

Examiner: Jan Kronqvist, tel. 08 790 71 37.

Allowed tools: Pen/pencil, ruler and eraser.

Note! Calculator is not allowed.

Solution methods: Unless otherwise stated in the text, the problems should be solved by systematic methods, which do not become unrealistic for large problems. Motivate your conclusions carefully. If you use methods other than what has been taught in the course, you must explain carefully.

Note! Personal number must be written on the title page. Write only one exercise per sheet. Number the pages and write your name on each page.

22 points are sufficient for a passing grade. For 20-21 points, a completion to a passing grade may be made within three weeks from the date when the results of the exam are announced.

1. Let (LP) and its dual (DLP) be defined as

(LP) minimize $c^T x$ maximize $b^T y$ (LP) subject to Ax = b, and (DLP) subject to $A^T y + s = c$, $x \ge 0$, $s \ge 0$,

where

$$A = \begin{pmatrix} 2 & 1 & 1 & 0 & 0 \\ 1 & 3 & 0 & 1 & 0 \\ -1 & -1 & 0 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 6 \\ 6 \\ -1 \end{pmatrix}, \text{ and}$$
$$c = \begin{pmatrix} -1 & -1 & 0 & 0 & 0 \end{pmatrix}^{T}.$$

Your teacher JK has modeled the primal problem in GAMS and has solved it using GAMS. The GAMS model can be found at the end of the exam.

(a) JK has tested different ideas and is no longer sure which GAMS output had the optimal solution to this problem. Two GAMS outputs are given on the next page, determine which of the outputs contains the optimal solution (properly motivate your answer), and write down the optimal primal variables x and dual variables y, s.

$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & 3 & 0 \\ -1 & -1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 0.6 & -0.2 & 0 \\ -0.2 & 0.4 & 0 \\ 0.4 & 0.2 & 1 \end{pmatrix}$$

SF2812

GAMS output 1

		SOLV	Е	SUMMARY	
	MODEL	LP_model		OBJECTIVE	objvar
	TYPE	LP		DIRECTION	MINIMIZE
	SOLVER	CPLEX		FROM LINE	23
***	* SOLVER	STATUS	1	Normal Completion	
			4	0+	

**** MODEL STATUS	1 Optimal	
**** OBJECTIVE VALUE		-6.0000

Optimal solution found Objective: -6.000000

	LOWER	LEVEL	UPPER	MARGINAL
EQU constr1	6.0000	6.0000	6.0000	-1.0000
EQU constr2	6.0000	6.0000	6.0000	•
EQU constr3	-1.0000	-1.0000	-1.0000	•
	LOWER	LEVEL	UPPER	MARGINAL
VAR x1		3.0000	+INF	
VAR x2			+INF	0.5000
VAR x3			+INF	1.0000
VAR x4		3.0000	+INF	
VAR x5	•	2.0000	+INF	

GAMS output 2

MODEL TYPE SOLVER	S O L V E LP_model LP CPLEX	S U M M A R Y OBJECTIVE DIRECTION FROM LINE	objvar MINIMIZE 23				
<pre>**** SOLVER STATUS 1 Normal Completion **** MODEL STATUS 1 Optimal **** OBJECTIVE VALUE -3.6000</pre>							
Optimal solution found Objective: -3.600000							
	LOWER	LEVEL	UPPER	MARGINAL			
EQU con:	str1 6.0000	6.0000	6.0000	-0.4000			
EQU con	str2 6.0000	6.0000	6.0000	-0.2000			
EQU con	str3 -1.0000	-1.0000	-1.0000				
	LOWER	LEVEL	UPPER	MARGINAL			
VAR x1		2.4000	+INF	•			
VAR x2		1.2000	+INF				
VAR x3			+INF	0.4000			
VAR x4			+INF	0.2000			
VAR x5	•	2.6000	+INF				

2. Consider a linear program (LP)

(*LP*) minimize
$$c^T x$$

subject to $Ax = b$,
 $x \ge 0$,

where

$$A = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 4 \\ 4 \end{pmatrix}, \quad c = \begin{pmatrix} -2 & 1 & 0 & 0 \end{pmatrix}^{T}.$$

$$\begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0.5 \\ 1 & -0.5 \end{pmatrix}.$$

(b) The dual of problem (LP) problem is given by

$$(DLP) \qquad \begin{array}{ll} \text{maximize} & b^T y \\ \text{subject to} & A^T y + s = c, \\ & s \ge 0. \end{array}$$

3. Consider the stochastic program (P) given by

(P) minimize
$$c^T x$$

 (P) subject to $Ax = b$,
 $T(\omega)x = h(\omega)$,
 $x \ge 0$,

where ω is a stochastic variable and $T(\omega)x = h(\omega)$ is to be interpreted as an "informal" stochastic constraint. Assume that ω takes on a finite number of values $\omega_1, \ldots, \omega_N$ with corresponding probabilities p_1, \ldots, p_N . Let T_i denote $T(\omega_i)$ and let h_i denote $h(\omega_i)$.

(a) Explain how the deterministically equivalent problem

minimize
$$c^T x + \sum_{i=1}^{N} p_i q_i^T y_i$$

subject to $Ax = b$,
 $T_i x + W y_i = h_i, \quad i = 1, \dots, N,$
 $x \ge 0,$
 $y_i \ge 0, \quad i = 1, \dots, N,$

- (c) Define *EVPI* in terms of suitable optimization problems.(2p)
- 4. Consider the integer programming problem (IP) given by

```
(IP)

minimize x_1 - 2x_2 - 3x_3 - x_5

subject to x_1 + x_2 + x_3 \ge 1,

x_2 + x_3 \le 1,

x_4 + x_5 + x_6 = 1,

x_2 + x_4 = 1,

x_j \in \{0, 1\}, \quad j = 1, \dots, 6.
```

Assume that the constraint $x_2 + x_4 = 1$ is relaxed by Lagrangian relaxation with the multiplier u. (This is done by adding $-u(x_2 + x_4 - 1)$ to the objective)

- (d) Using the solution from Exercise 4c, can you determine if the value for u is optimal for the Lagrangian dual problem and if the optimal solution to problem (IP) has been found (motivate your answer)?(3p)
- 5. Consider a mixed-integer linear program of the form

(MILP)
$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax = b,\\ Bx \leq d,\\ x \in \mathbb{R}^{1000},\\ x_i \in \{0,1\} \quad i = 1,2,3. \end{array}$$

The problem only has three binary variables (x_1, x_2, x_3) and the rest of the variables $x_4, x_5, \ldots, x_{1000}$ are continuous variables. The matrixes A and B are sparse with 100 rows in A and 2500 rows in B. Furthermore, we know that (MILP) contains the constraint $2x_1 + 4x_2 + 4x_3 \leq 6$. We want to solve this problem using branch-and-bound with linear programming (LP) relaxations at the nodes.

- (b) JK also claims that this problem could be solved more efficiently by adding so-called cover cuts to strengthen the continuous relaxation. Coverer cuts are derived from constraints of the type

 $a_1y_1 + a_2y_2 + \ldots + a_ny_n \le f,$

where y_i are all binary variables and all $a_i > 0$. By finding an index set $I_c \subseteq \{1, 2, \ldots, n\}$ such that $\sum_{i \in I_c} a_i > f$, a cover cut is given by the inequality

(cover-cut)
$$\sum_{i \in I_c} y_i \le |I_c| - 1,$$

where $|I_c|$ is the number of elements in the index set.

In your problem (*MILP*) you have the binary variables x_1, x_2, x_3 , and your task is to derive cover cuts from the constraint $2x_1 + 4x_2 + 4x_3 \leq 6$.

Side note: Cover cuts are simple to obtain and can greatly improve the strength of the LP relaxation. Therefore, most (or all advanced) solver software tries to generate such cuts if possible.

Good~luck!

```
GAMS file for exercise 1:
Positive Variables
x1, x2, x3, x4, x5;
Free Variables
objvar objective variable;
Equations
obj_fun the objective function
constr1 first constraint
constr2 second constraint
constr3 third constraint;
obj_fun.. -1*x1 -1*x2 =e= objvar;
constr1.. 2*x1 + x2 + x3 =e= 6;
constr2.. x1 + 3*x2 + x4 =e= 6;
constr3.. -x1 - x2 + x5 =e= -1;
Model LP_model /all/;
Solve LP_model using LP minimizing objvar;
```