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Lemma 1: Given sector s, 1 ≤ s ≤ k − 1, the number
of interferers nI ≥ 1, and the number of obstacles no ≥ 1,
randomly deployed on the sector, the probability of having at
least one LoS interferer is given by Equation (9) on the top
of page 2.

Proof: A proof is given in Appendix B.

APPENDIX A:
CHARACTERIZATION OF THE INTERFERENCE RANGE

In the interference range model, a packet loss occurs if there
is some interfering device inside the interference range, that is,
the maximum distance an interferer can be from the receiver
and still causes a collision. Let dmax be the interference range.
Let p, ν, and f be the signal transmission power, phase speed,
and frequency, respectively. In free space, the phase speed of
electromagnetic signals is almost the speed of light. The power
that the typical receiver receives from a transmitter, with LoS
condition and without deafness, located at distance d, is

p

(
2π − (2π − θ)ε

θ

)2(
ν

4πdf

)α
, (1)

where α is the path-loss exponent. Let β be the minimum SNR
at the typical receiver due to transmission of an interferer that
causes a strong interference or collision. Let σ be the noise
power. The typical receiver can receive strong interference
from that transmitter at maximum distance dmax, where
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which can be reduced to
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as ε → 0. For sake of simplicity, we assume that the trans-
mission range and the interference range are equal. However,
the analyses provided in this paper can be easily extended
for the general interference range model and also for the
protocol model [1]. Further, the channel model affects only
the interference range. Hence, to consider a fading channel,
we should only replace deterministic interference range dmax

with a random variable following a given fading distribution.
Then, we can apply the framework developed in this paper to
compute the collision probability and MAC throughput.
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APPENDIX B:
LOS INTERFERENCE GIVEN n ≥ 1 AND m ≥ 1

In this appendix, we find probability of having at least one
LoS interferer given the number of interferers nI ≥ 1 and the
number of obstacles no ≥ 1. We have the following Lemma:

Lemma 2: Let {x1, x2, . . . , xnI
} be a set of nI random

variables, where nI is a zero-truncated Poisson random
variable with density λI , and xis are uniformly distributed
in [0, dmax]. Define X = min{x1, x2, . . . , xnI

}. Given nI =
n ≥ 1, the joint PDF of X and nI is given by Equation (4)
on the top of page 2.

Proof: Given nI = n ≥ 1, cumulative distribution function
(CDF) of the minimum of X is

1− (1− F{x})n , (5)

where F{x} is the CDF of xi. Taking derivative of (5), the
conditional PDF of X given nI = n ≥ 1 is

fX|nI
(X = x|nI = n, n ≥ 1) =

n
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)n−1
.

(6)
nI = n ≥ 1 is a random variable with zero-truncated Poisson
distribution, thus [2]

Pr [nI = n|n ≥ 1] =
e−λI

1− e−λI

λnI
n!

.

Therefore, we have (7). This concludes the proof. �
Due to mutual independency of blockage and inter-

ferer processes and using Lemma 2, we have (8). Ap-
plying Lemma 2 to fXs,nI

(Xs = x, nI = n|n ≥ 1) and
fYs,no

(Ys = y, no = m|m ≥ 1), the first part of Lemma 1 is
straightforward. All we need to do is plugging the effective
densities λIAdmax

and λoAdmax
into (4).

The next step is finding the probability of having at least one
LoS interferer given nI ≥ 1, no ≥ 1, which we denote by T.
We have (9), where (?) follows from the Taylor series of the
exponential function. This completes the proof of Lemma 1.
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fXs,Ys,nI ,no
(Xs = x, Ys = y, nI = n, no = m|n,m ≥ 1) = fXs,nI

(Xs = x, nI = n|n ≥ 1) fYs,no
(Ys = y, no = m|m ≥ 1)

(8)
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