SF2812 Applied linear optimization, final exam Friday March 112022 8.00-13.00

Examiner: Jan Kronqvist, tel. 087907137.
Allowed tools: Pen/pencil, ruler and eraser.
Note! Calculator is not allowed.
Solution methods: Unless otherwise stated in the text, the problems should be solved by systematic methods, which do not become unrealistic for large problems. Motivate your conclusions carefully. If you use methods other than what have been taught in the course, you must explain carefully.

Note! Personal number must be written on the title page. Write only one exercise per sheet. Number the pages and write your name on each page.
22 points are sufficient for a passing grade. For $20-21$ points, a completion to a passing grade may be made within three weeks from the date when the results of the exam are announced.

1. Let $(L P)$ and its dual $(D L P)$ be defined as

$$
\begin{aligned}
(L P) \quad \text { subject to } & A x=b, \quad \text { and } \quad(D L P) \quad \text { subject to } \quad A^{T} y+ \\
& x \geq 0,
\end{aligned}
$$

where

$$
\begin{aligned}
A & =\left(\begin{array}{rrrrr}
1 & 0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 & -1 \\
0 & 1 & 1 & 0 & 0
\end{array}\right), b=\left(\begin{array}{r}
3.0 \\
-3.0 \\
5.8
\end{array}\right), \quad \text { and } \\
c & =\left(\begin{array}{lllll}
-4 & -4 & -2 & -1 & -1
\end{array}\right)^{T} .
\end{aligned}
$$

(a) A person named JK has used GAMS to model and solve this problem. JK has been told that he can solve either $(L P)$ or $(D L P)$ for finding the optimal solutions to $(L P)$ and $(D L P)$. He has chosen to solve $(L P)$. The GAMS input file can be found at the end of the exam, and a partial GAMS output file reads:

Variables:				
	LOWER	LEVEL	UPPER	MARGINAL
--- VAR x1	\cdot	3.0000	+INF	.
--- VAR x2	.	3.0000	+INF	.
--- VAR x3	.	2.8000	+INF	.
--- VAR x4	.	.	+INF	3.0000
--- VAR x5	.	.	+INF	1.0000
--- VAR objective	-INF	-29.6000	+INF	.

The only catch is that JK is not familiar with GAMS, and does not know how to extract the optimal solutions from the GAMS output. Help JK obtain the optimal solutions to $(L P)$ and $(D L P)$ from the GAMS output file. (4p)
(b) JK claims that if b_{2} is changed to $-3+\delta$ and b_{3} simultaneously is changed to $5.8+\delta$, then the optimal value remains unchanged (assuming δ is small enough). Show that JK is right. Do so without solving any system of equations. . . (3p)
(c) Determine how much the objective coefficients for variables x_{4} and x_{5} can be increased/decreased before the optimal solution changes \qquad
Hint: To avoid difficult matrix operations, it might be good to remember that the dual variables y solve the system $B^{T} y=c_{b}$, i.e., $y=B^{-T} c_{b}$.
2. Consider a mixed-integer linear program $(M I L P)$ of the form
(MILP)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \in \mathbb{R}^{n} \\
& x_{i} \in\{0,1\} \quad \forall i \in \mathcal{I} \subset\{1,2, \ldots, n\}
\end{array}
$$

(a) Assume that we only have three binary variables defined by $\mathcal{I}=\{1,2,3\}$, and assume that (MILP) contains the constraint $x_{1}+x_{2}+x_{3}=1$. However, (MILP) contains a large number of continuous variables. We solve this problem by branch-and-bound with linear programming relaxations at the nodes. Show that the branch-and-bound tree will have at most five nodes. You may assume that the linear programs that arise have unique optimal solutions and that they can be solved without any issues or be infeasible.
Hint: Draw a branch-and-bound tree and analyze its possible shape. At which nodes can the subproblems return non-integer solutions.
(b) Describe how the number of nodes could potentially be reduced by knowing a good feasible solution before starting the branch-and-bound procedure. . (2p)
(c) Now assume $\mathcal{I}=\{1,2,3,4\}$ and that (MILP) contains the constraint

$$
\frac{\left(x_{1}+x_{2}+x_{3}\right)}{3} \leq x_{4}
$$

but not the constraint from Exercise 2a. This constraint originates from a logical relation between the integer variables x_{1}, x_{2}, x_{3} and x_{4}. A person named JK claims that this logical dependence between the variables can also be exactly represented by the constraints

$$
x_{1} \leq x_{4}, \quad x_{2} \leq x_{4}, \quad x_{3} \leq x_{4}
$$

Show that any solution (fractional or integer) satisfying the latter set of constraints will satisfy the first single constraint. Furthermore, show that using
the latter set of constraints can result in a greater optimal objective function value for the continuous relaxation of problem (MILP).
3. Let (P) and (D) be defined by
(P)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b,
\end{array} \quad \text { and }
$$

$$
\begin{array}{ll}
\text { maximize } \quad b^{T} y \\
\text { subject to } \quad A^{T} y+s=c
\end{array}
$$

$$
s \geq 0
$$

For a fixed positive barrier parameter μ, consider the primal-dual nonlinear equations

$$
\begin{aligned}
A x & =b \\
A^{T} y+s & =c \\
X S e & =\mu e
\end{aligned}
$$

where we in addition require $x>0$ and $s>0$. Here, $X=\operatorname{diag}(x), S=\operatorname{diag}(s)$ and e is an n-vector with all components one.
(a) Assume that $x(\mu), y(\mu)$ and $s(\mu)$ solve the primal-dual nonlinear equations for a given positive μ, with $x(\mu)>0$ and $s(\mu)>0$. Show that $x(\mu)$ is feasible to (P) and $y(\mu), s(\mu)$ are feasible to (D) with duality gap $n \mu$.(3p)
(b) Derive the system of linear equations that results when the primal-dual nonlinear equations are solved by Newton's method.
(c) How are the implicit constraints $x>0$ and $s>0$ handled in a Newton-based interior method that approximately solves the primal-dual system of nonlinear equations for a sequence of decreasing values of μ ?
4. Consider the binary integer programming problem ($I P$) given by

$$
\begin{array}{cl}
\operatorname{minimize} & -2 x_{1}-x_{2}-x_{3}-0.5 x_{5} \\
\text { subject to } & x_{1}+x_{2} \leq 1 \\
& x_{3}+x_{4}+x_{5}=1 \tag{IP}\\
& -x_{1}-x_{3} \geq-1 \\
& x_{j} \in\{0,1\}, \quad j=1, \ldots, 5
\end{array}
$$

Assume that the constraint $-x_{1}-x_{3} \geq-1$, is relaxed by Lagrangian relaxation for a nonnegative multiplier u.
(a) For $u=1$, compute two optimal solutions to the resulting Lagrangian relaxed problem. The Lagrangian relaxed problem may be solved by any method, that need not be systematic (branch-and-bound not needed).
(b) Use the two optimal solutions to the Lagrangian relaxed problem computed in Exercise 4a to give two different subgradients to the dual objective function φ at $u=1$.
(c) Based on the two subgradients computed in Exercise 4b, can you tell if the solution is optimal for the dual problem? Furthermore, can you tell if either of the two solutions obtained in Exercise 4a are optimal for (IP)?
5. Consider the linear program $(L P)$ given by

$(L P) \quad$| maximize $\quad b^{T} y$ |
| :--- |
| \quad |
| subject to $\quad A^{T} y \geq c$. |

Let the dimensions of the problem be such that A is an $m \times n$ matrix and let A_{i} denote the i th column of A.
For $i=1, \ldots, n$, let \mathcal{P}_{i} be a polytope given by $\mathcal{P}_{i}=\left\{v_{i} \in \mathbb{R}^{m}: C_{i}^{T} v_{i} \geq d_{i}\right\}$, for given matrices C_{i} of dimensions $m \times n_{i}$ and given vectors d_{i} of length n_{i}. Each polytope \mathcal{P}_{i} is bounded and such that $A_{i} \in \mathcal{P}_{i}$.

The reason for introducing the sets P_{i} is that we are interested in solving an optimization problem which is robust against uncertainties in A, given by

$$
(R P) \quad \begin{array}{ll}
\text { maximize } & b^{T} y \\
\text { subject to } & \min _{v_{i} \in \mathcal{P}_{i}}\left\{v_{i}^{T} y\right\} \geq c_{i}, \quad i=1, \ldots, n
\end{array}
$$

(a) Problem (RP) looks complicated as it has a minimization function in each constraint. Use your expertise in linear programming to formulate a linear program which is equivalent to (RP).
Hint 1: For a given y, each problem in the constraints

$$
\begin{array}{ll}
\underset{v_{i} \in \mathbb{R}^{m}}{\operatorname{minimize}} & y^{T} v_{i} \\
\text { subject to } & C_{i}^{T} v_{i} \geq d_{i}
\end{array}
$$

is a linear program.
Hint 2: Use strong duality for linear programming.
(b) Derive the dual problem associated with the linear program you obtained in Exercise 5a.

- If you were not able to solve Exercise 5a, then you may assume the equivalent linear program is

$$
\begin{array}{cl}
\underset{x, y}{\operatorname{maximize}} & f^{T} x \\
\text { subject to } & D_{i} x \geq b_{i}, \quad i=1, \ldots, n \\
& y-B x=0 \\
& y \geq 0
\end{array}
$$

and use this in Exercise 5b. Assume the matrixes B, D_{i} and vectors f, b_{i} are of suitable size. Note, this is not the solution to Exercise 5a.

GAMS file for exercise 1:

```
Positive Variables x1, x2, x3, x4, x5;
Variable objective_var;
equations
constr_1,constr_2,constr_3,objective;
objective.. -4*x1 - 4*x2 -2*x3 -1*x4 -1*x5 =E= objective_var;
constr_1.. x1 + x4 =E= 3;
constr_2.. -x2 -x5 =E= -3;
constr_3.. x2 + x3 =E= 5.8;
```

Model primal_LP /all/;
Solve primal_LP using lp minimizing objective_var;

