
SF2812 Applied linear optimization, final exam
Friday March 11 2022 08.00–12.00

Brief solutions

1. (a) The solution to (LP) that is the x variables is the level of the variables in the
GAMS output. So,

x =


3

3

2.8

0

0

 ,

with objective function value -29.6. The variables y are dual variables of the
constraints Ax = b, and are the marignals in the GAMS output. Similarly, s
are the dual variables of the constraints x ≥ 0. From the GAMS output we get

y =

 −4

2

−2

 , s =


0

0

0

3

1

 .

(b) With a small enough δ, the optimal basis will note change (same partitioning
of basic and nonbasic variables remains optimal). Remember xB = B−1b. The
optimal objective function value is then given by

cTBB
−1b = bTB−T cB = bT y. (this derivation not needed in the exam)

By strong duality you also get that the objective function value is given bT y.
Now, with b̃ = b+ [0 δ δ]T we get

objective value = b̃T y = bT y + y2δ + y3δ.

The change in the objective function value is, therefore, given by y2δ + y3δ =
2δ − 2δ.

(c) Note that x4, x5 are nonbasic variables (they are zero at the optimal solution).
As long as the reduced costs remains positive the optimal solution will not
change. The reduced costs are given by

cN −NTB−T cB (using the hint we can simplify) = cN −NT y.

Now,

NT y =

(
1 0 0

0 −1 0

) −4

2

−2

 =

(
−4

−2

)
.

So, as long as

cN ≥

(
−4

−2

)
,

the solution will remain optimal (we can make the coefficients as large as we
want but the inequality above gives a lower bound on the coefficients).
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2. (a) Remember to properly motivate your answer! We draw a branch-and-bound
tree and analyze where we can obtain fractional solutions and how far we may
have to branch. Where ever possible, we assume we obtain a fractional solution.

Figure 1: Possible branch-and-bound tree.

(b) If we know a good solution, then we may use this to prune nodes (stop exploring
the node, even if it is fractional). The feasible solution gives us an upper
bound on the optimal objective value. For example, in node 2 we can obtain
a fractional solution but if the objective value is worse then the upper bound
then we can fathom the node (no need to explore that node further).

(c) We can easily prove that any solution that satisfy the latter set of inequality
constraints satisfy the first. By adding the inequality constraints x1 ≤ x4, x2 ≤
x4, x3 ≤ x4 together we obtain

x1 + x2 + x3 ≤ 3x4,

which is equivalent to the first constraint (holds for both integer and continuous
variables).
However, any solution satisfying x1+x2+x3

3 ≤ x4 does not satisfy the separate
constraints x1 ≤ x4, x2 ≤ x4, x3 ≤ x4 .

For example, consider x1 = 0.8, x2 = 0.05, x3 = 0.05, x4 = 0.3. This variable
combination satisfies x1+x2+x3

3 ≤ x4, but clearly violates x1 ≤ x4.
Therefore, using the separate constraints results in smaller feasible set. The
optimal objective function value can therefore be larger when using the separate
constraints. (The optimal solution obtained when minimizing with the single
constraints can be excluded by the more restrictive separate constraints).
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3. See Lecture note 7, or Chapter 10.2 in Griva, Nash, and Sofer (pages 321 – 324).

4. (a) for u ≥ 0 the Lagrangian relaxed problem becomes

(Pu)

minimize −2x1 − x2 − x3 − 0.5x5 − u(−x1 − x3 + 1)

subject to x1 + x2 ≤ 1,
x3 + x4 + x5 = 1,
xj ∈ {0, 1}, j = 1, . . . , 5.

For u = 1 we get

(P1)

minimize −x1 − x2 − 0.5x5 − 1

subject to x1 + x2 ≤ 1,
x3 + x4 + x5 = 1,
xj ∈ {0, 1}, j = 1, . . . , 5.

Note, there is no constraint connecting the variables x1, x2 with the variables
x3, x4, x5. We can, therefore, consider (P1) as two independent problems

minimize −x1 − x2 − 1

subject to x1 + x2 ≤ 1,
xj ∈ {0, 1} j = 1, 2

minimize −0.5x5

subject to x3 + x4 + x5 = 1,
xj ∈ {0, 1} j = 3, 4, 5,

and finding optimal solutions to these becomes trivial. The two optimal solu-
tions are

x1 =


1

0

0

0

1

 and x2 =


0

1

0

0

1

 .

(b) Remember from the lectures notes. If we have ϕ(u) = minx∈X cTx−uT (Ax−b),
then b − Ax(u) is a subgradient (where x(u) is the optimal solution to the
Lagrangian relaxed problem). So the two subgradients at u = 1 are

s1 = −1− (−1 · 1− 1 · 0) = 0 and s2 = −1− (−1 · 0− 1 · 0) = −1

(c) One of the subgradients is zero. Therefore, u = 1 is an optimal solution to the
Lagrangian relaxation (see slide 6 Lecture notes 12).

The solution x1 that we found in exercise (a) is actually feasible for the problem
(IP). If we evaluate the objective function of (IP) for x1 we get -2.5 which
is an upper bound on the optimal objective value (it is a feasible solution).
Remember for any u ≥ 0, the optimal objective value of (Pu) gives a lower
bound on the optimal objective value for (IP) (this is true because it is a
relaxation). With u = 1 we get that the optimal objective value of (P1) is -2.5.
So, we both have a lower bound on -2.5 and an upper bound of -2.5!
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5. (a) This one was a bit more tricky :) First let’s consider the optimization problems
in the constraints

(LPCi)
minimize
vi∈IRm

yTvi

subject to CT
i vi ≥ di,

where y is fixed. If we form the dual of (LPCi) we obtain

(DPCi)

maximize dTi zi

subject to y − Cizi = 0,
zi ≥ 0,

where zi is the dual variables.

For any zi that satisfies the constraints in (DPCi), we know that

dTi zi ≤ Optval(LPCi).

This follows directly by weak duality.

We can then use this in the constraint minvi∈Pi{vTi y} ≥ ci as

dTi zi ≥ ci
y − Cizi = 0,
zi ≥ 0.

Note that the the constraints above could potentially be more restrictive than
the original constraints, since dTi zi ≤ Optval(LPCi).

But, fortunately we have strong duality! Meaning that there exists a zi satis-
fying the constraints in (DPCi) such that dTi zi = Optval(LPCi). Therefore, the
constraints

dTi zi ≥ ci
y − Cizi = 0,
zi ≥ 0.

exactly represents the constraint minvi∈Pi{vTi y} ≥ ci.
A linear programming equivalent formulation of (RP ) is, thus, given by

(LRP )

maximize bTy

subject to dTi zi ≥ ci i = 1, . . . , n,
y − Cizi = 0 i = 1, . . . , n,
zi ≥ 0 i = 1, . . . , n.

Note that y, z1, . . . , zn are all variables.

(b) Note that here it is possible to get slightly different dual problems depending on
how the Lagrangian relaxation is defined. We introduce dual variables λi ∈ IR
for the constraints (dTi zi−ci ≥ 0) and dual variables µi ∈ IRm for the constraints
y − Cizi = 0

Next, we define the Lagrangian dual function as

ϕ(λ1, . . . , λn, µ1, . . . , µn) = maximize
y,z1≥0,..., zn≥0

bT y+

n∑
i=1

λi(d
T
i zi − ci)+

n∑
i=1

µTi (y − Cizi).
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By rearranging the terms we get

ϕ(λ1, . . . , λn, µ1, . . . , µn) = maximize
y,z1≥0,..., zn≥0

(
b+

n∑
i=1

µi

)T

y+

n∑
i=1

(λidi − CT
i µi)

T zi−
n∑

i=1

λici.

We then get

ϕ(λ1, . . . , λn, µ1, . . . , µn) =

{
−
∑n

i=1 λici if b+
∑n

i=1 µi = 0, λidi − CT
i µi ≤ 0, i = 1, . . . , n,

∞ otherwise.

The dual problem can then be written as

minimize −
∑n

i=1 λici

subject to b+
∑n

i=1 µi = 0,
λidi − CT

i µi ≤ 0, i = 1, . . . , n,
λi ≥ 0, i = 1, . . . , n,
µi ∈ IRm, i = 1, . . . , n.


