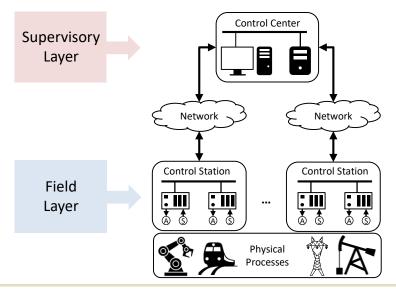


Security metrics and allocation of security resources for control systems

Jezdimir Milošević

KTH Royal Institute of Technology

Supervisors: Prof. Henrik Sandberg and Prof.Karl Henrik Johansson Opponent: Asst. Prof. Ling Shi, Hong Kong University of Science and Technology


March 27th, 2020

- What are control systems?
- Why are control systems important to secure?
- Why are control systems challenging to secure?

What are control systems?

Why are control systems important to secure?

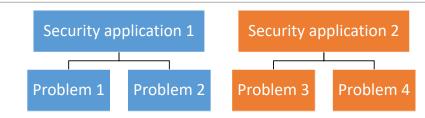
• These systems operate physical processes important for our society

Why are control systems challenging to secure?

• Large number of security vulnerabilities

• Long life cycle

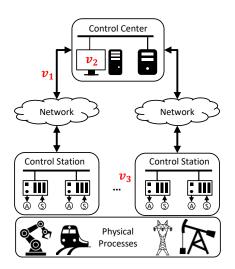
Large scale



Structure of the thesis

Related publications:

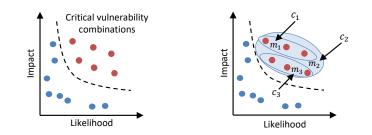
Problem 1: J. Milošević et al., "Estimating the impact of cyber-attack strategies for stochastic control systems," IEEE TCNS. Accepted, 2019.


Problem 2: J. Milošević et al., "Security measure allocation for industrial control systems: Exploiting systematic search techniques and submodularity," IJRNC. Accepted, 2018.

Problem 3: J. Milošević et al., "Actuator security indices based on perfect undetectability: Computation, robustness, and sensor placement," IEEE TAC. Accepted, 2020.

Problem 4: J. Milošević et al., "A monitoring game based on actuator security indices," under preparation for journal submission.

Application 1: Classifying and preventing security vulnerabilities


- We are given a set of security vulnerabilities $\mathcal{V} = \{v_1, v_2, \ldots\}$
- A vulnerability $v \in \mathcal{V}$ can model:
 - Unprotected communication channels (v_1)
 - Antivirus software not updated (v_2)
 - Absence of physical protection (v_3)

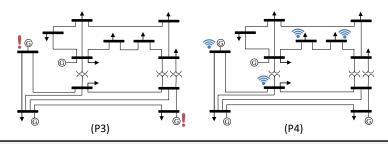
Application 1: Related problems

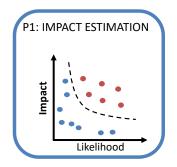
P1: Impact estimation. How to estimate the impact of attack strategies using physical models of control systems?

P2: Security measure allocation. How to prevent the critical vulnerability combinations cost-effectively?

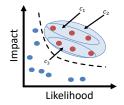
Application 2: Security of actuators in large scale-systems

Actuators are. . .

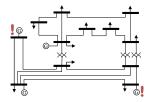

- Important (direct interaction with physical processes)
- Often expensive (e.g., large generators in power systems)
- Vulnerable (several attacks against or using actuators have occurred)

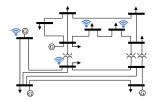


Application 2: Related problems



P3: Actuator security indices. How to find vulnerable actuators in large-scale control systems?


P4: Allocation of protected sensors. How to strategically place a limited number of protected sensors in a large-scale control system?

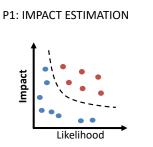


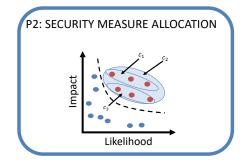
P2: SECURITY MEASURE ALLOCATION

P3: ACTUATOR SECURITY INDICES

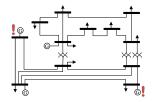
maximize _{Attack}	Impact metric
subject to	Laws of physics are satisfied
	Attack remains stealthy
	Attack follows an attack strategy

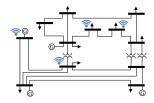
• Essence: Check if the attacker can make large impact and remain stealthy

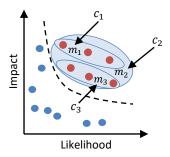



$\underset{a_{0:N},y_{r}}{maximize}$	$I(a_{0:N}, y_r)$		
subject to	$x_e(k+1) = Ax_e(k+1) = Ax_e($	$e(k) + Bv(k) + Ey_r + G(a)$	$(k) + a_s(k))$ (Physics)
	$\tilde{r}(k) = Cx$	$P_e(k) + Dv(k) + Fy_r + H(a)$	$a(k) + a_s(k))$ (Physics)
	$\ Qy_r\ _{\infty} \le 1$	(Physics)	
\mathcal{D}	$(\tilde{r}_{0:N} r_{0:N}) \le \epsilon$	(Stealthiness)	
	$F_a a_{0:N} = 0$	(Imposing strategy)	
	$a_{s0:N} = T_1 a$	$c_e(N_s) + T_2 y_r + T_3 v_{N_s:-1}$	(Imposing strategy)

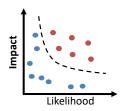
- Essence: Check if an attack can make large impact and remain stealthy
- Problem 1 is difficult to solve



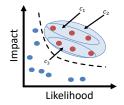

- We proposed two impact metrics suitable for stochastic systems (I_P, I_E)
- The optimal value of the metric I_P can be computed efficiently (Thm 4.1)
- Lower and upper bounds for the metric I_E that are efficient to compute **(Thm 4.2)**
- The framework is compatible with a number of attack strategies proposed in the literature (Prop 4.2-4.4)
- By exploiting the properties of the strategies, the impact can be computed more efficiently (Prop 4.5–4.7)
- Applicability demonstrated on a control system of a chemical process

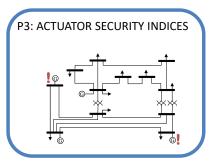

P3: ACTUATOR SECURITY INDICES

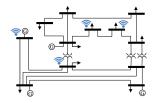
Problem 2: Security measure allocation



- Essence: Find the least expensive subset of security measures that prevents all the critical vulnerability combinations
- Problem 2 is difficult to construct (we need to find all of the critical vulnerability combinations)
- Problem 2 is NP-hard (Prop 5.1)



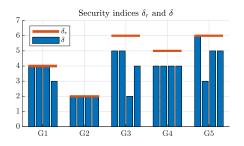

- Algorithm 5.1: Systematically constructs Problem 2
 - Relies on several systematic search tools
 - Provably constructs Problem 2 (Thm 5.1)
 - $\circ~$ In the worst case, searches through all the combinations
 - Tested in a simulation study: Managed to construct Problem 2 in all the cases
- Two approaches for solving Problem 2
 - A1: Simplify Problem 2 and use integer linear program solvers
 - A2: Use a polynomial-time algorithm to compute a suboptimal solution (Thm 5.2)
 - $\circ~$ Both of the approaches performed satisfactorily in a simulation study


P1: IMPACT ESTIMATION

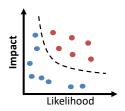
P2: SECURITY MEASURE ALLOCATION

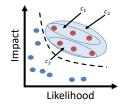
Problem of computing $\delta(u_i)$:		
minimize _{Attack}	Resources	
subject to	Laws of physics are satisfied Attack remains stealthy Actuator u_i attacked	

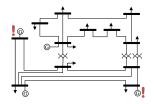
- $\delta(u_i)$: Security index of actuator u_i
- Large $\delta(u_i) \Longrightarrow$ Actuator u_i is secure
- Small $\delta(u_i) \Longrightarrow$ Actuator u_i is vulnerable

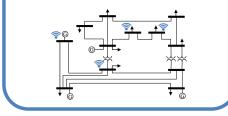

 $\begin{array}{l} \textbf{Problem of computing } \delta(u_i) \textbf{:} \\ & \underset{a}{\text{minimize }} \|a\|_0 \\ & \text{subject to } x(k+1) = Ax(k) + B_a a(k) \qquad (\text{Physics}) \\ & y(k) = Cx(k) + D_a a(k) \qquad (\text{Physics}) \\ & y \equiv 0, \ x(0) = 0_{n_x} \qquad (\text{Stealthiness}) \\ & a_i \not\equiv 0 \qquad (u_i \text{ is attacked}) \end{array}$

- The security index δ is
 - NP-hard to compute (Thm 6.1)
 - $\circ\;$ vulnerable to system variations ($\delta\;$ changes when $A,B,C\;$ change)
 - $\circ~$ based on the assumption that the attacker knows the entire system model
- Conclusion: This index is not suitable for large-scale systems

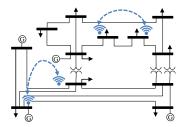

Chapter 6: Summary of the results


- We introduced the robust security index δ_r , which...
 - is efficient to compute (Thm 6.2 + Prop 6.4)
 - o characterizes actuators vulnerable in all system realizations
 - can be related to full and limited model knowledge attackers (Prop 6.5-6.7)
 - can be improved efficiently even in large systems (Thm 6.3 + Prop 6.8)
- Drawback: Cannot detect actuators that are vulnerable in some realizations


P1: IMPACT ESTIMATION



P2: SECURITY MEASURE ALLOCATION



P3: ACTUATOR SECURITY INDICES

Problem 4: Placement of protected sensors

- The game is based on the security index δ_{ER} (related to both δ and δ_r)
- Goal: Find a NE monitoring strategy

Problem of computing a NE monitoring strategy

 $\begin{array}{l} \underset{\sigma,z}{\text{maximize }} z \\ \text{subject to } A\sigma \geq z\vec{1} \end{array}$

• Main issue: The size grows exponentially with the number of protected sensors

- We derived an ϵ -NE monitoring strategy (Thm 7.1)
- Cases when this ϵ -NE monitoring strategy becomes exact (Cor 7.1–7.3)
- Three ways to improve the ϵ -NE monitoring strategy (Prop 7.1–7.3)
- Simulation study: The $\epsilon\text{-NE}$ monitoring strategy proves to be optimal and efficient to construct

Concluding remarks

- Two security applications considered:
 - Classifying and preventing security vulnerabilities
 - Security of actuators in large-scale systems
- Security metrics for determining where to focus security resources
 - Application 1: Impact metrics
 - Application 2: Actuator security indices
- Tools for allocating security resources in a cost-effective manner
 - Application 1: Allocation of security measures
 - · Application 2: Allocation of secured sensors
- Possible extensions:
 - Generalizing models
 - $\circ~$ Improving efficiency of Algorithm 5.1
 - Relaxing assumptions made in the security game

Thank you for your attention!