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Abstract

Anderson localization occurs when an otherwise conductive solid becomes insulating

due to a sufficiently large degree of disorder in the medium. The electron band energy

(as a function of disorder) at which this transition between extended and localized

electron states occur is called the mobility edge (ME) and is energy-dependent only in

3-dimensional systems. In lower dimensional systems, energy-independent ME (all

states localized or all extended) has been demonstrated by replacing disorder with

quasi-periodic potential. However, recent theoretical findings indicate that neither

disorder nor quasi-periodic potential is necessary for a material to exhibit electron

localization and existence of energy-dependent pseudo ME at finite system size.

In this thesis work, we use light in coupled silicon nitride waveguides to simulate

single-particle transport of a solid-state medium and investigate the coexistence of

delocalized and localized states in disorder-free photonic lattices of finite system

size. This was achieved by implementing a simulated linearly increasing electric

potential on even-numbered sites by varying the refractive index of the wave guide

(ch. 3). Through our experimental setup, we successfully achieved a coexistence of

localized and delocalized states, where the degree of localization varies depending on

the strength of the applied electric field.

The findings have implications for the field of quantum technology, where

understanding and controlling quantum states is crucial. The ability to achieve

localization in the absence of disorder opens new possibilities for designing and

engineering photonic devices for quantum information processing tasks.

Keywords

Applied Physics, Condensed matter physics, quantum technology, quantum

nanophotonics, localization, mobility edge, phase transition
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Abstract

Anderson-lokalisering uppstår när ett annars ledande fast material blir isolerande på

grund av en tillräckligt stor grad av oordning i mediet. Elektronbandsenergin (som en

funktion av oordning) vid vilken denna övergång mellan förlängda och lokaliserade

elektrontillstånd sker kallas mobilitetskanten (ME) och är energiberoende endast

i 3-dimensionella system. I lägre dimensionella system har energioberoende ME

(alla tillstånd lokaliserade eller alla förlängda) påvisats genom att ersätta oordning

med kvasi-periodisk spänning. Nya teoretiska fynd indikerar dock att varken

oordning eller kvasi-periodisk spänning är nödvändig för att ett material ska uppvisa

elektronlokalisering och förekomsten av energiberoende pseudo-ME för system av

finita storlekar.

I detta examensarbete använder vi ljus i kopplade vågledare av kiselnitrid för

att simulera transport av en partikel i ett fast tillståndsmedium och undersöker

samexistensen av icke-lokaliserade och lokaliserade tillstånd i finita system utan

oordning med fotoniska gitter. Detta uppnåddes genom att implementera en

simulerad linjärt ökande elektrisk potential på varje jämnt numrerat gitterläge plats

genom att öka vågledarbredderna och noll elektrisk spänning på varje udda. Genom

vårt experimentella upplägg lyckades vi uppnå lokaliserade och förlängda tillstånd, där

graden av lokaliseringen varierade beroende på styrkan av det tillämpade elektriska

fältet.

Fynden har implikationer för kvantteknologi, där förståelse och kontroll av

kvanttillstånd är avgörande. Förmågan att uppnå lokalisering i frånvaro av

oordning öppnar nya möjligheter för att designa och konstruera fotoniska enheter för

kvantinformationsprocesser.
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Chapter 1

Introduction

Quantum technology is an emerging field of physics and engineering that is based

on quantum theory and has many sub-fields, including quantum information science

[1]. The 2022 Nobel Prize winners, Alain Aspect, John. F. Clauser and Anton

Zeilinger are considered to be pioneers of quantum information science, as they

experimentally proved the non-local correlation between two entangled particles, a

property which is important for quantum technology [2, 3], and thus paving the way

for technological advancements [4, 5]. However, information in the form of quantum

states is very susceptible to environmental perturbations, or noise. This is one of the

main challenges in advancements of quantum technology [5, 6]. Researchers working

with quantum technology often refer to condensed matter physics as an approach

to solving the issues related to noise in quantum technology, as well as finding new

materials, and novel methods and integration techniques [3, 5, 7–13]. For example,

there is on-going research on using topology to create topologically protected states

in topological insulators to be used as qubits, making them more robust against

environmental perturbations [14]. Clearly, theoretical findings has significant value

for research of applied sciences, and experimental verification and observation of new

theory is the bridge between the two.

1.1 Background

An interesting concept in condensed matter physics is the Anderson localization,

named after Philip W. Anderson who described that electrons in a crystal lattice can

become localized, i.e. remain in a local area of the lattice, and therefore cause a

1



CHAPTER 1. INTRODUCTION

material to become insulating as a result of crystal lattice disorder. This effect is

distinct from the band gap theory of insulators - Anderson localization cause materials

that are otherwise metallic in their band structure to become insulators. The source of

localization is thought to be due to disorder in the lattice system, which can be achieved

in various ways, for example from impurities in semiconductors [15].

The dimension of the system is important. In one and two-dimensional systems (1D

and 2D), the states are all localized, regardless of howweak the disorder is. However, in

3D, localization occurs as a metal-insulator phase transition, which can be illustrated

in Fig. 1.1.1. When the Fermi energy EF is below the critical energy E∗ (or above E∗′),

also known as the mobility edge (ME), the electrons are localized, while above the ME

(below) they are extended. Thus, the ME is a point at which the material undergoes a

phase transition from insulating to conducting phase [16].

DOS

E
EF

Localized

E⇤
Extended

E⇤0

Localized

Figure 1.1.1: Illustration of the critical energy Ec, the mobility edge, at which a metal-
insulator phase transition occurs in a 3D system with the disorder. The image is a
recreation fromModern CondensedMatter by StevenM. Girvin and Kun Yang (2019),
Fig. 11.15 p. 291.

Even though one and two-dimensional systems lack ME as a function of disorder,

Dwiputra et al. have shown that a disorder-free1 a pseudo mobility edges is possible

in a finite 1D system [18]. A 1D tight-binding Hamiltonian model (Eq. 2.12) with the

Stark effect in a mosaic lattice is solved to find pseudo MEs (Section 2.2.2).

While themain focus of localization in condensedmatter physics is on that of electrons,

1Dwiputra et al. [17] define a disorder-free lattice as one lacking random or quasi-randomness.

2



CHAPTER 1. INTRODUCTION

the phenomenon is not limited to electrons. In fact, many phenomena in condensed

matter physics have an analogy in optics and photonics [19]. For example, Anderson

localization has been experimentally observed in a 1D disordered lattice of photonic

waveguides [20]. While Anderson localization had been demonstrated previously,

the methods were indirect via macroscopic properties, e.g. via conductance, back-

scattering and transmission. The advantage of using photonic lattices is that it is

possible to observe directly the suppression of the wave packet expansions of the

particles due to localization [20].

1.2 Purpose

The purpose of this thesis work is to experimentally investigate the existence of

localized and delocalized electron states in a 1D disorder-free mosaic lattice under a

constant electric field as proposed by Dwiputra et al. [17] for both strong and weak

electric fields. The scope of the experiment is limited to finite-sized lattices and will be

carried out using photonic lattices with classical light to simulate electron states.

1.3 Outline

In Chapter 2 a more in-depth theory of several concepts that are important for this

thesis work are presented, including mathematically explicit description of Anderson

localization, theAndré-Aubry-Harper (AAH)model and a summary of the derivation of

theME for the disorder-freeWannier-Stark mosaic lattice as described by Dwiputra et

al. [17]. In Chapter 3, the use of photonic lattices and how they can be used to simulate

quantum transport of electrons will be described, along with a description of the

engineering process of manufacturing the nanostructure, the experimental procedure,

data analysis using image processing, and lastly two sections dedicated to discussions

and conclusions.

3



Chapter 2

Theoretical Background

In this chapter, we describe the theoretical background that is necessary to understand

for the goal of the thesis project. The first section (2.2) explains the concept of

localization, startingwith localization due to disorder as described byAnderson in 2.2.1

and continues with the description of disorder-free localization in 2.2.2.

2.1 Dynamics of Band Electrons in Electric Fields

This section focuses on a brief review of band theory and electron mechanics under

electric fields from the basis of crystal lattice structures.

2.1.1 Crystal Lattices

When discussing electrons in condensed matter physics, it is important to take into

account the crystal structure of the atoms in the material in which the electron moves.

A crystal is a structure with translational symmetry. This means that, knowing the

positions of a few atoms, we can pin-point the positions of all the other atoms. This

can be explained mathematically using Bravais lattices, which are discrete points in

space with translation symmetries. In 3D, the Bravais lattice can be described as the

set of points described by the lattice vector ρ⃗, where

ρ⃗ = la⃗+mb⃗+ nc⃗. (2.1)

4



CHAPTER 2. THEORETICAL BACKGROUND

~a

~b
~c

Figure 2.1.1: A simple cubic crystal with primitive lattice vectors a⃗ = ax⃗, b⃗ = ay⃗ and
c⃗ = az⃗, where a is the lattice parameter.

Here, l,m, n are integers and a⃗, b⃗ and c⃗ are called primitive lattice vectors. As an

example, a simple cubic crystal (SCC) is shown in Fig. 2.1.1 along with the primitive

lattice vectors.

Owing to the translational symmetry, we can define lattice translation operators

T (ρ⃗) = exp
¶
(i⃗k · ρ⃗)/!

©
satisfying T (ρ⃗) |ψ(x⃗)⟩ = |ψ(x⃗+ ρ⃗)⟩, where k⃗ is the wave vector.

Since we regard the crystal in which the electron moves as infinite, and that the crystal

has a periodicity, an electron at position x⃗ is equivalent to an electron at position x⃗+ ρ⃗.

Thus, the HamiltonianH0 of an electron will satisfy

H0(p⃗, x⃗+ ρ⃗) = H0(p⃗, x⃗), (2.2)

making T (ρ⃗) the constants of motion.

Additionally,H0 and T (ρ) commute, making them simultaneously diagonalizable. We

can therefore find a set of eigenvalues of the generating elements T (⃗a), T (⃗b), and T (c⃗),

let them be e2πiλ, e2πiµ and e2πiν . Thus, we have that

k⃗ = 2π{λa⃗∗ + µ⃗b∗ + νc⃗∗}, (2.3)

5



CHAPTER 2. THEORETICAL BACKGROUND

where a⃗∗, b⃗∗ and c⃗∗ are the reciprocal lattice vectors satisfying

a⃗∗ =
b⃗× c⃗

a⃗ · b⃗× c⃗
, (2.4a)

b⃗∗ =
c⃗× a⃗

a⃗ · b⃗× c⃗
, (2.4b)

c⃗∗ =
a⃗× b⃗

a⃗ · b⃗× c⃗
. (2.4c)

Similar to the lattice vector, we can form a reciprocal lattice vector using the primitive

reciprocal lattice vectors, G⃗ = la⃗∗ +mb⃗∗ + nc⃗∗.

2.1.2 Wannier-Stark Lattice

Depending on the type of material, one may use different models to describe the

electron inside the crystal structure. For example, in a highly conductive material,

the electrons can be regarded as nearly free electrons. In crystal structures where

the atoms are farther away and the electrons do not move as freely, one can use the

tight-binding method to describe the electrons. In both of these cases, so-called Bloch

functions are important.

Bloch functions are eigenfunctions of Hamiltonians with the same periodicity as the

crystal, such as Eq. (2.2). Bloch’s theorem tells us that these Bloch functions are the

most general solutions of the periodic Schrödinger equation, and have the form

ψk⃗ = eik⃗·r⃗uk⃗(r⃗) (2.5)

where uk⃗ is a periodic function having the translational symmetry of the lattice, and

has the form

uk⃗(r⃗) =
∑

{G⃗}

aG⃗(k⃗)e
iG⃗·r⃗. (2.6)

When using tight-binding methods, it is convenient to use functions describing the

electrons based on their orbitals, which are called Wannier functions. The Wannier

6



CHAPTER 2. THEORETICAL BACKGROUND

function for a band n centered on the j-th unit cell is given by

|χnj⟩ =
1√
N

∑

q⃗

e−iq⃗·R⃗j |ψnq⃗⟩ ,

where |ψnq⃗⟩ is the Bloch state for the n-th band.

Because Bloch functions only defined up to an arbitrary q⃗-dependent phase, different

phases will give different Wannier functions. It is therefore possible, for ordinary

bands (i.e. topologically trivial bands), to choose a phase that maximally localizes

the Wannier function, and thus one can always find Wannier functions that are

exponentially localized [21].

Since Eq. 2.2 arises due to the translational symmetry of the crystal lattice, if we

introduce a uniformelectric fieldE, the periodicity no longer holds. That is, an electron

at the point x⃗ will no longer be described by the same Hamiltonian as one at the point

x⃗+ ρ⃗. This is what Gregory H.Wannier described in his paper in 1962, providing with a

solution of the eigenenergy and eigenfunction to the Wannier functions in an external

electric field [22]. Adding an electric potential term to the Hamiltonian,

H = H0 − eE⃗ · x⃗, (2.7)

he showed that the eigenenergies are

ϵqn = E0 + neE/a∗ (2.8)

where a⃗∗ is a period of the periodic lattice along the electric field and E0 is the mean

energy of the band. Since 1/a∗ is the distance between the lattice planes perpendicular

to E, we obtain equally-spaced energy levels in Eq. (2.8), referred to as the Wannier-

Stark ladder (WSL). The eigenstates are exponentially localized and can be determined

exactly as [23]

|m⟩ =
∑

n

Jn−m(2J/F ) |n⟩ , (2.9)

where Jν(z)’s are the Bessel functions of the first kind, J is the hopping strength and

F is the constant force. The existence of the WSL have been experimentally shown in

superlattices [24, 25].

7



CHAPTER 2. THEORETICAL BACKGROUND

2.2 Localization & Mobility Edge

2.2.1 Anderson Localization

In a metal, it is possible to create an electrical current for example with a voltage

difference between one end of the metal to the other, using Ohm’s law. Conductance,

which is the inverse of resistivity, describes how easily the electrons can move through

the conductingmaterial. While Ohm’s law is awell-known relation between resistance,

voltage and current, there has been a lot of interest in describing conductivity in more

detail, specifically a quantum description of transport. One such model is the Einstein

relation for conductivity, which relates electron conductivity σ with the combined

(including both spins) density of states (DOS) per unit volume at the Fermi level

for non-interacting electrons at zero temperature, dn
dµ , and the diffusion constant D

[16]:

σ = e2
dn

dµ
D. (2.10)

An insulator, defined by its lack of conductivity, has σ = 0. This can be achieved in

two ways, either dn
dµ = 0 orD = 0.

Based on the band structure theory of materials, insulators have zero conductivity due

to the large band gap between the valence and the conducting bands, requiring a lot

of energy to move the electron from one band to another. A semiconductor also has

a band gap, however it is smaller than that of an insulator. For metals, on the other

hand, the valence and conduction bands overlap, and thus electrons can move from

one band to another in an infinitesimally small energy difference (see Fig. 2.2.1). The

band theory of insulators can be related to the Einstein relation (Eq. 2.2.1) by the fact

that band insulators satisfy dn
dµ = 0 (and thus σ = 0), since the DOS at Fermi level for

the electrons is zero.

However, as evident by Eq. 2.2.1, there is another parameter than can cause amaterial

to be an insulator while dn
dµ > 0, the diffusion constant D. The constant D can be zero

when the electron eigenstates are localized, i.e. they are confined and do not extend

in long distances. When such a localization is caused by disorder in the material, it is

commonly referred to as Anderson localization, named after Philip W. Anderson,

and the origin of the effect is quantum interference [15]. The disorder in the metal

causes the electron wave function to be trapped within a fixed distance called the

Anderson localization length ξ. In 1 and 2 dimensional systems, all electron

8



CHAPTER 2. THEORETICAL BACKGROUND

EF

Electron Energy
Valence bands

Conduction bands

Insulator Semiconductor Metal

Figure 2.2.1: Illustration of the band structure theory of metals, insulators and
semiconductors. The Fermi level EF is in the middle in all these cases for simplicity.

eigenstates are localized, no matter how weak the disorder is, as described by the

scaling theory [26].

While Anderson localization (due to random disorder) in one and two-dimensional

systems lack MEs, there are several methods of achieving a ME in 1D systems by

using incommensurate lattices, i.e. a lattice with two periodicities and where the ratio

between the two periods is an irrational number. The simplest non-trivial model with

a 1D incommensurate lattice is the AAH model, which shows a metal-insulator phase

transition due to localization when varying disorder strength. In this case, however,

the phase transition is independent of energy, and thus lacks ME.

The MEs in incommensurate lattices can be introduced in various ways, such as by

varying on-site potential [27, 28], introducing long-range hopping [29], or by amosaic

latticewith equally-space zero-potential sites [30]. However, as described byDwiputra

et al. [17], neither random disorder nor quasiperiodic potentials are necessary to

achieve a a pseudo ME. This is further described in 2.2.2.

Inverse Participation Ratio

Amethod for distinguishing localized from extended states is the inverse participation

ratio (IPR), an integral over the amplitude of the state function, and depends on the

9



CHAPTER 2. THEORETICAL BACKGROUND

dimension of the system:

Pq =

∫
ddr|Ψ(r⃗)|2q, (2.11)

where q is a parameter.

Low values of P indicate extended states, while P close to 1 indicates highly localized

states. This can be used to calculate the degree of localization, such as in Fig.

2.2.2

2.2.2 Disorder-free localization

ApseudoME for a finite 1Ddisorder-freemosaic latticewith Stark effect is described by

Dwiputra et al. [17], where the notion of disorder-free refers to ”absence of the random

or quasi-randomness”. S. Longhi [18], showed that Avila’s global theory cannot be

applied here and Lyapunov exponents cannot be defined for Stark potentials, going

to infinity. In the thermodynamic limit (when the system size goes to infinity), all

states become localized with the exception of few isolated extended states, thus strictly

speaking no disorder-free ME exists. Only under a finite-height mosaic potential [31],

can the Wannier-Stark lattice manifest a pseudo ME, which can be experimentally

realized and probed.

To show this, a 1D tight-binding Hamiltonian model is used with Stark effect and the

so-called mosaic lattice [30] of length L and parameterized by an integer κ:

H = −J
∑

n

(c†ncn+1 +H.c) +
∑

n

ϵnc
†
ncn, (2.12)

ϵn =

⎧
⎪⎨

⎪⎩

Fn, n = κl,

0, otherwise.
(2.13)

Here cn is the annihilation operator at site n, J is the nearest-neighbor hopping, F is

a constant force, and l = 0, ..., N − 1 is an integer.

With this model, we have a chain of lattices with Stark potential on every κ-th site, and

zero potential otherwise.

By studying separately the localized wave functions, having most of their weight at

n = mκ sites, decaying faster than exponentially with distance, and large energies

10



CHAPTER 2. THEORETICAL BACKGROUND

Em ≃ Fmκ≫ 1 with the perturbation theory in J/Em and the corresponding effective

Hamiltonian with the projected out above localized states [32], we have improved the

results of [17], finding the following pseudo ME.

E = EME = max

[
2J,

(
eJ

FκL

)1/(κ−1)
]
. (2.14)

In Fig. 2.2.2, the numerical solutions of the pseudo MEs for κ = 2, 3, 5, 6 have been

plotted along with the respective IPR. The IPR analysis shows highly localized states

(black lines) and extended states (yellow dotted lines) on either side of the exact ME

(red dashed line).

(a) κ = 2 (b) κ = 3

(c) κ = 5 (d) κ = 6

Figure 2.2.2: IPR and exact ME with L = 50 sites for (a) κ = 2, (c) κ = 3, (d) κ = 5,
and (e) κ = 6.

11



Chapter 3

Methods

Photonic structures have previously been used as analogies to quantum phenomena

in for example condensed matter physics due to the similarity between wave-like

functions of e.g. electrons and the classical waves of light [19]. It can be shown that the

Schrödinger equation describing an electron in a potential V (x)with a time-dependent

wave function (for simplicity, we allow only a transverse spatial coordinate x, but this

can be easily extended to two transverse spatial coordinates x, y),

− !2
2m

∇2Ψ(x, t) + V (x, t)Ψ(x, t) = i! ∂
∂t

Ψ(x, t) (3.1)

is similar to the optical paraxial Helmholtz equation,

iλ
∂

∂z
E(x, z) = (− λ2

2n0

∂2

∂x2
+∆n(x, z))E(x, z) (3.2)

which describes the propagation of classical light with wavelength λ through a

waveguide along the z-direction, where∆n is the refractive index profile of the guiding

structure and n0 is the reference (substrate) refractive index. This similarity allows

for the simulation of the quantum effects of electrons in lattices to be simulated

using photonic lattices with waveguides, where the temporal part of the electron wave

function is replaced by the spatial propagation of classical light in the z-direction,

as well as simulating a potential in the Schrödinger equation (3.1) by adjusting the

effective refractive index in thewaveguides. This is central in this thesiswork, aswewill

be using photonic lattices to simulate the model described in Eq. (2.12) with classical

light. Moreover, the experimental procedure will be limited to finite-sized lattices as

12



CHAPTER 3. METHODS

opposed to the theoretically-derived case of thermodynamic limit (where the system

size N → ∞).

In the following sections, the necessary chip design parameters (sec. 3.1) and the

fabrication design of the photonic mosaic lattice are described (sec. 3.2). The last two

sections describe the experimental procedures 3.3 and the data analysis method used

in the thesis 3.4.

3.1 Chip Design Parameters

Before fabricating the chip, it is necessary to design the chip parameters correctly.

Firstly, to achieve the WSL, it is necessary to have a linearly increasing electric field

in every κ-th site, and with a fixed coupling constant J between the lattices. Since in

we use κ = 2 in this experiment, we need the linearly increasing electric field on every

second site (even sites), and zero field on every odd site, see Fig. 3.1.1.

The modelling and approach of finding coupling constants follows the methods

developed by Stefan Nevlacsil, et al. [33]. The odd-site zero-field was achieved by

keeping the waveguide widths of the odd sites constant at 550 nm. The on-site energy

of each individual waveguide was calculated using

βn =
2π

λ
neff (λ), (3.3)

where n is the site number, λ is the wavelength of the light source propagating in the

waveguide, and neff is the effective refractive index in the waveguide.

To find the effective refractive index, finite-difference time-domain (FDFT) was

implemented using Ansys Lumerical. The initial model, consisting of a single SiN

waveguide with refractive index of 1.96 is laid on top of an insulating SiO2 with a

refractive index of 1.459 (see Sec. 3.2). Since a 810nm light source will be used

for the actual experiment, a source in the simulation with wavelength interval of

(0.8085− 0.8115)µmwas chosen, see Fig. 3.1.2a.

By running a mode simulation of the waveguide near its refractive index, we receive

a plot of the electrical field intensity as well as an effective refractive index, see Fig.

3.1.2b.

The waveguide width is varied within an interval 0.35 − 0.90µm with an incremental
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Site
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Figure 3.1.1: Illustration of the linearly increasing electric potential in the WSL with
κ = 2.

(a) The spectrum vs. wavelength graph of
the simulated source in Lumerical. It is
centered around 810nm.

(b) A TE-mode simulation
near the refractive index of SiN showing
the electric field intensity inside the single
waveguide.

increase of 0.05µm and their respective refractive indices are saved. The refractive

indices are then used in Eq. (3.3) to calculate the on-site energies and fit to a non-

linear on-site tuning of the form

f(x) = A+Bx+ Cx2 +Dx3, (3.4)
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Figure 3.1.3: A fit of the on-site energy as a function of waveguide with. The zero-level
is at a width of 550nm.

where x is the waveguide width and A,B,C, and D are parameters that are optimized

(see Fig. 3.1.3). Since the design has been chosen such that the waveguides with

constant width are at odd sites, and thus also on the first site, the zero-level of the

fit is set to the energy of a waveguide with a width of 550nm. The function with

the optimized parameters are then solved for f(x) = 0 to get the widths x, which

correspond to a linearly increasing electric field.

Next, we consider a coupled system of waveguides with different widths and calculate

the propagation constants of the odd- and even modes (β− and β+, respectively). The

difference of odd- and even-mode energies can then be calculated using

∆βcoupled =
β+ − β−

2
. (3.5)

Additionally, the difference between the on-site energies of the individual waveguides

are calculated using

∆β =
β1 − β2

2
, (3.6)

where β1 and β2 are the on-site energies of the adjacent waveguides.

These are then used to calculate the hopping constants using

J =
»

(∆βcoupled)2 − (∆β)2. (3.7)
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Thus, using the FDFT method, two coupled waveguides are simulated, with one being

that of constant width (at odd-numbered sites) and the other with varying (increasing)

widths as given by the solution to Eq. (3.4). Since the coupling constant is highly

dependent on the distance between the sites, a smaller gap between thewaveguideswill

result in a largerJ , and vice versa. Thus, the waveguide gaps are iteratively adjusted to

result in a constant J for all nearest-neighbor sites (or waveguides), which was chosen

to J = 0.01
1

µm
.

Figure 3.1.4: Plots of the resulting differences in on-site energies, propagation
constants of the coupled waveguides as well as the coupling constant J between
nearest neighbor sites as functions of the waveguide gaps.

3.2 Photonic Mosaic Lattice Fabrication

The photonic lattices used in the experiment consists of an array of eleven Si3N4

waveguides on top of a SiO2 layer acting as an isolator, all on top of a silicon wafer,

see Fig. A.0.1. The process includes electron beam lithography, reactive-ion etching,

proximity correction, and cleaving[32, 34–37]. Further details of the fabrication

process is described in Appendix A.
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3.3 Experimental Procedure

The experiment was conducted using the photonic lattices of L = 11 coupled

waveguides with single-site excitation of site numbers 3, 4 and 6 and coupling constant

of J = 0.01
1

µm
. Two chipswere used, one in theweak-force regimeF/J = 1 (below the

ME) and another in the strong-force regime (above theME). There is a slight difference

in the experimental procedure for these two cases due to their different designs, but

they are mostly the same. The differences are discussed in a subsection below.

Before conducting the actual experimental procedure, we need to ensure ourselves that

we excite only the fundamental TEmode of the light source. Thus, we need to eliminate

the TMmodes, which was done by employing a 3-paddle polarization-controller at the

input light to minimize the TMmode.

Figure 3.3.1: A photo of the experimental setup in the lab. In the photo, we can see the
6-axis nano-positioning stage in which the chip lies. Additionally, we have a 3-paddle
polarization-controller at the input. To the right of the nano-positioning stage, we have
a CCD camera andmagnifying objective pointing toward the output light, which is also
connected to a computer to observe the output light.

A schematic of the experimental procedure is illustrated in Fig. 3.3.2. A light source is
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Figure 3.3.2: A simple schematic of the experimental procedure. Single-site excitation
at sites 3, 4 and 6 are performed and the output light is observed using a microscope
and a CCD camera. The images are saved and the light intensity profiles are analyzed.

used for single-site excitation of sites 3, 4 and 6 (only excitation of site 3 is shown in the

figure). This leads to output light at the ends of thewaveguides, with largest intensity at

the excitation site and with a fraction of the light spreading to the neighbouring sites.

To capture the light intensity profiles and analyze it, a charge-coupled device (CCD)

camera with a magnifying objective is used at the output. The CCD camera saturates

at a pixel value of 255, so we ensure ourselves that the highest light intensity value does

not exceed 255 before saving the image.

3.4 Data Analysis Method

Once the data is collected, the next step is to analyse it to provide insight into to what

degree the light intensity spreads from the excitation site to the neighbouring sites.

The data is collected as images, and an example of collected images shown in Fig. 3.4.1,

which corresponds to the first image in a series of images for single-site excitation of

site number 3. The bright spot is the output light of site 3, and to the right of it are

output of site numbers 2 and 1. Due to the large magnification, several images were

collected, where the second image in the series starts from the last site of the previous

image. As an example, the last site in Fig. 3.4.1 is site 4 (left of the bright spot - it

is not visible in the unprocessed data image). Thus, the next image will start with
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site number 4, and so on. The reason for this is that the sites farther away from the

excitation site are barely visible or not visible at all, and thus we need to increase the

input light intensity. In doing so, the different images are differently scaled. This is

compensated by normalizing the second image in the series so that the light intensity

at the starting site of the image is equal to the end-site of the previous image. In the

example figure below, this corresponds to ensuring that site number 4 from the first

figure (Fig. 3.4.1) is equal to the light intensity of site 4 of the next image in the series,

and so on.

Next, we need a method of identifying the positions of the output light of the various

sites. It is trivial to find the position of the excitation site as well as the first site in the

next images (as the light intensity is increased to make it visible). However, as we can

see in Fig. 3.4.1, it is not possible to identify the positions of the positions of output

light of the neighbouring sites. To remedy this, we have decided to use the library called

OpenCV which is commonly used for computer vision. The library contains functions

that allow us to identify regions of light (as long as it is discernible from background

noise) and providing with their coordinates. More in-depth detail of the employment

of the code is described in Appendix B.

Once the positions of the output light for the different sites are found, we integrate

over the light intensity of these sites on the original data image. Only one modification

was done to the data image, which was to remove noise by using a threshold function

similar to Eq. B.1, with the exception that values above the threshold value are kept as

in the image source. Thus, values below the threshold are changed to zero, and the rest

remain.

The integration area is a rectangle with user-defined dimensions - the code allows

choosing width and height of the rectangle centered around the coordinates found in

the previous steps, with the possibility of integrating asymmetrically by choosingwidth

to the left and right as well as height above and below the rectangle. The sum of pixel

values in the areas around the sites are saved in .txt-files for analysing. The intensities

are normalized so that the total light intensity of each site is summed to 1.
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Figure 3.4.1: An example of the collected data images. This image is the light intensity
output for single-site excitation of site number 3, where the bright spot corresponds to
site 3.

3.5 Differences in device structures

There are slight differences in the devices used for the weak-force and strong-

force regimes. These differences are summarized in Table 3.5.1. Due to the lower

magnification used in the weak-force regime, all the sites were captured in one

image from the CCD camera. This made the image processing much simpler, as it

eliminated the need for scaling several images of various sites from the same single-

site excitation.

Weak-force regime Strong-force regime
Input light wavelength 786nm 810nm
Position of CCD camera Top-down Facet-side
Magnification Objective 40X 100X

Table 3.5.1: Summary of the differences between the devices for the weak-force regime
and strong-force regime.
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(a) Data image used in the analysis (b) Reference image

Figure 3.4.2: Illustration of the output data images for excitation of site number 6. The
data image is in (a), and a reference image is shown in (b), which was used to identify
the neighbouring sites.
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Result

The data images that are collected, as described in sec. 3.4, are processed and the

light intensity profiles are analysed for the weak-force regime (F/J = 1) and strong-

force regime (F/J = 4). The following sections present the results following the data

analysis in both of these regimes.

4.1 Theoretical solutions

The model Hamiltonian as described in Eq. (2.12) was solved with the parameters

used in the experiment, i.e. κ = 2 and L = 11 sites. This is illustrated in Fig. 4.1.1,

with the pseudo ME in finite size lattice and the weak-force and strong-force regimes

highlighted. To the sides, we have the theoretical intensity profiles of the weak-force

regime (left) and strong-force regime (right). The calculations were done numerically

in Python utilizing the QuTiP (Quantum Toolbox in Python) library, which allows

creating Hamiltonians, state vectors, eigenenergy solutions, and more.

4.2 Light Intensity Profile

The image data processing as explained in 3.4 and Appendix B results in light intensity

profiles for both the strong- and weak-force regimes for various excitation sites. Here,

we present the results for both these regimes. For plots in both these regimes, we use

logarithmic scale in the y-axis and with the same ticks to elucidate their differences

and expedite comparisons between the two. It is also crucial to compare themwith the

theoretical solutions as shown in Fig. 4.1.1.
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Figure 4.1.1: The theoretical eigenenergy values for κ = 2 with L = 11 and with
the strong-force regime (F/J = 4) and weak-force regime (F/J = 1) highlighted.
Additionally, the theoretically expected intensity profiles are to the left (weak-force
regime) and right (strong-force regime) for comparisonwith the experimental intensity
profiles.

4.2.1 Weak-force Regime

The intensity distributions for the weak-force regime at excitation sites 4 and 6 are

summarized in Fig. 4.2.1. In both the cases, spreading of light is observed, with around

5 · 10−2 of the intensity at each site. Total integration area is 3500 around each site.

(a) (b)

Figure 4.2.1: Normalized light intensities in logarithmic scale for light excitation of site
number (a) 4 and (b) 6 in the weak-force regime.

4.2.2 Strong-force regime

The analysed data of the strong-force regime were analysed and the light intensity

distribution is summarized in Fig. 4.2.2. The total integration area was the same
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Intensity

Site
Excitation Site

4 6

1 0.00625197 0
2 0.044692 0
3 0.0163392 0.0159474
4 0.781776 0.022356
5 0.117579 0.0529913
6 0.0277398 0.891035
7 0 0.013058
8 0.00562152 0
9 0 0.00461197
10 0.040999 0
11 0.040999 0

Table 4.2.1: The resulting intensities at each site for various excitation sites in the
strong-force regime. The intensities are normalized so that the total intensity is 1.
Excitation-site intensities are highlighted in blue for clarity.

(81000 pixels) for all the cases. We notice that the light intensity is much less localized

at the excitation site 3 in (a) than excitation sites 4 and 6 in (b) and (c), respectively.

Light intensity at site 2 in (a), the nearest-neighbor site, is approximately 2 ·10−2, while

in (b) light intensity of site 3 (nearest neighbor to excitation site 4) is roughly 2 · 10−3,

or about a tenth of the intensity of the relative intensity of site 2 in (a). Moreover, no

light intensity was observed at neighbouring sites for excitation of site 6 as shown in

Fig. 4.2.2c.

Intensity

Site
Excitation Site

3 4 6

1 0.00373 0 0
2 0.0235 0 0
3 0.949 0.00242 0
4 0.000622 0.998 0
5 0.0111 0.0000293 0
6 0.00376 0 1
7 0.00497 0 0
8 0.00354 0 0
9 0 0 0
10 0 0 0
11 0 0 0

Table 4.2.2: The resulting intensities at each site for various excitation sites in the
strong-force regime. The intensities are normalized so that the total intensity is 1.
Excitation-site intensities are highlighted in blue for clarity.
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(a) (b)

(c)

Figure 4.2.2: Normalized light intensities in logarithmic scale for inputs (a) 3 (b) 4
and (c) 6. No light intensity could be distinguished from the scattered noise in input 6.
Notice that site 5 in (a) has a higher intensity (despite being next-to-nearest-neighbor
site) than input 3 in (b), the nearest-neighbor site.
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Discussions & Conclusions

This chapter of the thesis work focuses on discussions and conclusions based on the

results and methodology, and potential future work/experiments related to the thesis

are discussed.

5.1 Discussion

The results of the light intensity profile as presented in 4.2 strongly indicate a phase

transition from extended to localized states of the even-numbered sites 4 and 6 from

the weak-force regime to the strong-force regime, and thereby indicating the existence

of an ME in the disorder-free photonic lattice.

Clearly, there are some limitations to the experiment, specifically in the device used

for the strong-force regime, as it was not possible to integrate over all the sites due

to limitations of the CCD camera, which saturates at light intensity corresponding to

pixel values of 255, combinedwith the use of a 100Xmagnifying objective preventing us

from observing all the sites in one image. Additionally, the noise due to light scattering

significantly increased on the bottom part of the image when the light intensity was

increased to make the sites far from the excitation site visible. However, these

limitationsmainly affect exact light intensity profiles. Sincewe aremainly interested in

the degree at which the light spreads from the excitation site to the neighbouring sites,

and since there is a significant difference in the spreading compared to the weak-force

regime (about 1
10 of the intensity at site 3 for excitation of site 4 between the strong-

field regime and weak-field regime, see Figs. 4.2.1 and 4.2.2), the effects of these
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limitations are not significant enough. The issue of the noise from scattering of light

should affect all sites on average equally, and so will not be relevant when normalized.

Moreover, a significant increase in input light intensity was necessary to observe light

on neighbouring sites for the even-numbered excitation sites (4 and 6), and quickly

became so large that it was overshadowed by the scattering noise. This is clear in Fig.

3.4.2b, whichwas used as a reference to identify neighbouring sites. Thiswas necessary

because the light intensity in the neighbouring sites were significantly weaker such that

they were not identifiable with the data analysis method described in Appendix B. In

the figure, we see the significant scattering of light on the bottom part and a weak spot

of light at site number 5. Note that the light intensity was increased significantly, and

yet only the nearest neighbouring site was visible. For the original image used for the

data analysis (Fig. 3.4.2a), this yielded zero intensity even at site number 5. Because

of saturation of the CCD camera, this means that the intensity at site 5 (and also 4) for

excitation of site 6 should have an intensity less than 1/255 ≈ 4 · 10−3 (since maximum

pixel value is 255). This is also consistent with the theoretical expectation as illustrated

to the right side of Fig. 4.1.1.

Moreover, for the light intensity of sites 9−10 for excitation of site 3 (Fig. 4.2.2a), there

was light scattering on and around these sites. Since it was not possible to remove the

scattered light without affecting the output light of the sites, they were instead omitted

and is the reason why the results show zero intensity.

Lastly, for the strong-force regime, a fabrication error resulted in site number 11 not

being included in the chip, as can be seen in Fig. 5.1.1. However, this would not have

affected the results in any way, since no light was observed for sites beyond nearest-

neighbour sites for excitation of sites 4 and 6, and sites 9 and above for excitation of

site 3 were indistinguishable from scattered light. Additionally, the intensity at site 11

for excitation of site number 3 is expected to be extremely small, which can be seen in

theweak-force regime (left) of Fig. 4.1.1. While excitation site number 3 is not included

there, it suffices to observe that for excitation of site number 4, the intensity at site 11

is very small.

It is also noteworthy that when comparing Fig. 4.2.2b with Fig. 4.2.2c, it appears

as if site 4 is less localized than site 6. This is actually expected from the theoretical

calculations, since the eigenenergy of site 6 is larger than the eigenenergy of site 4, and

thus being ”farther” away from the ME in energy. In Fig. 4.1.1, this corresponds to site
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Figure 5.1.1: Image of the device used for the strong-force regime highlighting the
missing 11th waveguide and light propagation through site 6.

4 having a lower value of IPR than site 6, making it less localized.

5.2 Conclusion

By fabricating two devices, one for the weak-force regime and one for the strong-force

regime, we have observed the intensity profiles of the output light in the disorder-free

photonic lattices, with a strong indication of the existence of a phase transition and

hence a ME. The weak-force regime exhibits extended states for excitation of sites 4

and 6, while the strong-force regime show significantly decreased spreading of light

(localized states) for excitation of the same sites.

Moreover, it can also be concluded that top-down camera is generally better to

avoid scattering of light, which only occurred on the bottom part for the facet-side

observation (as used in the device for the strong-field regime). It is especially beneficial

to use a magnification objective that allows observation of all the sites in one image, as

this simplifies the data and image processing.

5.2.1 Future Work

The experimental method used to observe ME in the disorder-free lattices was with

classical light in photonic lattices to simulate the 1D quantum transport of electrons.

Future work could build on the work in this thesis in various ways. For example,

it is interesting to investigate whether the experiment can be generalized to a 2-
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dimensional lattice. In a paper by Yuchen Wang, et al. [38], the ME in a 2D vertex-

decorated Lieb lattice with quasi-periodic potential was calculated. While this is not

a disorder-free lattice, a similar procedure could be used to simulate a quasi-periodic

potential. Engineering such a device might not be trivial, though.

Additionally, the quantum properties of light in the devices used in this thesis work

may be especially interesting to investigate. Such an experiment may be realized for

example using single-photon sources and superconducting nanowire single-photon

detector (SNSPD) to investigate various quantum properties, such as entanglement

or the Hong-Ou-Mandel effect.
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Appendix A

Photonic Mosaic Lattice
Fabrication

The photonic lattice fabrication is initiated by covering Si wafers with a 3.3µm

insulating layer of SiO2 and a 250nm layer of Si3N4 acting as the waveguides. The next

step involves patterning the waveguides to the desired shapes. This was done using

electron beam lithography, where a negative-tone resist is laid on top of the Si3N4

layer followed by directing an electron beam onto the resist and thereby hardening

these regions. The unexposed regions are then removed using a developer solution,

which result in a patterned layer of resist. The resist layer is then used as a mask

for dry etching of the Si3N4, which was done using a CF4-based reactive ion etching

technique. This allows us to remove Si3N4 layer that are exposed (not covered by the

resist), forming waveguides with the desired dimensions and shapes.

Lastly, wemake sure to remove the remaining electron-beam resist is removed by using

a resist remover solution, clean and dry the samples. An illustration of the fabrication

steps are shown in Fig. A.0.1, as well as microscope images of the fabricated structures

in Fig. A.0.2.
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SiO2Si SiN ebeam resist

Figure A.0.1: Illustration of the fabrication process of the coupled Si3N4 photonic
lattices.

(a) (b)

Figure A.0.2
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Appendix B

Image processing

In sec. 3.4 the data analysis method was explained and an example of a data image

was shown in Fig. 3.4.1. Because of the difficulty of finding the bright areas from the

output light of the neighbouring sites, we need to use other methods than the naked

eye. Thus, we have to process the images.

The image processing consists of 2 central steps, namely 1. identification of bright spots

that result from the output of the waveguides and 2. integration (summation) of pixel

values around these sites. The first step is performed using the library OpenCV.

B.1 Identification of bright spots

Identifying the bright spots require several steps of manipulation of the image. The

images in Fig. B.1.1 illustrate the steps explained below, and are performed on single-

site excitation of site number 3, as in Fig. 3.4.1.

1. Blurring of the image to reduce high frequency noise with gaussian blur.

2. Thresholding to create a large contrast between noise and the bright spots.

Mathematically, the threshold function works as follows:

f(x, y) =

⎧
⎪⎨

⎪⎩

maxval, if src(x, y) > threshold,

0, otherwise,
(B.1)

where src(x, y) is the source image and threshold is a chosen threshold value.
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Thus, if the pixel value is above the threshold value, it will be changed to the

maximum value, which was chosen to 255. Otherwise, it will be converted to

0, and hence removing noise. For most of the images, the threshold value was

chosen to be 2. For images with large degree of noise or light scattering, a higher

threshold value was chosen, but the drawback was that weak light from the sites

would then disappear together with the noise.

3. Erosion and dilation - two functions in the OpenCV library that removes noise

that arise from the thresholding, mainly around the site areas. By ”eroding” light

around the sites, we remove small blobs of light. Dilation, then, increases the

radius of the bright spot so that any remaining noise becomes part of the full

component of the light from the site.

4. Connected-component analysis is a follow-up from the previous function, which

removes spots of light that are smaller than a user-defined value of pixels inside

an area around the bright spots. Thus, only large enough ”spots” are kept, and

their coordinates, as well as the minimum radius that encircles the bright spot.

5. Labeling is the last step of the identification. The saved coordinates and radii

are used to create circles in the image around the bright spots. Additionally,

a function from the package imutils, namely imutils.contours.sortcontours() is

used to sort the blobs from right-to-left, which allows us to label them according

to their site numbers (increasing site number from right-to-left).

B.2 Light intensity integration

Once the bright blobs/spots have been identified, we use the coordinates to integrate

in a rectangle around the sites. The rectangular area’s dimension can be chosen; both

the width to the left and right as well as the height on the top and bottom relative to the

center coordinates. It is important to note that the area is constant for all the images in

the weak-force and strong-force cases. Upon trial-and-error process, the dimensions

were chosen as shown in table B.2.1. Here, the values indicate pixels relative to the

center coordinates. For example, in the weak-force regime, we have width (left) as 100,

meaning that the left side of the rectangle is 100 pixels to the left of the center. Due to

the large amount of scattering of light below the sites, we have chosen an asymmetric

height, where the bottom part of the integration area is closer to the center (120 pixels
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(a) Thresholding (b) Erosion

(c) Dilation (d) Labeling

Figure B.1.1: Images illustrating the steps of identifying the bright spots that arise from
the output light of the various sites. The processed images are all the first image in the
series of single-site excitation of site number 3.

below the center) as opposed to the top part, which (150 pixels above the center), see

Fig. B.2.1.

Strong-force Weak-force
width (left) 150 100
width (right) 150 100
height (top) 150 35
height (bottom) 120 35
Area 81000 3500

Table B.2.1: The chosen dimensions of the integration area as well as the total area for
both the weak-force and the strong-force regimes.
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Figure B.2.1: Illustration of the integration area around the identified bright spots.
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