

$$
\Phi_{\mathbb{R}}: \underbrace{\mathbb{P}_{\mathbb{R}}^{1} \times \ldots \times \mathbb{P}_{\mathbb{R}}^{1}}_{k} \rightarrow S E_{3}(\mathbb{R}) \subset \mathcal{Q}_{\mathbb{R}}
$$

- The map $\Phi_{\mathbb{R}}$ is what we call the FKP.
- Determine the fiber $\Phi_{\mathbb{R}}^{-1}(p)$ for a $p \in \mathcal{Q}^{\prime}$ is what we call the IKP.
- For general mechanisms the IKP has a solution variety of expected dimension $k-6$.
How can we compute and present its solution?

Visualization

Visualization

- Currently: Bertini real: D. Brake, Bates-Hauenstein-Sommese-Wampler

Visualization

- Currently: Bertini real: D. Brake, Bates-Hauenstein-Sommese-Wampler
- Cell decomposition of almost smooth real algebraic surfaces
Besana, Di Rocco, Hauenstein, Sommese, Wampler Numerical Algorithms (2013)

http://www.bertinireal.com

3D printed

Cycloalkane

Cycloalkane

A cycloalkane consists only of hydrogen and carbon atoms arranged in a structure containing a single ring (possibly with side chains), and all of the carbon-carbon bonds are single. [Wikipedia]

Cycloalkane

A cycloalkane consists only of hydrogen and carbon atoms arranged in a structure containing a single ring (possibly with side chains), and all of the carbon-carbon bonds are single. [Wikipedia] The cyclooctane molecule for ex. consists of eight carbon atoms in a ring with two hydrogen atoms bound to each carbon atom.

Cycloalkane

A cycloalkane consists only of hydrogen and carbon atoms arranged in a structure containing a single ring (possibly with side chains), and all of the carbon-carbon bonds are single. [Wikipedia] The cyclooctane molecule for ex. consists of eight carbon atoms in a ring with two hydrogen atoms bound to each carbon atom.

https://commons.wikimedia.org/wiki/File:Cyclooctane_ballandstick.png.

Model: Cycloalkane=Closed 8-R mechanism

Model: Cycloalkane=Closed 8-R mechanism

Special $8 R$ IKP, with a lot of symmetry.

Model: Cycloalkane=Closed 8-R mechanism

Special $8 R$ IKP, with a lot of symmetry.

- Equal edge length and equal angles between consecutive edges.

Model: Cycloalkane=Closed 8-R mechanism

Special $8 R$ IKP, with a lot of symmetry.

- Equal edge length and equal angles between consecutive edges.
- Algebraic model involving 13 quadratic polynomials in 15 variables, so we expect the solution set to be a surface.

Model: Cycloalkane=Closed 8-R mechanism

Special $8 R$ IKP, with a lot of symmetry.

- Equal edge length and equal angles between consecutive edges.
- Algebraic model involving 13 quadratic polynomials in 15 variables, so we expect the solution set to be a surface.
- $\left\{p_{i}: i \in \mathbb{Z}_{8}\right\} \subset \mathbb{R}^{3}$ positions of the vertices.

Model: Cycloalkane=Closed 8-R mechanism

Special $8 R$ IKP, with a lot of symmetry.

- Equal edge length and equal angles between consecutive edges.
- Algebraic model involving 13 quadratic polynomials in 15 variables, so we expect the solution set to be a surface.
- $\left\{p_{i}: i \in \mathbb{Z}_{8}\right\} \subset \mathbb{R}^{3}$ positions of the vertices.
- enbedded via dihedral angles $\delta_{i} \in[-\pi, \pi)$.

Model: Cycloalkane=Closed 8-R mechanism

Special $8 R$ IKP, with a lot of symmetry.

- Equal edge length and equal angles between consecutive edges.
- Algebraic model involving 13 quadratic polynomials in 15 variables, so we expect the solution set to be a surface.
- $\left\{p_{i}: i \in \mathbb{Z}_{8}\right\} \subset \mathbb{R}^{3}$ positions of the vertices.
- enbedded via dihedral angles $\delta_{i} \in[-\pi, \pi)$.
- P_{i} plane spanned by $\left\{p_{i}, p_{i+1}, p_{i+2}\right\}$ for $i \in \mathbb{Z}_{8}$.

Model: Cycloalkane=Closed 8-R mechanism

Special $8 R$ IKP, with a lot of symmetry.

- Equal edge length and equal angles between consecutive edges.
- Algebraic model involving 13 quadratic polynomials in 15 variables, so we expect the solution set to be a surface.
- $\left\{p_{i}: i \in \mathbb{Z}_{8}\right\} \subset \mathbb{R}^{3}$ positions of the vertices.
- enbedded via dihedral angles $\delta_{i} \in[-\pi, \pi)$.
- P_{i} plane spanned by $\left\{p_{i}, p_{i+1}, p_{i+2}\right\}$ for $i \in \mathbb{Z}_{8}$.
- n_{i} : normal direction.

Model: Cycloalkane=Closed 8-R mechanism

Special $8 R$ IKP, with a lot of symmetry.

- Equal edge length and equal angles between consecutive edges.
- Algebraic model involving 13 quadratic polynomials in 15 variables, so we expect the solution set to be a surface.
- $\left\{p_{i}: i \in \mathbb{Z}_{8}\right\} \subset \mathbb{R}^{3}$ positions of the vertices.
- enbedded via dihedral angles $\delta_{i} \in[-\pi, \pi)$.
- P_{i} plane spanned by $\left\{p_{i}, p_{i+1}, p_{i+2}\right\}$ for $i \in \mathbb{Z}_{8}$.
- n_{i} : normal direction.
- for $i \in \mathbb{Z}_{8}, \delta_{i}$ is the angle between n_{i} and n_{i+1}.

Cyclo-octane

19/23

Cyclo-octane

- The cyclo-octane surface permits a whole range of symmetries. Consider the transformation

$$
\left(\delta_{0}, \delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \delta_{5}, \delta_{6}, \delta_{7}\right) \mapsto\left(\delta_{4}, \delta_{5}, \delta_{6}, \delta_{7}, \delta_{0}, \delta_{1}, \delta_{2}, \delta_{3}\right)
$$

Cyclo-octane

- The cyclo-octane surface permits a whole range of symmetries. Consider the transformation
$\left(\delta_{0}, \delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \delta_{5}, \delta_{6}, \delta_{7}\right) \mapsto\left(\delta_{4}, \delta_{5}, \delta_{6}, \delta_{7}, \delta_{0}, \delta_{1}, \delta_{2}, \delta_{3}\right)$.
- there is a component, the spherical component, pointwise fixed by this transformation, actually contained in a linear subspace $\mathbb{R}^{4} \subset \mathbb{R}^{8}$.

Cyclo-octane

- The cyclo-octane surface permits a whole range of symmetries. Consider the transformation
$\left(\delta_{0}, \delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \delta_{5}, \delta_{6}, \delta_{7}\right) \mapsto\left(\delta_{4}, \delta_{5}, \delta_{6}, \delta_{7}, \delta_{0}, \delta_{1}, \delta_{2}, \delta_{3}\right)$.
- there is a component, the spherical component, pointwise fixed by this transformation, actually contained in a linear subspace $\mathbb{R}^{4} \subset \mathbb{R}^{8}$.
- Topology of cyclo-octane energy landscape, Martin S, Thompson A, Coutsias EA, Watson JP. J Chem Phys. 2010. The surface has two components: one with the homology of a sphere and one with the homology of a Klein bottle.

Sampling a cyclo-octane

Sampling a cyclo-octane

This is the result of a (rather basic) sampling, based on Bottleneck-estimates

Sampling a cyclo-octane

This is the result of a (rather basic) sampling, based on Bottleneck-estimates

spherical component

Klein component

Sampling a cyclo-octane

This is the result of a (rather basic) sampling, based on Bottleneck-estimates

spherical component

Klein component

Two irreducible components. The surface is connected!

The complex

21/23

The complex

- W one of the components of $X, E \subset W$ a sampling of a W.

The complex

- W one of the components of $X, E \subset W$ a sampling of a W.
- Lattice $\varepsilon \mathbb{Z}^{8} \subset \mathbb{R}^{8}, \varepsilon>0$.

The complex

- W one of the components of $X, E \subset W$ a sampling of a W.
- Lattice $\varepsilon \mathbb{Z}^{8} \subset \mathbb{R}^{8}, \varepsilon>0$.
- Let $r(p)$ in the lattice $\varepsilon \mathbb{Z}^{8}$ be the unique closest point to $p \in E$.

The complex

- W one of the components of $X, E \subset W$ a sampling of a W.
- Lattice $\varepsilon \mathbb{Z}^{8} \subset \mathbb{R}^{8}, \varepsilon>0$.
- Let $r(p)$ in the lattice $\varepsilon \mathbb{Z}^{8}$ be the unique closest point to $p \in E$.
- Complex:

$$
\mathcal{C}(\varepsilon, E)=\bigcup_{p \in E} H(r(p), \varepsilon)
$$

where $H(q, \varepsilon)$ is the hypercube in \mathbb{R}^{8} centered at q with side length ε.

Invariants

22/23

Invariants

Homology of the cube complex: CHomP
M. Gameiro, T. Gedeon, H. Kokubu, J.-P. Lessard, K. Mischaikow, M. Mrozek, P. Pilarczykm.

Invariants

Homology of the cube complex: CHomP
M. Gameiro, T. Gedeon, H. Kokubu, J.-P. Lessard, K. Mischaikow, M. Mrozek, P. Pilarczykm.

spherical component

Klein component

Invariants

Homology of the cube complex: CHomP
M. Gameiro, T. Gedeon, H. Kokubu, J.-P. Lessard, K.

Mischaikow, M. Mrozek, P. Pilarczykm.

spherical component

Klein component

Blue corresponding to the homology of a sphere in the case of the spherical component ($H_{0}=\mathbb{Z}, H_{1}=0, H_{2}=\mathbb{Z}$) and that of a Klein bottle in the other case ($H_{0}=\mathbb{Z}, H_{1}=\mathbb{Z} \oplus \mathbb{Z}_{2}, H_{2}=0$).

Summary

23/23

Summary

- Algebraic Models
- Kinematics
- Intersection theory
- Presenting (visualising) a solution
- Numerical methods
- Sampling
- Combining the two approaches: Cycloalkane

