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Abstract

Topological Photonics is a rapidly growing field which explores the ideas of topological

invariants adapted from condensed matter physics to optical systems. Thanks to

integrated photonics platforms, the evolution of light in nanoscale photonic lattices

can enable direct measurement of topological properties of the band-structure.

In this degree project, we study the topological Anderson phase transition in

disordered one-dimensional lattices, and probe distinct topological phases in

photonic superlattices. In first part, we fabricate photonic lattices with different

disorder strength, and observe the topological transition from trivial topological

Anderson phase to non-trivial topological Anderson phase as the system disorder is

increased.

In second part, we focus on probing the Zak phase in photonic superlattices. We

fabricate a superlattice system that utilizes either bulk excitation or edge excitation.

We identify the trivial and non-trivial Zak phase using two methods: first, through

reconstructing the intensity evolution in the edge waveguide, second, through

calculating the beam displacement in the case of bulk excitation .

In order to study the evolution of the light in the nano-scaled photonic lattices, we

develop a novel technique: Loss-Induced Scattering Approach (LISA), which enables

high fidelity reconstruction of the photonic state evolving in the lattice.

Keywords

Topological photonics, Integrated photonics, Condensed matter physics physics,

Optics
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Abstract

Topologisk fotonik är ett snabbt växande område som utforskar idéerna om

topologiska invarianter anpassade från kondenserad materiens fysik till optiska

system. Tack vare integrerade fotonikplattformar kan ljusutvecklingen i fotoniska

gitter i nanoskala möjliggöra direkt mätning av topologiska egenskaper hos

bandstrukturen.

I detta examensarbete studerar vi den topologiskaAnderson-fasövergången i oordnade

endimensionella gitter, och undersöker distinkta topologiska faser i fotoniska

supergitter. I den första delen tillverkar vi fotoniska gitter med olika störningsstyrka

och observerar den topologiska övergången från trivial topologisk Anderson-fas till

icke-trivial topologisk Anderson-fas när systemstörningen ökar.

I den andra delen fokuserar vi på att sondera Zak-fasen i fotoniska supergitter.

Vi tillverkar ett supergittersystem som använder antingen bulkexcitering eller

kantexcitering. Vi identifierar den triviala och icke-triviala Zak-fasenmed tvåmetoder:

för det första genom att rekonstruera intensitetsutvecklingen i kantvågledaren, för det

andra genom att beräkna strålens förskjutning vid bulkexcitation.

För att studera utvecklingen av ljuset i de nanoskalade fotoniska gittren, utvecklar

vi en ny teknik: Loss-Induced Scattering Approach (LISA), som möjliggör

högtrohetsrekonstruktion av det fotoniska tillståndet som utvecklas i gittret.

Nyckelord

Topologisk fotonik, Integrerad fotonik, Kondenserad materiens fysik, Optik
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Chapter 1

Introduction

The field of topological photonics focuses on exploring the parallels between

topological invariants in condensed matter systems with the optical ones, and utilize

their properties to build advanced photonic devices. Topological phases ofmatter were

initially explored in solid-state electroninc systems, such as the integer quantum Hall

effect discovered in 1980[1]. In 2008, Haldane and Raghu showed that the photonics

bands would have non-trivial topological invariants when the electromagnetic waves

are guided in two-dimensional spatially periodic devices with time-reversal symmetry

breaking using magneto-optical elements[2]. One year later, Wang experimentally

implemented this idea in themicrowave domain andmeasured the nontrivial band[3].

These works lead to numerous subsequent experiments in the following years. By

carefully designing the wavevector space of the photonic lattice, a photonic system can

allow light to propagate robustly against imperfections and disorder, with negligible

back-reflection.

Topological photonics is not only an excellent platform for implementing theoretical

concepts from condensed matter physics, but also has great technological importance

with potential to create novel devices in the field of quantum photonics[4], non-

linear photonics[5], on-chip robust communication and topologically protected

lasers[6]. In this project, we focus on the investigation of two important topological

concepts, -Anderson phase transition and Zak phase in a topologically protected band

structure.

This report is divided to the followingmain parts, with brief summary presented below

for each chapter:
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CHAPTER 1. INTRODUCTION

Chapter 2, Theoretical Background, introduces the theoretical concepts and relevant

formulas to study the photonic lattices.

Chapter 3, Simulation and Chip design, presents the simulation performed to study

the light dynamics in the topological Anderson phase transition lattice, and the

superlattice.

Chapter 4, Sample Fabrication, introduces the techniques used to fabricate the

photonic chips.

Chapter 5, Experimental Setup, introduces the methods and experimental details for

measuring the devices.

Chapter 6, Data analysing, analyse the measured data, with comparison to the

simulation results.

Chapter 7, Conclusion and Future outlook, sums up the results we obtained and

explore subsequent experiments in the waveguides array systems.
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Chapter 2

Theoretical Background

2.1 Topology

Some topological properties of closed manifolds are preserved under continuous

deformation, and only changed when opening or closing a hole in the manifold,

which results in the increasing or decreasing of genus. For example, while kneading

the dough into a pizza, the original dough and the resulting pizza are topologically

equivalent even if the shape looks different. The reason is that in the process ofmaking

the pizza no new holes were introduced and the genus of these two geometric objects

stays zero. However, if we are going to make some donuts, the change in topology is

unavoidable. Different topologies can be mathematically characterized by topological

invariants. When a hole is created or annihilated, the topological invariant changes

and refers to a topological phase transition.

Topologies in photonics are defined on the dispersion bands in wave-vector space.

In particular, we use Chern number to represent the topological invariant of 2D

dispersion band. The Chern number can be calculated through integrating the

curvature in k-space over the Brillouin zone.

Cm =
1

2π

∫
BZ

Ωm(k) · d2k (2.1)

where m is the band index, Ωm(k) is the Berry curvature and d2k is the small area in

the reciprocal-space.

In 2D dispersion band, this represents the flux of Berry curvature through the

3



CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1.1: Left: Dough and pizza with same genus=0 Right: Dough and donuts
with different genus

surface, and the chern number is always an integer. This integer characterizes the

quantized collective behaviour of the wavefunctions on the band. If an observable

described by a topological invariant, it can only change discretely and would not react

to small continuous perturbations, which results in the natural robustness against

imperfections.

To illustrate it, we first go through the definition of Berry curvature.

Ωm(k) = ∇k ×Am(k) (2.2)

and Am(k) is the Berry connection defined by the following formula:

Am(k) = i ⟨umk |∇k| umk⟩ (2.3)

where umk is the spatially periodic part of the Bloch function.

2.2 Photonic waveguides

The evanescently coupled photonic waveguides shown in the figure 2.2.1 is an excellent

platform for studying discrete systems.

We can compare the Schrödinger equation of this 2D system and the optical paraxial

Helmholtz equation for the evolution of the amplitude of the electrical field.

4



CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.2.1: SEM image of superlattice photonics array

− h̄
2

2m
∇2Ψ(x, t) + V (x, t)Ψ(x, t) = i h̄

∂

∂t
Ψ(x, t) (2.4)

and

iλ
∂

∂z
E(x, z) = (− λ2

2n0

∂2

∂x2
+∆n(x, z))E(x, z) (2.5)

These two equations have analogous character due to the corresponding relationship

between t and z, h̄ and λ = λ/2π, m and waveguides refractive index n0, V and

refractive index change∆n = n0 − n(x, z). It shows that in the photonics system the

evolution of the wave packet takes place in space, compared to time in the Schrödinger

equation for electrons. This photonic platform allows us to study the time-dependent

equations in the models introduced by condensed matter physics and their properties

by directly observing the light propagation in a simple photonic chip in a very small

time scale.

2.3 Topological Anderson phase

2.3.1 SSH model

Su-Schreifer-Heeger(SSH) model as the figure 2.3.1 shows is the simplest one-

dimensionalmodel to identify trivial and non-trivial phases. We can characterize these

two phaseswithwinding numberW , which is tuned by controlling the relation between

5



CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.3.1: Schematic of an SSH lattice:
The light blue and dark blue waveguides represent the different atoms in SSH model,
each two atoms form a unit cell, t1 and t2 are the intra-cell and inter-cell coupling

strength. The periodic distance between cells is a

the intra/inter-cell coupling amplitudes t1/t2.

To analyse thismodel, we introduce tight-binding approximationwhich only considers

the coupling between the nearest neighboring atoms. We start with the Hamiltonian

of a single electron in atomic chain:

H =
p2

2m
+ U(x) (2.6)

with periodical potential:

U(x+ na) = U(x) (2.7)

Assume the potential energy term of a single atom to be V (x) :

H0 =
p2

2m
+ V (x) (2.8)

with time-independent Schrödinger equation:

H0ϕ(x) = E0ϕ(x) (2.9)

Then we get the total wave function to be a linear combination of wave functions at

6



CHAPTER 2. THEORETICAL BACKGROUND

different lattice sites:

ψ(x) =
∑
n

anϕn (2.10)

We note that ϕn = ϕ (x− xn) , xn = na and define∆U(x) = U(x)− V (x) we get:

∑
n

⟨ϕm |∆U (x− xn)|ϕn⟩ an = (E − E0) am (2.11)

We now define

⟨ϕ(x−ma+ na)|∆U(x)|ϕ(x)⟩ = −J (xm − xn) (2.12)

and get:

−
∑
n

J (xm − xn) an = (E − E0) am (2.13)

Using bloch formalism, we would have:

E − E0 = −
∑
n

J (xn) e
−ikxn (2.14)

Consider the nearest neighbors coupling, whichmeans we only care about the position

−a,0, and +a, we can have the simplified formula foe the dispersion relation:

E − E0 + J0 = −J(eika + e−ika) = −2J cos ka (2.15)

E − E0 = −J0 − J(eika + e−ika) = −2J cos ka (2.16)

From the second quantization view, we can write the Hamiltonian into the matrix

language:

H = ⟨ψ|H|ψ⟩ ⇒ Ĥ =
∑
m,n

ĉ†mHmnĉn (2.17)

With tight-binding approximation we only consider the nearest coupling and

have:

7



CHAPTER 2. THEORETICAL BACKGROUND

Ĥ =
M∑
n=1

ĉ†nĉn+1tn + h.c. (2.18)

where ĉ†n(ĉn) and ĉ
†
n+1(ĉn+1) are the creation (annihilation) operators for two atoms in

one single unit cell.

2.3.2 Energy band and Winding number

Energy band

We can rewrite Hamiltonian through defining two local lattice sites in the figure 2.3.1,

dark blue an, and the light blue as bn, both located in the nth cell, we have:

H =
∑
n

(
t1a

†
nbn + t2b

†
nan+1

)
+ h.c. (2.19)

By solving equation:

Ĥ|Ψ⟩ = E|Ψ⟩ (2.20)

we get the eigen-energy (assuming periodic of the system a=1):

E(k) = ±
»
t21 + t22 + 2t1t2 cos(k) (2.21)

Winding number

Winding number of a closed curve in the plane around a fixed point is an integer, which

represents the total number of times that the curve winds around the point.

We can rewrite the Hamiltonian in the Pauli matrix basis:

H(k) = h(k) · σ (2.22)

and define the winding numberW as:

W =
1

2πi

∫ π

−π

dk
d

dk
ln(h(k)) (2.23)

8



CHAPTER 2. THEORETICAL BACKGROUND

In our SSH model, for W = 1, t1 < t2, this chain shows topological nontrivial phase;

on the other hand forW = 0, t1 > t2, the chain shows topological trivial phase.

2.3.3 Anderson localization

Anderson localization is the absence of transport of waves in a disordered system[7].

By introducing the disorder V into tight-binding model:

i h̄
dψ

dt
= Hψ

Hψj = Ejψj +
∑
k ̸=j

Vkjψj

V (|r|) =

1, |r| = |j − k| = 1

0, otherwise.

(2.24)

In 1d or 2d systems, the probability distribution remains localized uniformly in time t:

∑
n∈Zd

|ψ(t, n)|2|n| ≤ C (2.25)

where C represents a constant. This phenomenon is the famous Anderson

localization.

Tal Schwartz firstly observed the Anderson localization[8] in disordered two-

dimensional photonic lattices as shown in the figure 2.3.2 .

Figure 2.3.2
Facet image of light intensity localization in disordered 2d photonic

lattices: From left to right: clear lattice, 0.025 disorder, 0.15 disorder, 0.45 disorder

2.3.4 Anderson phase transition

For a long time, it was believed that if disorder is introduced into a condensed

matter system, a topological non-trivial phase would turn into a trivial phase due

9



CHAPTER 2. THEORETICAL BACKGROUND

to the influence of Anderson localization. However, recently it was showed that

adding disorder to the trivial band structure would lead to a phase transition to the

non-trivial phase[9], this phenomenon is referred to as topological Anderson phase

transition.

2.4 Superlattice and Zak phase

2.4.1 Superlattice

The superlattice is a periodic structure of sites of two or more materials which was

discovered in 1925 by Johansson and Linde[10]. They studied the gold-copper and

palladium-copper systems through their X-ray diffraction patterns. Particularly, in

this project we focus on periodic waveguide arrays with superlattice characteristics.

The structure we choose is shown in the figure 2.4.1. In this model t1, t2, t3 refer to the

intra-cell coupling strength between the waveguides in tight-binding approximation,

and T is the inter-cell coupling strength. The Hamiltonian of this system is[11]:

Ĥ =
15∑
n=1

{(
3∑

l=1

tlâ
†
n,lân,l+1

)
+ τ â†n,M ân+1,1 +H.c.

}
(2.26)

where â†n,l(a
†
n,l) is the photon creation (annihilation) operator at the (n, l)-th

waveguide.

Rewrite the Hamiltonian in momentum space with matrix formalism:

Hn,m(k) = tnδn,m−1 + tmδn,m+1 + τ exp(−ik)δn,1δm,3 + τ exp(ik)δn,3δm,1 (2.27)

where k is the wave number in Bloch space and varies between (−π, π). The energy
bands El(k) and the Bloch functions ul(k) are defined as:

H(k)ul(k) = El(k)ul(k)

⟨ul(k) | un(k)⟩ = δn,l
(2.28)

10



CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.4.1
Schematic of the photonic superlattice The superlattice contains 15 cells, and
each cell contains 4 equal waveguides. The waveguides are integrated in a substrate.

2.4.2 Probing Zak phase

Zak phase

The Zak phase is calculated by integrating the Berry connection Al(k) =

i ⟨ul(k) |∇k| ul(k)⟩ along one single wave vector axis, which was introduces by J.Zak
in 1989[12]. The Zak phase is then the one dimensional special case of the Berry phase

that we explored earlier in this report. The Zak phase for the l − th band reads:

γl = i

∫ π

−π

dk ⟨ul(k) | (dul/dk)⟩ (2.29)

In our superlattice model shown in figure 2.4.1, we have M=4 sites result in S=3 band

gaps in between under tight-binding approximation. The topological nature of these 3

11



CHAPTER 2. THEORETICAL BACKGROUND

band gaps is attributed by the Zak phases sum.

Nn = γ1 + γ2 + γ3 (2.30)

Wannier functions are a complete set of orthogonal functions used in solid-state

physics. The most widely used Wannier function is defined according to the Bloch

states ψk(r) = eik·ruk(r), where uk(r) denotes the periodicity in lattice. Then the

Wannier function reads:

ϕR(r) =
1√
N

∑
k

e−ik·Rψk(r) (2.31)

If we excite the n− th site of a superlattice, we reproduce the Wannier function of the

n− th band and result in a shift of the total Wannier function[13]. The topology of Zak

phase originates from this shift of the Wannier band, with only two absolute values

allowed.

|γl| =

 0, topological trivial phase

π, topological non-trivial phase
(2.32)

Displacement

In a recent work it was shown theritically that the average beam displacement in a two-

band photonic lattice can reveal the Zak phase[14]. In 2019, Longhi proposed that we

can use this idea also in the multi-gap superlattice systems[11]. Particularly speaking,

we takeM = 4 in each cell and the propagation of the electromagnetic field amplitudes

can be written as the superposition of Bloch modes:

an(z) =
4∑

l=1

∫ π

−π

dkCl(k)ul(k) exp [ikn− iEl(k)z] (2.33)

where the spectral amplitudes are decided by the initial excitation states and the

normalization condition:

12



CHAPTER 2. THEORETICAL BACKGROUND

Cl(k) = (1/2π)
∑
n

⟨ul(k) | an(0)⟩ exp(−ikn)

2π
∑
l

∫ π

−π

dk |Cl(k)|2 = 1
(2.34)

The beam displacement along the propagation distance z reads:

D(z) = (1/z)

∫ z

0

dξ

∞∑
n=−∞

n ⟨an(ξ) | an(ξ)⟩ (2.35)

It is important that the displacement is a directly measurable quantity. In large z limit

the displacement reaches a asymptotic form:

Das = 2πi
M∑
l=1

∫ π

−π

dk
(
C∗

l (k)
dCl

dk
+ |Cl(k)|2

≠
ul(k) |

dul
dk

∑)
(2.36)

When we excite the lowest bands with number S of the superlatice and assuming

Cl(k) = 1/(2
√
Sπ) for normalization which is independent of k, we can get the

interesting and simple equation:

Das = (1/2πS)
S∑
l=1

γl = NS/(2πS) (2.37)

For ourM = 4model, if we use single-cell excitation with the initial condition:

an = (1/
√
2)(1, 0, eiθ, 0)T δn,0 (2.38)

where the relative phase shift θ is chosen in the range of (−π,+π). Intuitively speaking,
only two waveguides of the array separated by two sites are equally excited at the input

plane. From theoretical prediction, we have the following relationship:

Das =

 0, for τ < τ0

−0.25, for τ > τ0
(2.39)

where τ0 = t1t3/t2. Now our aim is designing a chip and a experiment to verify it.

13



Chapter 3

Simulation

3.1 Topological Anderson phase

We simulate a photonic waveguides array comprising 50 sites, with intra-cell coupling

strength t1 = 0.0126 and the inter-cell coupling strength t2 = 0.063. The figure 3.1.1

shows the model of a simple SSH lattice. For t1 > t2, the system has a topological

trivial band structure with a non-zero winding number, and t2 > t1 for non-trivial

band structure with a zero winding number. The light propagation in the waveguide

array can be described by the following coupled-mode equations:

i
dan
dz

= t1bn + t2bn−1

i
dbn
dz

= t1an + t2 + Vnan+1

(3.1)

Figure 3.1.1: A schematic of SSHmodel

Then we add incommensurate disorder in the inter-dimer bonds as Vn for the nth cell

14



CHAPTER 3. SIMULATION

as shown in figure 3.1.2. The coupled-mode equations for the disordered system can

be rewritten as:

i
dan
dz

= t1bn + (t2 + Vn−1) bn−1

i
dbn
dz

= t1an + (t2 + Vn) an+1

(3.2)

Figure 3.1.2: A schematic of incommensurately disordered SSHmodel

We add a disorder of Vn = V cos(2παn) to the inter-cell coupling strength t2, and

assume α to be an irrational number, selected here to be a Fibonacci number α =

qn = (
√
5− 1)/2 . In this disordered system we can numerically calculate a generalized

winding number Q with disorder strength V
t1
in the range of (0, 4). The generalized

winding number Q can be written as[15]:

Q =
1

2

(
1− sign

{∏
n

t21 −
∏
n

(t2 + Vn)
2

})
(3.3)

Figure 3.1.3 is the simulation result for a 50 sites lattice:

We introduce the concept of inverse participation ratio (IPR), which was proposed by

G. Corrielli in 2013[16], to study the localization of beam in different eigen states:

Il =

∑
n

(∣∣∣a(l)n ∣∣∣4 + ∣∣∣b(l)n ∣∣∣4)(∑
n

(∣∣∣a(l)n ∣∣∣2 + ∣∣∣b(l)n ∣∣∣2))2 (3.4)

The figure 3.1.4 shows the numerically computed IPR values versus the disorder

strength in range of (0, 4). To give amore details about the systembehaviour, we choose

15



CHAPTER 3. SIMULATION

Figure 3.1.3: Topological number Q for a SSH lattice with 50 sites versus
disorder strength V /t1 The topological transition point is V /t1 = 2 as the dashed
line indicates, from trivial winding number 0 to non-trivial winding number 1

500 lattice sites rather than 50 to approach the infinite chain approximation. The

IPR plot is a good criterion to predict the light evolution in SSH lattices with different

disorder strengths, providing a guideline before perfomring the experiment.

After the calculation of the IPR values, we choose four typical disorder strength V1 = 0,

V2 = 0.2t1, V3 = t1 and V4 = 2.5t1 to simulate the light dynamics for single site

excitation of the left edge. Traditionally, the localization of the light was used to infer

the topological phase of the system. For a disorder-free SSH lattice, the topological

phase Q = 0 corresponds to a non-localized edge state while Q = 1 corresponds to a

localized edge state. However, figure 3.1.5 indicates that it is difficult to distinguish the

topological Anderson phase in cases c) and d) by simply observing the light dynamics

due to the rapid localization as the disorder strength is increased above the critical

point V = 2t1.

To overcome this difficulty we introduce the spectral method[17] to probe the

topological Anderson phase by measuring the light dynamics at the edge waveguide

of the photonic SSH lattice. We set a1(z) as the amplitude of the light in edge site, and

the initial state reads:

(an, bn) = (1, 0)T δn,1 (3.5)
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CHAPTER 3. SIMULATION

Figure 3.1.4: Inverse participation ratio (IPR) versus disorder strength The
zero IPR value refers to full delocalization, and the non-zero IPR values refer to the
localization. From left to right, we can find that in disorder range (0,0.5), most of the
eigen states are delocalized, in range (0.5, 2) it is amixture statewith delocalization and
localization. When the disorder strength V > 2t1, the eigen states are fully localized,
which implies the localization of the light intensity in edge site along the propagation
distance.

Consider the definition of the correlation function:

C(E) =
1

L

∫ L

0

dza∗1(0)a1(z) exp(iEz) (3.6)

where L is the propagation distance. In our single waveguide excitation used in the

experiment a1(0) = 1, so this equation reduces to the Fourier transform:

C(E) =
1

L

∫ L

0

dza1(z) exp(iEz) (3.7)

Rewrite this equation in the following form[18]:

C(E) =
∑
l

αl[sin((E − El)L/2)]
2/((E − El)L/2)

2 (3.8)

where αl refers to the spectral weight of the initial edge excitation into the lth eigen
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Figure 3.1.5: Light dynamics in SSH lattice with different disorder strengths
a) V = 0 b) V = 0.2t1 c) V = t1 d) V = 2.5t1 From a) to d) it clearly shows the counter-
intuitive result that the light is more localized in the edge as the disorder strength is
rising

mode with energy El. We can reconstruct the correlation function by measuring the

evolution of light intensity in the edge waveguide and taking the square root to rebuild

the amplitudes. With the amplitudes and eq3.8, it is enough to trace the correlation

function C(E) and thereby probe the topological Anderson phase. For example, we

reconstruct the Anderson phases of the lower two images we mentioned before in

3.1.5. The following figure3.1.6 shows the numerically computed correlation function

CE for V = t1 and V = 2.5t1 respectively. From top to bottom, we firstly draw the

light evolution patterns along the propagation distance, then we calculated the light

intensity in the left-edge waveguide, and retrieve the amplitude by taking the square

root. Finally we draw the correlation function with the simulated data. It is obvious

that even if there are two cases were the light is localized within two disorder strengths,
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we can distinguish their topological Anderson phase effectively by identifying whether

these is a zero-energy peak in the correlation function spectrum. The zero-energy peak

exists when the topological number Q = 1, which corresponds to the topological non-

trivial phase, while the zero-energy disappears when the topological number Q = 0,

corresponding to the topological trivial phase. Our goal is to perform the experimental

measurement for the light intensity in the left-edge waveguide along the propagation

distance and then retrieve the correlation function CE.

Figure 3.1.6: Numerically computed correlation function CE From top to
bottom, we draw the patterns of simulated light dynamics, monitor the light intensity,
retrieve the light amplitude, and reconstruct the correlation function. The criterion to
characterize the topological number and the Anderson phase is whether these exists
a zero-energy peak in the spectrum. The left one refers to a topological trivial phase
without a zero-energy peak, and the right one refers to a topological non-trivial phase
with a zero-energy peak. The result is accord with our previous assumption.
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3.2 Topological Superlattice

In the superlattice described in the previous chapter, we set t1 = 0.0587, t2 = 0.0503,

t3 = 0.0902, τ1 = 0.052, τ2 = 0.194, M = 4, N = 15. t1−3 are the intra-cell coupling

strengths,while τ1 < τ0 = t1t3/t2 and τ2 > τ0 = t1t3/t2 are the topological trivial/non-

trivial inter-cell coupling strengths. M indicates the number of waveguides in each

cell, while N refers to the total cell number. By constructing the matrix Hamiltonian

and the time-evolution operator e−iHt, we can now numerically investigate the light

dynamics in topological photonic lattices before the chip design. This simulation helps

us choose the appropriate fabricated chip parameters.

The figure 3.2.1 shows the eigen energy spectrum corresponds to the superlattice we

introduced before without inversion symmetry. The top and bottom bands emanate

away as the inter-cell coupling is increasing without closing, which indicates that these

two bands are not are topological trivial.The middle band gap is closing and reopening

at τ0 = t1t3/t2. This zero-energy degenerate state implies the sudden topological

transition of Zak phaseN2 from 0 (trivial) to π (non-trivial).

We firstly excite the superlattice array in the edge as the fig 3.2.2 shows. The left

panel shows the light evolution as it propagates in topological non-trivial (a)/trivial

superlattice (c). It is obvious that in the upper part the light is mostly localized in

the edge waveguide after long propagation distance, with another intensity peak that

moves from left to right in the range of the diffusion length of the system. However, as

the right panel shows, the light intensity in the edge waveguide of the non-trivial case

oscillates, which makes it difficult to discriminate the non-trivial zero-energy mode

from the trivial ones. Especially in experiment, as it is much more challenging to

identify the two phases with edge excitation alone. In other words, it challenging to

quantify the degree of ”oscillation” as a measure of the topological phase.

As a solution to challenges of edge excitation, we consider the single cell bulk excitation

presented by Longhi[11]. We inject the laser in the first and the third waveguide in one

cell with phase difference π, and the initial state can be written as:

an = (1/
√
2) (1, 0,±1, 0)T δn,m (3.9)

wherem refers to the input cell number
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Figure 3.2.1: Energy spectrumE of theSuperlattice as a functionof the inter-
cell coupling strength
The middle gaps are separate when τ < τ0, closing and reopening at τ0 (topological

transition point), and divorcing since τ > τ0.

In our simulation, we choose the mid 8th cell in 15 cells, so the initial state is:

a8 = (1/
√
2) (1, 0,±1, 0)T (3.10)

Recalling the equation of the spectral amplitudes Cl(k) and the displacementDz:

Cl(k) = (1/2π)
∑
n

⟨ul(k) | an(0)⟩ exp(−ikn)

2π
∑
l

∫ π

−π

dk |Cl(k)|2 = 1

D(z) = (1/z)

∫ z

0

dξ
∞∑

n=−∞

n ⟨an(ξ) | an(ξ)⟩

(3.11)

We then depict the light intensity evolution patterns in the left panels of fig 3.2.3, and

the displacements of trivial/non-trivial cases in the right panels. It is interesting that

the non-trivial case with a inter-cell coupling strength τ > τ0 has a more ”localized”
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Figure 3.2.2:
a),c) refer to the topological nontrivial superlattice; b),d) refer to the topological
trivial superlattice a),c)Numerically-simulated beam intensity evolution along

normalized propagation distance for left-edge excitation. b),d) The oscillation of the
light intensity in the edge waveguide.

beam, which is well visualized. The simulation result for the displacements is 0 for

t1 < τ0 and−0.25 for t2 > τ0. τ0 is the gap closing point where the topological transition

occurs. This excitingmethod using the displacementmeasurement enables us to probe

the topological Zak phase directly.

In real experiment, it is important to decide a sample rate of a single device, and

we must be care about the efficiency and the accuracy at the same time. We pre-

design a 300µm length device in fig 3.2.4, and set the sampling points at five distances:

(40, 80, 120, 160, 200) µm. The left panel shows the rough simulation patterns for the

five sampling points we choose.

In the right panel, it is clear that for the upper trivial case, the displacement approaches

0; for the lower non-trivial case, the displacement approaches −0.25, which is the

same as the theoretical prediction. Now this simulation link the topological Zak phase

with five directly sampling measurements for the light intensity in certain distances.

It is a strong connection between the recondite concept and a intuitive physical

quantity.
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Figure 3.2.3:
a),c)Numerically-computed beam intensity evolution along normalized propagation

distance for bulk excitation

Figure 3.2.4: Simulation resultswith5 samplingpoints (40,80,120,160,200)
µm b) and d) shows clearly that with these 5 sampling distances, the displacementD(z)
still approaches 0 and −0.25 respectively, which means our design is reasonable.
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Sample Fabrication

In this chapter we present how we fabricate the chips. The main technology involved

is the e-beam system installed in the cleanroom provided by the Albanova Nanolab.

Our topological photonic chips for probing the Anderson phase and the Zak phase are

based on the commercial Si wafers. These wafers are covered with 3.3 µm SiO2 as the

substrate and 250 nm Si3N4 as the waveguide layer.

4.1 Lithography

Lithography is a technique to fabricate a chip based on the CAD design. The process

is performed through illuminating a light-sensitive photomask (resist) on the top of

the sample. After the exposure, we can remove away parts of the exposed photo-resist

film. There are two main resist in lithography technique: The positive resist and the

negative resist. The positive resist means that we washed off the designed pattern

of the photomask after exposing, when the negative resist refers to washed off the

unexposed pattern. The following schematic drawn by Hesam Shahali[19] illustrates

this concept well. In this project we focus on the negative resist technique and fabricate

the protruding waveguides array on a chip.

The Rayleigh criterion indicates that the angular resolution is proportional to

wavelength:

θ ≈ 1.22
λ

D
(4.1)

To get a better resolution and fabricate the structure in nano scale, we choose electron

beam lithography (EBL) system rather than traditional optical lithography. The
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Figure 4.1.1: The principle of Electron beam lithography.

following figure shows the EBL systemwe use. The beam control system can onlymove

in a limited range, so the sample is divided into several writing fields. After finishing

one field, we move the sample stage and work into the next field. However, the writing

field area of EBL system is small compared with the optical lithography due to the

decrease of the beam wavelength. It is important to carefully design the lattice part of

the chips within one writing field. The reason is stitching errors in waveguides, which

occur when the ebeam stage moves between different fields. These small gaps in the

waveguides can not be neglected, as they have similar scales to the coupling distances

of thewaveguides. Fig 4.1.2 shows theRaithVoyagerEBL system inAlbanovaNanoFab

lab.[20]

4.2 Etching

After Lithography, the substrate is etched to form the waveuides. In this project

we use reactive ion etching. Our aim is to transfer a designed pattern to an nano-

scale structure accurately. The fig 4.2.1 published by Anton Möller[21] illustrates

the mechanism of the selectivity and isotropy in etching. The selectivity manifests

the ability of etching the sample in a chosen depth. An etching technique with high

selectivity would only etch the pre-planned film layer and stop, while a technique with

low selectivity would over etch and sputter some underlying materials. The isotropy

manifests the ability of etching the sample in a chosendirection. An anisotropic etching
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Figure 4.1.2: The picture of the Raith Voyager EBL System in Albanova
NanoFab lab.

technique can etch the film in a vertical directionwithout affecting the lateralmaterials,

while an isotropic technique would etch in all directions which results in a non-vertical

sides.

To achieve both anisotropy etching, we use a CF4 based plasma with the Oxford

Plasmalab 100 system shown in fig4.2.2[22]. We generate the CF4 plasma in a low-

temperature near-vaccum setting and bombard the sample to knock off the areas

without the protection of the etch-resistant resist remaining from the lithography

process.

The following fig 4.2.3 [23]shows the principle of Inductively Coupled PlasmaReactive

Ion Etching. We send a RF signal into a coil to generate a high-density plasma and

control the plasma ion concentration by controlling the RF signal. The plasma is then

injected into a separated chamber. The sample after the lithography process is placed

in a stage appliedwith another RF source. By controlling the secondRF signal we apply

a negative voltage in the sample and accelerate the ions vertically. The ions bombard

the top surface of the sample and sputter the unwanted parts.
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Figure 4.2.1: The schematic of the selectivity and the isotropy for etching
process

Figure 4.2.2: The picture of Oxford plasmalab 100 system
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Figure 4.2.3: A schematic of ICP-RIE instrument

4.3 Cladding

For the photonic circuits to probe the Zak phase in the superlattice, we add

a top cladding layer. The cladding we choose in this project is polymethyl

methacrylate(PMMA). Adding this layer has two functions: 1. Give a better protection

for the circuits on the chip. 2. Enable symmetric mode in vertical direction in (Si3N4),

as the refractive index of PMMA is very close to the bottomoxide layer. Herewepresent

a schematic of the pmma cladding around the silicon nitride waveguides in fig 4.3.1.

Figure 4.3.1: A schematic of the PMMA cladding
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4.4 Chips

Here we present several images of the on-chip topological photonic lattices structure,

taken using a scanning electron microscope (SEM) in fig 4.4.1 :

Figure 4.4.1: SEM pictures a) the SSH lattice with one monitor waveguide. b) SSH
lattice with 15 waveguides and the loss induced scattering approach (LISA) structure.
c) edge excitation structure with one monitor waveguide for superlattice. d) bulk
excitation structure with one monitor waveguide for superlattice.
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Chapter 5

Experimental Setup

In this chapter we introduce the experimental methods and the setup we used to

perform the experiment. We simulated the coupling strength between the waveguides

versus waveguide separation as show fig 5.0.1. This relation allows us to transfer the

coupling strengths in the theritical models to physical gaps between the waveguides.

All the simulation and measurement are based on the transverse electric (TE)

mode.

Figure 5.0.1: Coupling strength /µm between two waveguides versus
separation distance
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After fabrication, we mount the chip on a holder and place it on a 5-axis stage, which

enables us to adjust the position of the chip. The schematic of the experiment set is

shown in fig 5.0.2. We use a 795nm toptica coherent laser to excite the topological

photonic lattice. The light is coupled out with a (polarization maintain)PM fiber to a

3-paddle polarization controller. In the output arm there is a PBSwhich only transmits

the TE mode. The output beam is collimated with a 100X objective and focus on the

detector. By tuning the polarization controller and monitoring the detector to get

maximum counts, we can selectively excite the photonic lattice with TE mode. We

top-image evolution pattern of the light along the propagation distance with a 50X

objective (Mitutoyo Apochromatic NIR Objectives,MY50X-825) and a charge-coupled

device (CCD) camera.

Figure 5.0.2: Schematic of the experiment setup The source generates a
continuous wave 795 nm laser, and we use a polarization controller to excite the
fundamental TE mode for the chip. We collect the light emitted from the induced
scattering sites in top image with a microscope system with a CCD camera.

It is worth noting that the size of the waveguides and the separations are in hundred-

nanometer scale, which is below the Abbe diffraction limitation calculated below:

d =
λ

2n sin θ
=

λ

2NA
(5.1)

where the NA means the numerical aperture. The MY50X-825 has a NA=0.42,the

coherent laser source centered at 795 nm, which means the diffraction limitation

is:
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d =
795 nm
2NA

= 946.4 nm (5.2)

Figure 5.0.3: LISA structure and fidelity a) SEM image for gap in edge waveguide,
and the gaps of the remaining waveguides to keep uniform loss. c) Magnified SEM
image of deliberately introduced gap. b) The fidelity of edge waveguide along the
light propagation direction d) Two dimensional plot of the state fidelity after 800 µm
propagation for different disorder strength and the ratio between the edge loss and the
array loss.

The diffraction limitation reaches a thousand-nanometer scale, so distinguishing

different waveguides in a nanosized array is beyond the resolution of a modern optical

microscope, result in the difficulty of image the evolution of the light intensity in

the edge waveguide. To overcome this challenge, we developed a new method that

facilitate monitoring the nano-scale light dynamics with a loss induced scattering

approach (LISA). We deliberately introduce a series of tiny gaps in the excitation

waveguide, and retrieve the light amplitudes by measuring the intensity of light

scattered in these gaps. The simulated results show that the light dynamic would still

keep high fidelity after these gaps. The fidelity is defined as the inner product of the

lossless state with the loss induced state:
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Fidelity =
⟨ ⃗alossless, ⃗aloss⟩

∥ ⃗alossless∥ · ∥ ⃗aloss∥
(5.3)

We also make uniform loss (array loss) in the remaining waveguides after 5 µm from

the excited site to compensate the loss in the edge waveguide (edge loss). The structure

and the fidelity are shown in fig 5.0.3.

Figure 5.0.4: Odd even columns LISA structure for superlattice

Figure 5.0.5: Top images a) Top image of excited SSH lattice b) Top image of excited
superlattice

After fine calibration, we excite the photonic lattice, then we turn the micrometers of

the 5-axis stage tomaximize the excitation power andmove the LISA structure into the
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field of viewof CCDcamera. We take picture and thenmove along the light propagation

direction (z) to take the next picture. In superlattice, there are 60 sites far more than

15 sites in SSH lattice, so we also introduce a two column LISA structure to separate

the odd and even cells in fig 5.0.4.

We present the typical pictures of LISA structure in disordered SSH lattice and

topological superlattice in fig 5.0.5. Fig.5.0.5 a) shows the top image of the light

intensity distribution in the excited topological SSH lattices. The spots in the bottom

are the light scattered from the edge waveguide, while the upper array of spots are the

light scattered from the remaining waveguides. Fig.5.0.5 b) shows the top image of

the light intensity in the excited topological superlattice at a certain distance. The top

spots are the light scattered from the even number cells (4 waveguides in a cell), the

bottom spots are the light scattered from the odd even number cells.

After acquiring the images, we run scipy.signal.find peaks module in python and can

get the plot of the intensity distribution along the propagation distance z.
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Data Analysis

6.1 Topological Anderson phase

To calculate the correlation function and probe the topological Anderson phase, we

need to retrieve both the amplitude and the phase information. In the part of retrieving

the amplitude, we use the OpenCVmodule in python and read the image as a grayscale

matrix.

Figure 6.1.1: Intensity extraction and Amplitude reconstruction versus
propagation distance a) Disorder strength V=1.0t1 b) Disorder strength V=2.5t1

Thenwe use scipy.signal.find peaksmodule to trace the intensity information for every

single gap along the propagation distance, where the sampling period is 25µm. By
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squaring the intensity, we get the amplitude information in two disordered SSH lattice

with disorder strength V1 = 1.0t1 and disorder strength V2 = 2.5t1. It is worth noting

now all the amplitudes only have positive signs.

Figure 6.1.2: Correlation function versus Energy a) Disorder strength V=1.0t1
b) Disorder strength V=2.5t1

However, the phase information lost is needed to calculate the correlation function

but lost in an intensity-based CCD image, so we can not retrieve the phase information

simply. The most decisive step is to decide the sign (±1) of the amplitude. The change

of this sign is due to the boundary reflection of the light in the lattice. We extract the

discrete points and find the local minimum points of them. In every local minimum

points, the sign flips from +1(−1) to −1(+1). By multiply the sign into the amplitude

we traced before, we can get both the amplitude and phase information which is shown
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in fig 6.1.1. The energy spectrum is also depicted in fig 6.1.2 by applying the theorem

of correlation function we mentioned before:

C(E) =
1

L

∫ L

0

dza1(z) exp(iEz) (6.1)

6.2 Topological Zak phase

6.2.1 Edge excitation

We firstly try the edge excitation. We excite the edge waveguide and monitor the light

intensity evolution in it.

Figure 6.2.1: Intensity oscillation Although the trivial and non-trivial case have
different topological Zak phase 0 and π, it is challenging to distinguish them.

However, according to what we emphasized before, both trivial and non-trivial Zak

phase would have localization on the edge and result in obvious oscillation, so it would

be hard to identify these two conditions if the inter-cell coupling strength τ is not so far

away from the critical point τ = t1t3/t2. We use the same intensity retrieval technique

in 6.1. The intensity oscillation is shown in fig 6.2.1.
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6.2.2 Bulk excitation

Then we turn to the bulk excitation, where we excite the superlattice in the first and

third waveguide in the middle cell. The displacement is defined as:

D(z) = (1/z)

∫ z

0

dξ

∞∑
n=−∞

n ⟨an(ξ) | an(ξ)⟩ (6.2)

In our chip, we have 15 cells and take five sampling points zi at 40, 80, 120, 160 and

200 µm, so the displacement has the discrete form:

Di(z) = (1/z)
i∑

k=1

∑7
n=−7 n ⟨an(zi) | an(zi)⟩∑7
n=−7 ⟨an(zi) | an(zi)⟩

(6.3)

Figure 6.2.2: Displacement of trivial and non-trivial superlattice versus
propagation distance The displacement of trivial lattice (τ1 = 0.052) is depicted by
grey marker, which converges on 0; the displacement of non-trivial lattice (τ2 = 0.194)
is depicted by purple marker, which converges on -0.25.

where i is the refers to the i-th sampling point, z refers to the propagation distance,

and we define the number of the cell in range of (-7,+7) from left to right. Then we

draw the displacement of light in superlattice with trivial and non-trivial Zak phase in
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fig 6.2.2. The results match our theoretical prediction, where trivial case refers to 0

displacement and 0 Zak phase; non-trivial case refers to -0.25 displacement and π Zak

phase.
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Conclusion and Future outlook

7.1 Conclusion

The degree project is divided into two parts: Probing the topological Anderson phase

transition in disordered SSH lattice and probing the Zak phase in superlattice.

In the first part, we successfully reconstruct the correlation function spectrum CE

and observe the Anderson phase transition. In SSH lattice with disorder strength

V < 2.0t1, we observed trivial topological phase; in SSH lattice with disorder strength

V > 2.0t1, we observed non-trivial topological phase Q = 1, which means there is a

topological transition in the critical point V = 2.0t1. We also successfully proposed the

loss induced scattering approach (LISA) method to probe the intensity information of

waveguide at nano-scale.

In the second part, we study both the edge and bulk excitation methods of probing Zak

phase. We proved that edge waveguide excitation method is not able to accurately

probe the Zak phase in two superlattice with different inter-cell coupling strength.

Then we perform the bulk excitation experiment, and successfully retrieve the beam

displacement and reconstruct the Zak phase in two superlattice with different inter-

cell coupling strength above or below the critical point τ = t1t3/t2.

7.2 Future Work

We investigate the influence on the displacement for different phase shifts of the light

in the third waveguide. Now the initial state of the mid 8th cell (15 cells in total)
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reads:

a8 = (1/
√
2)(1, 0, eiθ, 0)T (7.1)

Figure 7.2.1: Displacement versus phase shift of the third site excitation

Then we simulate the light propagation and draw the relationship between

displacement and phase shift in fig 7.2.2. The plot shows an oscillation. So here rise the

question: Could we probe the Zak phase using bulk excitation method with different

phase shift? How to realize the phase shift between two inputs?

We would use a heater in one arm of the Y-splitter to control the phase shift of the light

coupled to the third site. The optical path length is defined as:

OPL =

∫
C

n ds (7.2)

The refractive index of the waveguide material as as we heat the arm and change the

optical path length. The Thermo-optic coefficient of silicon nitride (SiN) is measured

in [24].

We assume that our working temperature range with this heater to be (20,60) ◦C, the

thermo-optic Y-splitter structure is shown in fig 7.2.4

We also plan to explore the behaviour of asymmetrical thermo-optic Y-splitter.
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Figure 7.2.2: Thermo-optic coefficient of SiN [24]

Figure 7.2.3: Schematic of thermo-optic Y-splitter
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We draw the schematic of this structure and simulate the output intensity versus

the temperature and the asymmetric length ∆L in a Mach-Zehnder interferometer

(MZI):

Figure 7.2.4: Schematic of asymmetric thermo-optic Y-splitter and the
intensity profile

The next step we will fabricate a thermo-optic MZI to accurately measure

the parameters, and design the phase control for superlattice bulk excitation

accordingly.
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