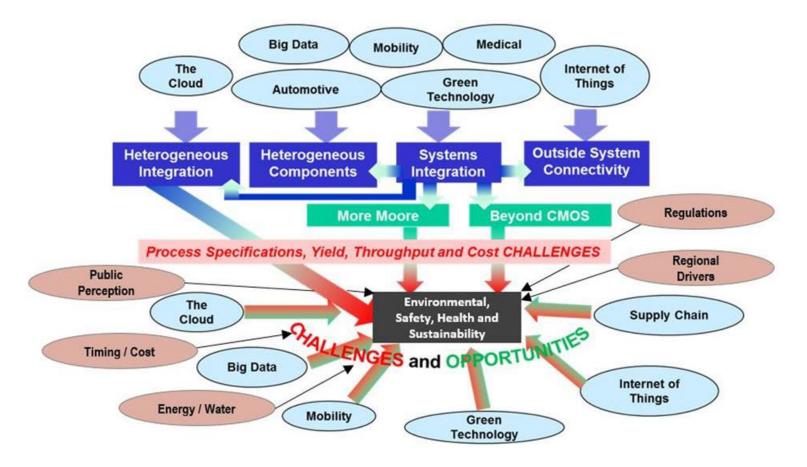
Sustainable fabrication

Professor B. Gunnar Malm KTH Royal Institute of Technology

Sustainability definition

 Sustainable development is the kind of development that meets the needs of the present without compromising the ability of future generations to meet their own needs

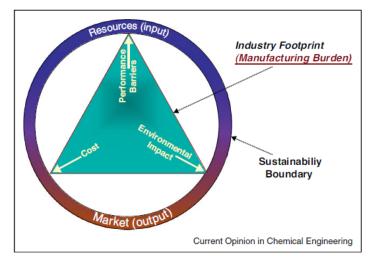
https://en.wikisource.org/wiki/Brundtland Report

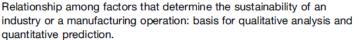

Topics

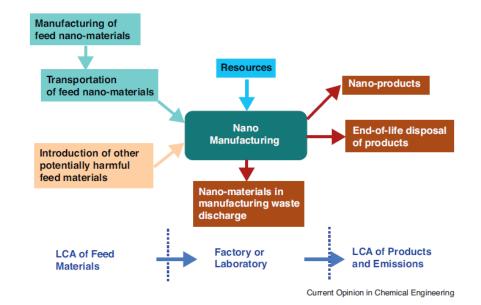
- Key challenges and approaches to ensure sustainable fabrication in semiconductor processing industry
- We will focus on resource conservation, environmental impact and touch upon concepts such as Life Cycle Analysis (LCA), Green Fab, Emerging Nanomaterials and so forth

Topics cont.

- Sustainable fab operations
 - Electricity, water consumption, recycling/reuse
- Environmental Impact
 - Direct and Indirect GHG emissions, exhaust/scrubbing, contamination, including emerging nanomaterials
- Sustainable resource supply
 - Raw materials including wafers, metals, and gasses


Roadmap (IRDS 2017 & 2020)




ITTS Roadmap view (2013 to be updated)

																, ,
Table ESH5 Facilities Technology	Requirem	ents														
Year of Production	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Facilities Design																
Facilities Design		Meet estab	ablished goal a	ind metrics						Meet esta	ablished goal a	and metrics				
Important																
Water																
Total fab* water consumption (liters/cm ²) [1]																
300mm/450mm fabs				7.0	6.4	6.4	5.8	5.5	5.5	5.3	5.0	5.0	5.0	4.6	4.6	4.6
200mm fabs	7.6	6 7.6	7.0	6.4	5.8	5.8	5.0	4.8	4.8	4.3	4.1	4.1	3.9	3.5	3.5	3.5
Important	<u> </u>	<u></u>														
Total UPW consumption (liters/cm ²) [1] Important	6.5	6.5	6.5	6.0	6.0	6.0	5.0	5.0	5.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Site water recycled/reclaimed** (% of use)	50%	50%	60%	60%	70%	70%	70%	75%	75%	75%	80%	80%	80%	90%	90%	90%
Important																
Energy (electricity, natural gas, etc.)																P
Total fab energy usage (kWh/cm ²)			1		[<u>г</u>
Non EUV	1.0	1.0	1.0	0.9	0.9	0.9	0.8	0.8	0.8	0.7	0.7	0.7	0.6	0.6	0.6	0.6
EUV	1		1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Important	1	/														
Waste																
Hazardous waste (g per cm ²) [1] Important		8			7.5		7.2	7.2	7.2	7.2	6.5	6.5	6.5	6	6	6
Air Emissions																<u> </u>
Volatile Organic Compounds (VOCs) (g per cm ²) [1]		0.06			0.055		0.05	0.05	0.05	0.05	0.045	0.045	0.045	0.045	0.045	0.045
Important																
Fluorinated greenhouse gases, fluorinated heat		d emission rate (f					22 kg CO ₂ equiv			N	lormalized emi	ission rate (NEI	R) < 0.22 kg CC	D ₂ equivalent/ci	m ²	
transfer fluids, and nitrous oxide	as ag	2equivalent/cm ² greed to by the \v inductor Council	World	2020 as/	agreed to by t	the World Sem	niconductor Co	uncil (WSC).								
Critical	Semicon		(WSC).													
М	lanufacturable	le solutions exist,	t, and are be	ing optimized												
		Manufactv	arable solutic	ions are known												
				ions are known		4										
	Å	Manufacturable	s solutions ar	/e NOT known			ļ									

Sustainable nano-manufactuiring

http://dx.doi.org/10.1016/j.coche.2012.03.004

Example Sustainability Priorities

WE PROTECT THE ENVIRONMENT

JR AMBITIONS	Energy & Climate Change Continuously reduce our carbon footprint and our impact on climate change by decreasing our GHG emissions and improving energy efficiency.	Water Maintain our leadership in water efficiency by reducing consumption, recycling more, and reinforcing our efforts in water scarcity areas.	Waste & Chemicals Strive for zero waste in landfill, reduce our consumption of chemicals and eliminate hazardous materials.
2025 G0ALS	-20% energy consumption and GHG emissions*	-20% water consumption*	95% of our waste reused and recycled
SITIONS CO	DGETHER, WE SHAPE THE Supply Chain Responsibility Systematically assess and mitigate social, environmental, health &	Education & Volunteering Prepare the future by supporting education in schools in all the	
	safety, and ethical risks in our extended supply chain.	countries where we operate.	
2025 G0ALS	100%	STEM* education partnerships in 20	

• <u>European leader in microelectronics</u>, downloaded, May 2021

Example Sustainability Priorities

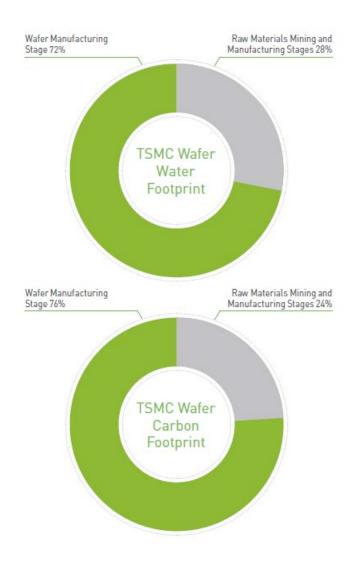
We reduce our climate footprint by investing in alternative energy and smarter technologies. We increase our climate handprint by helping other sectors reduce their footprints. We also work with others to improve industry and policy. Since 2008, Intel has:

- Invested more than \$145 million in energy-conservation projects (saving an estimated 3.19 billion kWh of energy)
- Installed more than 40 on-site projects that use solar, wind, fuel cell, and other alternative energy sources worldwide
- Remained the largest voluntary purchaser of green power in the United States

In 2015, we purchased 3.4 billion kWh of green power, enough to meet our US electricity use 100%. In October 2015, we joined the American Business Act on Climate Pledge.

World leader in microelectronics, downloaded, May 2021

Fab comparisons progression (legacy data)



http://www.tsmc.com/english/csr/green manufacturing.htm

Water usage reduction (legacy data)

Item	2011	2012	2013	2014	2015
Average process water recycling rate (%) ^{Note1}	84.6	86.5	86.9	87.6	87.3
Process water saved (Million m ³)	37.73	53.37	52.23	56.22	65.25
Water saved, measured by standard swimming pools ^{Note2}	15,094	21,347	20,918	22,490	26,101
Water saved, measured by the full capacity of Baoshan Reservoir II ^{Note3}	1.17	1.66	1.63	1 .75	2.03
Process water saving/Total water usage	1.55	2.07	1.77	1.61	1.92

TSMC Water Conservation Performance in Recent 5 years

Power usage breakdown

Facility	Consumption
Office building	6%
Deionized (DI) water system	3%
Process tool	30%
Testing equipment	10%
Utility equipment	15%
Support cleanroom	3%
Fab recirculation fans	7%
Boilers	8%
Chillers	18%

Per Wafer Resources Breakdown

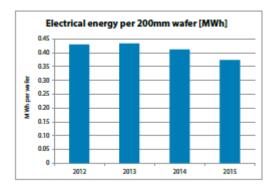
Other quantities of facilities required to complete the processing of a 200-mm, 16 Mbit DRAM wafer are as follows:

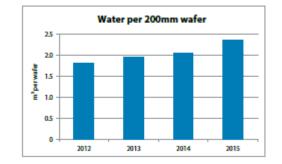
Chemicals	10 kg
Deionized water	4.5 ton
Compressed dry air	55 m ³
N ₂	25 m ³
O ₂	0.9 m ³
H ₂	0.1 m ³
Power	470 Kwh

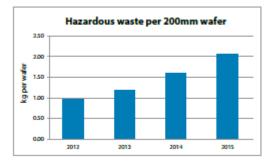
 Similar figures apply as wafer size scales to 300 and 450 mm

Resource needs cleanroom

Category	Module or process
Energy for infrastructure	cooling water supply, recirculating air, and make-up air
Energy for processes	thin films and dry etch in future EUV litho
Chemicals	patterning/photoresist & wafer cleaning/wet benches
Emissions (VOC, GHG)	thin film and patterning/photoresist


Microchip fabrication LCA AMS 2015


3.3. Environmental Aspects


The activities of ams in Premstaetten and Calamba give rise to impacts on the environment typical for semiconductor factories. This includes consumption of energy, use of water, generation of wastewater, exhaust air from production, emissions from the various boiler plants, vapor from the cooling towers and generation of wastes. The current environmental aspects at the location for the existing plant and the anticipated environmental aspects of our production line are explained in the following sections.

system boundary

Footprint vs. product type

Footprint of a MEMS

Foot

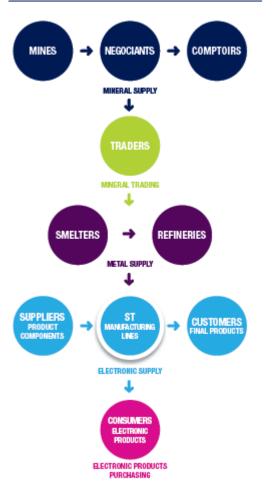
-		ivironmental i		rint of a MEMS
	₿	5	(7)	\bigcirc
	Climate change	Water demand	Freshwater eutrophication	Photochemical oxidant formation
-	- Results			
	~	npact 147 g C he square to disc		or 610 m by car
	Click on t			
	~			t of each life cycle stage 5 life cycle stages Raw materials
	Click on t			t of each life cycle stage 5 life cycle stages Raw materials ST production site

all the impacts.

Animated LCA results Methodology

http://www.st.com/web/en/about_st/mems_footprint.html?sc=mems-footprint

Supply Chain


- Semiconductor industry relies on supply of metal from conflict regions in central Africa
- Tantalum, Tin, Tungsten, Gold, also known as 3TG or 3T's and Gold

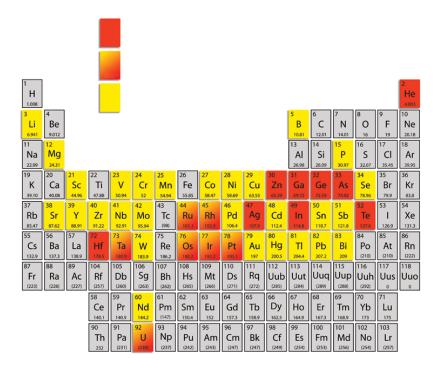
ST Sust. Report, p28, 2011

http://www.intel.com/content/dam/doc/policy/policy-conflict-minerals.pdf

Supply Chain 3TG

Mineral sourcing in ST's supply chain Adapted from EICC-GeSI Extractive Work Group

2011 results


Conflict Minerals

	2011
Number of materials suppliers and subcontractors involved in the EICC-GeSI Due Diligence survey	171
Number of suppliers and subcontractors that are associated with at least one 3TG metal (involved suppliers)	84
% (number) of involved suppliers and subcontractors that have completed the EICC-GeSI Due Diligence survey	100% (84)
Number of smelters identified in ST's raw materials supply chain	61
Number of smelters identified in ST subcontractors' supply chains	111
% of ST Tantalum suppliers that use conflict-free smelters	66%

Supply Chain Rare Earth Metals

Table 2. It is predicted that the growth in world population, along with the emergence of new technologies will result in some key-metals being used up quite rapidly, e.g.

Antimony, 15 - 20 years. Gallium, 5 years. Hafnium, 10 years. Indium, 5 - 10 years. Platinum, 15 years. Silver, 15 - 20 years. Tantalum, 20 - 30 years. Uranium, 30 - 40 years. Zinc, 20 - 30 years.

http://www.rsc.org/images/Endangered%20Elements%20-%20Critical%20Thinking_tcm18-196054.pdf

Green Chemistry

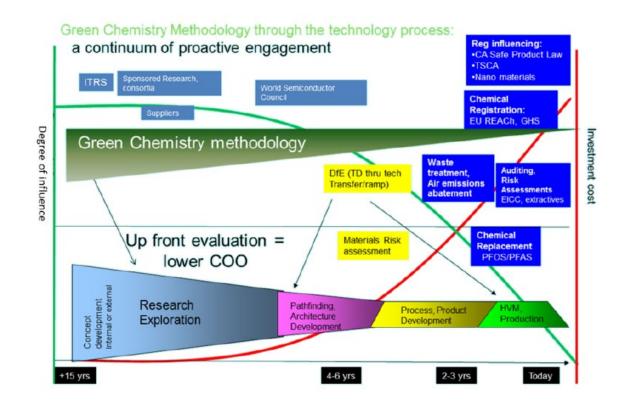


Figure ESH-2 ESH/S Engagements Across the Technology Lifecycle