
SF2812 Applied linear optimization, final exam
Friday March 10 2023 08.00–12.00

Brief solutions

1. (a) As you are not sure which solution is correct, you must first check if the solution
is feasible. You must check that the primal variables x are feasible for (LP )
and that the dual variables y, s are feasible for DLP . A solution is optimal if
it is primal and dual feasible, and if cTx = bT y (i.e., xT s = 0)

By checking the constraints of the primal and dual problem, you will find that
the solution given in the first GAMS output is not dual feasible.

The second GAMS output contains the solution

x =


2.4

1.2

0

0

2.6

 , y =

 −0.4

−0.2

0

 , s =


0

0

0.4

0.2

0

 ,

and you will find that this solution is both primal and dual feasible. From the
GAMS output, you can also see that the optimal objective value is -3.6. You
can determine that it is optimal either from the fact that cTx = BT y or from
xT s = 0.

(b) Remember the current basis remains optimal as long as the reduced costs are
all positive. For the optimal solution, the variables x1, x2, x5 are basic variables
and x3, x4 nonbasic. This gives us

B =

 2 1 0

1 3 0

−1 −1 1

 , N =

 1 0

0 1

0 0

 .

Now, the reduced costs are given by

cTN − cTBB−1N (or as a column vector) cN −NTB−T cB.

If we start by looking at cN (objective coefficients for x3 and x4), we can directly
see that we can make these arbitrarily large and the solution will still remain

optimal. From the reduced costs, you will get that cTN ≥

(
−0.4

−0.2

)
ensures that

the solution remains optimal.

By analyzing the two equations defining the reduced costs, we can find the
following bounds on the objective coefficients

−2 ≤ c1 ≤ −1/3, −3 ≤ c2 ≤ −1/2, −0.4 ≤ c3 ≤ ∞, −0.2 ≤ c4 ≤ ∞, −∞ ≤ c5 ≤ 1.

(c) Based on the marginals, it seems most favorable to increase b1.

2. (a) For more details on the Simplex algorithm, see Lecture 4.

• The reduced costs for the given set of basic and nonbasic variables are −2
for x1 and 1 for x2. Thus, you want to move x1 into the basis.

1
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• We can then determine the search direction pB = (−1 − 2)T and pN =
(1 0)T and we get the maximal step length αmax = 2, giving us the solution

x =


2

0

2

0

 .

The nonbasic variables are now x2, x4, and the reduced costs are 2 and 1
(showing that the solution is optimal).

(b) If you remembered the formulas for the Simplex algorithm on page 13 Lecture
note 4 and used these, then you have already calculated the dual variables. If
you did not, you can easily calculate them. If you have the optimal primal
solution, then it is easy to determine the optimal dual solution and vice versa.

From the optimal x variables, you can directly determine that s1 = 0 and s3 = 0
(due to the complementary slackness condition, i.e., xT s = 0). You can then
obtain the remaining dual variables from the equality constraints of (DLP ),
giving you the solution

y =

(
0

−1

)
, s =


0

2

0

1

 .

3. See material from Lecture 6, and the supplementary course material ”Introduction
to Stochastic Programming, by J. R. Birge and F. Louveaux”.

4. (a) The Lagrangian relaxed problem is given by

minimize x1 − 2x2 − 3x3 − x5 − u(x2 + x4 − 1)

subject to x1 + x2 + x3 ≥ 1,
x2 + x3 ≤ 1,
x4 + x5 + x6 = 1,
xj ∈ {0, 1}, j = 1, . . . , 6.

Note that this problem can be split up into the following two independent
problems

(P1)

minimize x1 − (2 + u)x2 − 3x3 + u

subject to x1 + x2 + x3 ≥ 1,
x2 + x3 ≤ 1,
xj ∈ {0, 1}, j = 1, 2, 3,

(P2)

minimize −x5 − ux4
subject to x4 + x5 + x6 = 1,

xj ∈ {0, 1}, j = 4, 5, 6.

For these two small problems, you can easily determine optimal solutions (you
can even test all possible solutions). With u = 2, you get the unique optimal
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solution

x =



0

1

0

1

0

0


,

and the objective function value −4. Therefore, you also know that −4 is a
lower bound on the optimal objective function value for the original problem.
But, the solution you obtained does not satisfy the constraint x2 + x4 = 1.

(b) A subgradient s is simply given by s = −(1 + 1 − 1) = −1. See material from
lecture 12 for more details.

(c) With steplength=1, the Lagrangian multiplier u is updated according to the
subgradient method by u = u+ s. Thus, giving us u = 1.
With u = 1, there is not a unique solution to the Lagrangian relaxed problem.
In the first part, problem (P1), either x2 = 1 or x3 = 1 and all other variables
are zero. Similarly for the second part, either x4 = 1 or x5 = 1 and all other
variables are zero. Thus we get the following 4 different optimal solutions to
the problem

x1 =



0

1

0

1

0

0


, x2 =



0

1

0

0

1

0


, x3 =



0

0

1

1

0

0


, x4 =



0

0

1

0

1

0


.

(d) Here you can use the 4 different solutions to calculate the subgradients

s1 = −1, s2 = 0, s3 = 0, s4 = 1.

As zero is a subgradient of the Lagrangian dual problem, you know that u=1
is an optimal solution to the Lagrangian dual problem.
The optimal objective function value of the Lagrangian relaxed problem (and
the Lagragian dual problem) is −3. Thus, you know that −3 is a lower bound
on the optimal objective function value for the original problem. This alone
does not tell you if either x1, x2, x3 or x4 is an optimal solution to the original
problem, nor if −3 is the optimal objective function value.

If you examine the solutions x1, x2, x3 and x4 you will find that x2 satisfies
all constraints of the original problem with an objective function value of −3.
Since this is a feasible solution, you now now that −3 is an upper bound on the
optimal objective value. Since both the upper and lower bound is equal to −3,
this proves that x2 is an optimal solution to the original problem.
(The optimum is not unique, in fact x3 is also an optimal solution.)
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5. (a) Based on the information we have, we can only stop at a node if the solution is
integer feasible or the problem becomes infeasible (cannot satisfy 2x1 + 4x2 +
4x3 ≤ 6).

It is important to remember that the order in which you branch on variables
can affect the number of nodes you have to explore. Here the branching order
does not affect the total number of nodes, but this is not obvious, and you
need to analyze the impact of the branching order for full points (or carefully
motivate why it does not matter).
(Side note: one of the main challenges in a solver is to decide which variable to
branch on in a node, as there are normally many possible branching options.
In practice, the choice of which variable to branch on can have a great impact
on the number of nodes that must be explored and the time needed to solve
the problem. But, choosing the best variable to branch on is not easy, and this
is an active research topic.)

To answer how many nodes you might have to explore in the worst case, we
will assume that all variables will take a fractional value at all nodes whenever
possible. We must also investigate if different branching order can affect the
number of nodes. We can simplify the analysis if we realize that the problem
is symmetric in the variables x2 and x3 as branching on either one of them will
have the same effect.

First, let’s consider the case when we start by branching on x1. Due to the
symmetry on x2 and x3 we can simultaneously consider the cases where we
either branch on x2 or x3 (otherwise we will have to consider more cases and
draw more branch-and-bound trees )

Figure 1: Illustration of possible branch-and-bound tree shape when we start by branching
on x1.

From the figure above, we see that we might have to explore at least 13 nodes.
But, could there be a case when we have to explore more than 13 nodes?

Next, we consider the case when we start by branching on either x2 or x3
and then branch on x1. The possible shape of the branch-and-bound tree is
illustrated in Figure 2.
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Figure 2: Illustration of possible branch-and-bound tree shape when we start by branching
on x2 or x3 followed by branching on x1.

Again, we get a possibility of 13 nodes in the branch-and-bound tree. But,
what if we instead of branching on x1 in node 2 and in node 3 had branched
on x3 or x2 instead? We can analyze these two cases independently as the
branching decision only affects the nodes that follow underneath. Let’s see how
the sub-trees under node 2 and node 3 change if we instead branched on x3 or
x2 instead.

Figure 3: Alternative branching order in the sub-trees following node 2 and node 3 in the
branch-and-bound tree in Figure 2.

As illustrated in Figure 3, the total number of nodes remains 13 with the
alternative branching orders.

From the analysis of the possible shapes of the brach-and-bound trees, we can
conclude that the maximum number of nodes that one might need to explore
is 13.

(b) i. The resulting cover-cut is x2 + x3 ≤ 1. It is a valid inequality constraint
as x2 and x3 cannot both be equal to one (only one of them can take the
value one). The cover-cut does not exclude any integer feasible solutions.
This additional constraint clearly excludes some fractional solutions that
satisfy the original constraint. For example, x1 = 0, x2 = 3

4 , x3 = 3
4 satisfies

the original constraint, but this solution clearly violates the cover cut.

ii. Note that the LP relaxation will contain the constraint x1 ≤ 1. If we add
the cover-cut x2 +x3 ≤ 1 to the LP relaxation, then the LP relaxation will
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always satisfy the constraints

x1 ≤ 1,

x2 + x3 ≤ 1.

The solution to the LP relaxation will, therefore, also satisfy x1+x2+x3 ≤ 2
(the inequality can be constructed by combining the two constraints above).
Thus the first cover-cut (x1+x2 ≤ 1) automatically ensures that the second
(x1 + x2 + x3 ≤ 2) is satisfied in the LP relaxation.
However, satisfying x1 + x2 + x3 ≤ 2 and x1 ≤ 1 does not guarantee that
x1 + x2 ≤ 1 is satisfied. For example, consider x1 = 0, x2 = 3

4 , x3 = 3
4 .

Therefore, the cover-cut x1 + x2 ≤ 1 is stronger than x1 + x2 + x3 ≤ 2.


