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Abstract

The gravitational waves have been theoretically predicted by Einstein in his theory of
General Relativity. These gravitational waves interact weakly with matter and are there-
fore very difficult to detect. However, the gravitational waves emitted by astrophysical
sources are expect to contain much information on object which remain unknown such as
coalescing binaries and magnetars. Therefore, the detection of gravitational waves is con-
sidered as a great scientific challenge nowadays. Large Earth-based interferometer have
been built and are currently improved to detect gravitational waves, such as Advanced
Virgo. This report will present the work done on a critical part of Advanced Virgo: the
mode-matching telescopes. One of these telescope has been tuned during the project and
the alignment procedure will be presented. Moreover, several numerical simulations have
been performed to evaluate the consequences of a misalignment of the telescope on the
beam quality and the conclusions will be presented. In addition, an experiment has been
carried out to study the behaviour of a wavefront sensor and of a Fabry-Pérot quality
both placed behind an afocal off-axis parabolic telescope.

Final conclusions of the work are that the output mode-matching telescope of Ad-
vanced Virgo has been well aligned. The simulations of the errors have allowed to de-
termine the most critical ones (angular position of the largest mirror of the telescope)
so that the future tuning procedure will be simplified. These simulations results are in
agreement with the experiment and the latter will demonstrate that a wavefront sensor
alone will not be sufficient to evaluate the quality of the matching between the beam and
the cavity.
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Introduction

0.1 Introduction

The detection of gravitational waves is one of the main challenges of contemporary
physics. The gravitational waves are a direct consequence of the Einstein’s General
Relativity Theory, which connects space and time: distribution of mass energy induces
a space-time curvature. In the case of a mass greatly accelerated, the deformations of
the space are waves that propagate at the speed of light through the universe: they are
gravitational waves. They are emitted by violent astrophysical phenomena such as coales-
cences of neutron stars or black holes. Their detection will not only allow important tests
of General Relativity, but will also open a totally new window onto the Universe, thus
providing a new tool for astrophysics and cosmology. Gravitational waves interact weakly
with matter and they propagate unaltered along cosmological distances and reach Earth
in pristine condition. Thanks to this low interaction, the study of gravitational waves
signals can give valuable information not available from the study of electromagnetic
waves. Therefore, they give direct access to regions of space that are so far unexplored,
for instance the vicinity of very dense objects. In order to detect gravitational waves,
the design and the implementation of very sensitive, complex and technologically ad-
vanced instruments, able to detect the infinitesimal time varying strains in space-time,
are needed [1–5]. Since the available technology was insufficient to assemble instru-
ments with the needed sensitivity, for many years physicists considered impossible to
detect gravitational waves, but in the early-1960s possible means of detection have been
proposed, followed by the first instruments development. Among the various proposed
experimental methods, long baseline optical interferometry is a promising technique for
the detection of gravitational waves: Virgo [6] in Europe and LIGO [7] in USA were
two large-scale Earth-based Michelson interferometers with Fabry-Pérot cavities in their
arms that operated in the last years, which were able to measure very small displacement
(10−18m/

√
Hz) and, therefore, to detect the transit of gravitational waves.

Unfortunately, even if Initial Virgo has reached its final sensitivity goal, no gravita-
tional wave detection has been achieved. Therefore, designs of second generation detec-
tors that consist of improvements of the initial ones are being implemented: Advanced
Virgo and Advanced LIGO. They aim at increasing the observable event rate by a factor
∼ 1000. Moreover, the subsequent largely increased expected event rate widens the pos-
sibilities with multi-messenger science. For instance, the joint operation of gravitational
wave detectors and high energy neutrinos (HEN) telescopes is particularly appealing
since both gravitational waves and HEN travel undisturbed over cosmological distance,
escape dense media and are likely to provide an image of the universe complementary
to the one given by electromagnetic information. Therefore, coincident observation of
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gravitational waves and HEN from the same event could allow a deep investigation of
the source.

A group at the laboratoire Astroparticule et Cosmologie (APC) is directly involved in
the design and in the construction of the second generation gravitational waves detector
Advanced Virgo. In particular, it is responsible of the project, the study, the realization,
the installation, the tuning and the characterization of the most critical Mode Matching
Telescopes installed in the new interferometer [8]. The waist size of the optical beam into
the arm cavities is well known (about 1 cm) and it is much different with respect to the
one of the beams respectively generated at the output of the laser source and detected by
the exploited photodiodes. At the input of the interferometer one telescope is essential in
order to adapt the dimension of the beam to the cavities of the interferometer. In the same
way, on the output benches (in transmission of the end mirrors of the Fabry-Pérot cavities
and at the detection of the interference signal) some telescopes are needed to reduce the
dimension of the beam in order to send them on cameras and photodiodes. For all the
telescopes the two main sources of the degradation of the beam quality are the optical
aberrations (spherical aberration, coma, astigmatism) and the scattered light. They
should be very low in order not to introduce noise, which can affect the interferometer
sensitivity.

The two main and more critical telescopes of the whole experiment are installed
respectively on the Suspended Input Optics Bench and on the Suspended Output Optics
Bench, which are quite compact with respect to the huge amount of optical elements that
they should include. Therefore, these telescopes should be very compact and light, even
if they should provide a large magnification factor. The final design of these telescopes
foresees three elements, two parabolic mirrors in an off-axis configuration, thus very hard
to properly align, and a meniscus lens installed on the suspended benches.

0.2 Outline of the Thesis

This report will present the theoretical context of the gravitational waves and their
sources in a first part. In a second part, the interferometric detection of gravitational
waves principles are detailed. The third part contains a description of the initial Virgo
and Advanced Virgo. Finally the fourth part is dedicated to the work on the mode-
matching telescopes of Advanced Virgo.

0.3 Author’s Contribution

I worked six months in the Virgo team at the APC. The first part of my work consisted
in tuning the off-axis parabolic telescope installed on the bench at the output of the
interferometer, before the latter would be suspended in its vacuum chamber at the Virgo
site in Cascina (Italy). The second part of my work consisted in evaluating the conse-
quences of a detuning of the telescope on the beam quality at the output, particularly
for the matching on an optical cavity placed behind it. This evaluation was made with
numerical simulations on a dedicated software. The conclusions of these simulations will
help the future remote tuning of the telescope when it will be suspended under vac-
uum. It gives indeed a qualitative and quantitative evaluation of the consequences on
the beam quality for every degrees of freedom likely to be detuned during the suspension
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and vacuum process. The third part of my work was to correlate the signals given by
two different sensors when the telescope is misaligned. This was achieve experimentally
in the laboratory. The two different sensors are a wavefront analyser that will measure
the beam properties after the telescope and a photodiode that will measure the signal
at the output of an optical cavity placed behind the telescope. This photodiode allows
to evaluate the matching of the beam with the cavity by comparing the intensity of the
fundamental Gaussian mode to the intensity of the higher order matching mode.
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Chapter 1

Gravitational waves and their
sources

1.1 Gravitational waves

In the theory of General Relativity by Einstein, the gravitational interaction is defined
as a geometric effect of curvature of space-time [9]. In this geometric theory of gravita-
tion, gravitational waves appear to be local deformations of space-time propagating at
a finite velocity that are emitted by massive accelerated body. The coupling between
gravitational radiation and matter is predicted to be extremely weak, therefore only the
gravitational waves emitted by notably massive and compact astrophysical sources that
are accelerated at relativistic velocities are expected to have detectable amplitudes. As a
consequence, one cannot expect to produce detectable gravitational waves in laboratory,
therefore the detectors aim at detecting gravitational waves emitted by astrophysical
sources, travelling through the vicinity of Earth.

1.1.1 Einstein equations and its Wave solution

The gravitational field, and therefore the space-time curvature, is determined by the
energy-matter distribution given by the Einstein equations:

Gµν = Rµν −
1

2
gµνR =

8πG

c4
Tµν (µ, ν = 0, 1, 2, 3), (1.1)

where G is the Newton’s constant of gravitation and c the speed of light. Gµν is the
Einstein tensor, which describes the space-time geometry. R is the scalar curvature.
Rµν and gµν are two symmetric tensors, respectively the so-called Ricci tensor and the
metric tensor. The Ricci tensor derives from the contraction of the Riemman tensor (or
curvature tensor) Rα

βµν(α, β, µ, ν = 0, 1, 2, 3) with the metric tensor:

Rµν = gkαRkµαν = Rα
µαν (α, k, µ, ν = 0, 1, 2, 3). (1.2)

The Riemann tensor, or curvature tensor, Rα
βµν tells how much a vector is transformed

when it is parallel transported around a loop in a curved space-time, thus it is said to
hold the information of the curvature of space-time.
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Finally, Tµν is the stress-energy tensor describing the two sources of the gravitational
field: energy and matter. It is a symmetric tensor.

The Einstein equations constitute a set of non-linear equations. A way to solve them
consists in adopting a perturbative approach, considering the limit of weak gravitational
field in vacuum. The metric is then written as:

gµν = ηµν + hµν , (1.3)

where ηµν is the flat Minkowski space-time metric tensor and hµν is the small gravita-
tional perturbation (|hµν | << 1).With these considerations, one can demonstrate that
the solution propagates in space-time like a wave: a gravitational wave. Thanks to the
freedom in the choice of coordinate system, a gauge where hµν is traceless and transverse
can be chosen (TT gauge), which allows to simplify (1.1) into:(

∇2 − 1

c2
δ2

δt2

)
hµν = 0 , (1.4)

which describes the propagation of a wave at speed c. Solutions of the equation (1.4)
can be written as plane waves:

hµν = εµνexp[i(Ωt− ~k.~x)] (1.5)

with angular frequency Ω , wave vector ~k, and polarization tensor εµν . The latter, for
a wave propagating along the z direction in the TT gauge, can be written as:

εµν = h+ε
+
µν + h×ε

×
µν , (1.6)

where h+ and h× are the coordinates in the basis
{
ε+µν ; ε

×
µν

}
, and the basis tensors

are:

ε+µν =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 and ε×µν =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 .

Consequently, the gravitational waves has only two possible polarization states noted
+ and ×.

1.1.2 Emission of gravitational waves

Electromagnetic waves are emitted by accelerated charges and their emission is linked
to the electromagnetic multipole. In the same way, gravitational waves are emitted by
accelerated masses and their emission is linked to the gravitational multipole. Unlike
electromagnetism though, the gravitational dipole is null due to the conservation of the
total momentum of isolated systems. As a consequence, gravitational waves have a
quadrupole nature. Emission of gravitational waves is related to the variations of the
quadrupole moment of the mass distribution tensor Qij (i, j = 1, 2, 3):

Qij (t, ~x) =
1

c2

∫
V

T00 (t, ~x)xixjdV . (1.7)
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T00 (t, ~x) is the time component of the stress-energy tensor. It appears that symmetric
spherical mass distributions, whose quadrupole moment is zero, do not emit gravitational
waves.
Far from the source and for velocities much smaller than the speed of light (i.e. in the
far field and slow motion approximation), the amplitude of the wave generated by the
quadrupole moment can be written as:

hij =
2

r

G

c4
∂2

∂t2
Qij

(
t− r

c
, ~x
)
, (1.8)

where r is the distance source - point of observation and t− r
c

is the delayed time at which
the wave reaches the point of observation. The factor G

c4
' 8.10−45s.kg−1 is extremely

small. In fact, it is so small that one can demonstrate that it is impossible to generate
gravitational waves with a controlled source in laboratory. Thus, astrophysical sources
are the only sources to be studied for the detection of gravitational waves.

1.2 Astrophysical sources of gravitational waves

Three categories of gravitational sources can be distinguished according to the time
evolution of their emission:

� Periodic or quasi-periodic sources. Sources emitting gravitational waves at a
quasi constant frequency during the time of observation fall under this category. It
is the case for pulsating neutron stars (pulsars) and coalescing binaries during the
early phase of the process.

� Bursts sources. These sources emit gravitational waves over a time smaller than
the duration of observation. They involve violent gravitational collapsing such as
magnetars, supernovae or coalescing binaries at their merging point.

� Stochastic background. It is the statistically fluctuating background signal, of
astrophysical and cosmological origins.

1.2.1 Coalescing binaries

Binary systems are among the best presently known stellar objects. A binary system
consists in two star-like bodies orbiting around each other. If the two stellar objects
are compact bodies such as a pair of neutron stars, a pair of black holes or a pair black
hole - neutron star, the system is expected to emit a large amount of energy through
gravitational radiation at a frequency equal to the double of the orbital frequency. Such a
system has an orbital motion that can be divided into three different phases as illustrated
in Figure 1.1:

� In the early phase, the orbits are wide and the emission is of small amplitude with
a low frequency of the order of mHz. Such a low frequency cannot be detected on
Earth, where the signal would be drown in the seismic noise.

� As the system loses energy, the two stars get closer. The amplitude of the gravita-
tional radiation increases as well as its frequency. This phase is called coalescence.
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� Finally, the motion ends when the two stars start to merge. This event is violent
and expected to emit a gravitational burst.

Figure 1.1: Artist’s impression of an coalescing binary during its different phases. Figure
taken from [20]

Those sources are well identified. A detection of gravitational waves emitted by
coalescing binaries would be a validation of the General Relativity theory. When a
neutron star merges with a black hole, the emitted gravitational waves are expected
to hold precious information on the internal structure of neutron stars. Moreover, the
coalescence of two neutron stars is a candidate to explain the γ-ray bursts phenomena
observed in distant galaxies. Therefore, detecting a gravitational wave in coincidence
with such a burst would be a perfect test for these mechanisms.

1.2.2 Pulsars

Pulsars are a particular type of neutron stars. They are rotating very fast, leading to
periodic electromagnetic pulse emissions with a period corresponding to the rotation
period of the pulsar. Most of them emits in the radio frequency domain, except for few
of them emitting in the visible band. 1500 radio pulsars are known, with rotation periods
from one millisecond to few seconds. If a mass asymmetry would exist at the surface of
a pulsar, it could emit gravitational waves at twice the rotation frequency.

1.2.3 Magnetars

Magnetars are little known stellar objects. They seem to be isolated neutron stars pro-
ducing extreme magnetic fields (1015G). Two very rare types of objects could fit into
that description: soft gamma repeaters and X-ray pulsars. They are compact sources of
X-ray, randomly emitting soft gamma rays bursts. They are thought to emit gravita-
tional waves bursts, but the lack of theoretical understanding cannot provide good order
of magnitude of the expected amplitude of these bursts.

1.2.4 Supernovae

Gravitational waves emission from a Supernova happens during the gravitational collapse
of the star. The amplitude of the radiation directly depends on the asphericity of the
collapse. The detection rate of such event is difficult to estimate. The Supernova rate
in the local group of galaxy (up to 300 kpc from Earth) is rather low (1 event per two
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decades), while it might happen once every other year between 3 and 5 Mpc from Earth.
Since no proper theoretical model of Supernova event exists, the features of the emitted
gravitational waves are difficult to predict. It is however expected to be burst-like, with
few milliseconds durations.

1.2.5 Stochastic background

Two different components of such a stochastic background could be distinguished. The
first one is the incoherent superposition of all emitted gravitational waves by too numer-
ous, faint and distant sources to be resolved. Secondly, cosmological models predict a
stochastic background generated during the early age of the Universe [10]. It is thought
to be isotropic, unpolarized and stationary. The spectrum of such a background would
carry information on the Universe at ∼ 10−20 - ∼ 10−26 seconds old.
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Chapter 2

Interferometric detection of
gravitational waves

2.1 Geodesic deviation

To detect gravitational waves, one has to consider a system with at least two particles.
Let δxλ be the distance between two probe particles. The effect of a gravitational wave
passing through such a system is described by the geodesic deviation:

d2δxλ

dτ 2
= Rλ

νβµ

dδxβ

dτ

dδxν

dτ
δxµ . (2.1)

The relative acceleration thus depends on the curvature tensor Rλ
νβµ. If a gravitational

wave hµν perturbs a flat space-time metric (i.e. gµν = ηµν + hµν), equation 2.1 can be
written as:

d2δxλ

dτ 2
=

1

2
ηλi

d2him
dt2

δxm (i,m = 1, 2, 3). (2.2)

The solution of such an equation can be written as:

δxλ = δxλ0 +
1

2
ηλihikδx

k
0. (2.3)

which is the sum of an unperturbed term δxλ0 and a term representing the perturbation
induced by the gravitational wave. As a consequence the relative distance between the
two bodies varies in time according to the oscillatory perturbation of the gravitational
wave. This effect is depicted in Figure 2.1

2.2 Michelson interferometers

In order to detect gravitational waves, the distance variation between two bodies has to be
measured. A good way to detect such variations of distances is to use laser interferometry.
The basic configuration for gravitational waves detectors is the Michelson interferometer
[11], [12]. It consists of a source of coherent light (usually a laser), a beamsplitter and
two mirrors along two orthogonal directions, equally distant from the beamsplitter. The
laser beam that comes from the source is divided in two parts by the beamsplitter. Each
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Figure 2.1: Representation of the effect of a gravitational wave on a set of free-falling particles
for the two polarisation × and +. T is the period of the gravitational wave. Figure taken
from [21]

part is then reflected by the mirrors and the two parts recombine at the beamsplitter.
The optical configuration of a Michelson interferometer is depicted in Figure 2.2.

The Michelson interferometer measures the phase difference between the two beams
propagating in the two arms. That phase is related to the difference of path length
between the two arms, or the difference between the propagation times in the two arms.

Let ψin be the input field at the beamsplitter, ψout be the output field of the inter-
ferometer, ri and ti respectively the amplitude reflectivity and amplitude transmissivity
of the two mirrors and the beamsplitter (i = 1, 2, BS), and k = ω/c = 2π/λ the wave
number.

In the two different paths, the beam undergoes a reflexion and a transmission on the
beamsplitter, a reflexion on the end mirror and two propagations along the arm length
Li. Thus the output field can be written as:

ψout = tBSe
−ikL1(−r1)e−ikL1(−rBS)ψin + (−rBS)e−ikL2(−r2)e−ikL2tBSψin

= tBSrBS
(
r1e
−i2kL1 + r2e

−i2kL2
)
ψin .

The output power can be written as:

Pout = PinTBSRBS (R1 +R2 + 2r1r2 cosφ) (2.4)

where Ri = |ri|2, Ti = |ti|2 and φ = 2k(L2 − L1). The maximum and minimum output
power can be easily defined as, respectively, Pmax = Pout(φ = 0) and Pmin = Pout(φ = π).
The contrast C of the Michelson interferometer can be define as:

C =
Pmax − Pmin
Pmax + Pmin

=
2r1r2
R1R2

. (2.5)
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Figure 2.2: Scheme of a basic Michelson interferometer
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The output power can then be rewritten as:

Pout = PinTBSRBS (R1 +R2) (1 + C cosφ) . (2.6)

The output power, that can be measured by a photodiode, depends on changes in the
arms lengths. Assuming that the two end mirrors act like free-falling masses, an incident
gravitational wave would contract the length of one arm and expand the length of the
other arm. Thus, the output power would be modulated by the passage of the wave.

2.3 Noise sources

Due to the low amplitude of the gravitational waves, the output signal of the gravitational
wave interferometer is extremely affected by noises of various origins. The fundamental
noises affecting the signal are the following:

� Shot noise. This noise comes from the quantum nature of light. The photons
hit the detector randomly, following a Poisson law, resulting in fluctuations in the
signal.

� Fluctuation of the radiation pressure on the mirrors. Each photon hitting
a mirror exerts a slight pressure on it. It results in slight fluctuating modifications
of the optical path.

� Seismic noise. Internal activity of the Earth produces ground vibration. Even
with the best filters, there is still some seismic noise due to seismic activity at low
frequencies.

� Local fluctuations of the Newtonian gravitational field in the detector.
They are induced by the time variation of the mass density distribution around the
detector caused by seismic waves, sound waves or temperature perturbation in the
air.

� Local thermal fluctuations on the mirrors. The coating on the mirrors are
subjects to temperature fluctuations that modify their optical properties.

There is also a set of technical noises :

� Fluctuation of the laser beam in amplitude, frequency and position.

� Diffused stray light that re-couple with the signal.

� Electronic noise in read-out and control systems, which is similar to shot noise.

2.4 Sensitivity improvements

The sensitivity of the detector, which can be defined as the smallest signal that can be
distinguished from noises, depends directly on the power of the input beam and the arms
length. The arm length for a ground detector is limited to a few kilometres. The lasers
meeting the requirements for such detectors can reach 200 W.
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It is possible to increase the effective path travelled by the beam by using resonators.
If Fabry-Pérot cavities are placed in the arm of the interferometer, the light travels back
and forth inside the cavities, increasing the optical path by the cavity length times the
number of round trips.

The Michelson interferometer dedicated to gravitational waves detection operates in
the dark fringe configuration. The interference at the output is destructive, thus the
power is mainly reflected towards the laser. Therefore, another improvement solution is
to use a power recycling cavity: a mirror is added before the beamsplitter, forming a
resonator with the first mirrors of the two arms cavities that re-inject the light in the
interferometer.

Finally, the beam jitter, amplitude noise and frequency noise of the laser can be
filtered with a mode-cleaner cavity. Such a cavity can also be placed at the output, to
filter the signal and increase the signal-to-noise ratio.

All these possible improvement are shown in figure 2.3 and will be detailed.

Figure 2.3: Michelson interferometer improved with arm cavities, power recycling cavity and
input mode-cleaner.
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Figure 2.4: Scheme of a simple Fabry-Pérot cavity

2.4.1 Fabry-Pérot arm cavity

In a simple Fabry-Pérot cavity, two mirrors M1 and M2 are separated by a distance L,
as depicted in Figure 2.4. The input signal is a field ψin with a wavelength λ. The phase
accumulated during a single trip in the cavity is φ = 2πL/λ.

The first transmitted light at the output, ψt,0 is given by:

ψt,0 = ψint1t2e
iφ (2.7)

thus the nth transmitted light ψt,n is :

ψt,n = ψt,0
(
r1r2e

i2φ
)n

(2.8)

A Fabry-Pérot cavity only operates if |r1| 6= 1 therefore |r1r2ei2φ| < 1 and the total
transmitted light ψt can be written as:

ψt = ψt,0

+∞∑
n=0

(
r1r2e

i2φ
)n

= ψin
t1t2 exp(iφ)

1− r1r2 exp(i2φ)
. (2.9)

In terms of power:

Pt(φ) = |ψt|2 = Pin

(
t1t2

1− r1r2

)2
1

1 +
4r1r2

1− r1r2
sin2φ

. (2.10)

The cavity is said to be resonant when φ = kπ (k ∈ Z). In that case the incident
light interferes constructively with the stored light in the cavity and the output power is
maximum.
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The separation between two consecutive resonance points is called the Free Spectral
Range (FSR). It is equal to c

2L
in term of frequency and λ

2
in terms of wavelength.

Another characteristic number is the cavity finesse. It is defined as the ratio between
the free spectral range and the full width at half maximum (FWHM):

F =
FSR

FWHM
=

π
√
r1r2

1− r1r2
(2.11)

In the case of an arm cavity in a Michelson interferometer, we are interested in the
reflected field ψr. With a similar reasoning, we have:

ψr,0 = −ψint21r2e2iφ (2.12)

and then, taking the reflection on M1 into account:

ψr = −r1ψin − ψin
r2t

2
1 exp(2iφ)

1− r1r2 exp(2iφ)
= ψin

r1 − r2(t21 + r21) exp(2iφ)

1− r1r2 exp(2iφ)
(2.13)

When r1 − r2(t
2
1 + r21) = 0, the reflected field at a resonance point in null. This

situation is called optimal coupling .
For small phase shift around the resonance, the phase variation of the reflected field

is given by:

dφr
dφ

=
d

dφ
arg

(
ψr
ψin

)
= r2

(t21 + r21)− r21
(1− r1r2)(r1 + r2(t21 + r21))

. (2.14)

If M1 has no loss, i.e. (t21 + r21) = 1, and r1 ∼ r2 ∼ 1, this simplifies to:

dφr
dφ
' 2F

π
. (2.15)

This result shows that for a small detuning around the cavity resonance, like the one
induced by an impinging gravitational wave, the phase shift of a reflected beam at a
Fabry-Pérot arm cavity is amplified by a factor proportional to the finesse of the cavity.
Since this phase shift is also proportional to the arm length, this is equivalent to an
amplification of the effective optical path travelled by the beam. This effective optical
path can be written as:

Leff =
2F
π
L . (2.16)

2.4.2 Power recycling

Let us consider a Michelson interferometer in the destructive interference condition. If
the end mirrors have a high reflectivity, almost all the power is sent back to the laser.
This power can be stored in the detector by adding a semi-reflective mirror between
the source and the beamsplitter. It would form a cavity together with the rest of the
interferometer, considered as a composite mirror with a resulting reflectivity rITF.

The field inside the power recycling cavity ψres can be easily computed in the simple
case where the power recycling mirror is coupled with only one Fabry-Pérot arm cavity:

ψres = ψin
tPR

1− rPRrFP exp(2iφPR)
, (2.17)
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where tPR and rPR are the power recycling mirror transmitivity and reflectivity, respec-

tively, rFP =
r1 − r2(t21 + r21) exp(2iφFP )

1− r1r2 exp(2iφFP )
is the equivalent reflectivity of the Fabry-Pérot

arm cavity. φPR and φFP are the phases acquired in the power recycling cavity and
the arm cavity, respectively. The coupled cavities are in double resonance when both
φPR = nπ and φFP = mπ (n,m ∈ Z).

2.4.3 Mode-cleaner cavities

The Laser source produces frequency and amplitude noises along with jitter. Those noises
can be filtered by a mode-cleaner cavity tuned to optimal coupling for the transmission
of the input beam [13]. It acts like a low-pass filter for the amplitude and frequency
noises, with a cut-off frequency f = 1/4πτs where τs is the storage time of the cavity,
defined by:

τs =
2L

c

√
r1r2

1− r1r2
(2.18)

The beam jitter leads to the production of higher order laser modes by the source. The
mode-cleaner cavity reflects them, as they are not in resonance. Mode-cleaner cavities
can be placed at the input or at the output of the interferometer.
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Chapter 3

Virgo and Advanced Virgo

3.1 Virgo, a first generation detector

3.1.1 The Virgo initial optical layout

Virgo was an Earth-based Fabry-Pérot Michelson interferometer which used also the
power recycling methods previously described. Its arms (called North arm and West
arm), are 3 km long Fabry-Pérot cavities. The input mirrors of the cavities are separated
from the beamsplitter by approximately 6 meters. The power recycling mirror is also
approximatively 6 meters before the beamsplitter.

The laser source produces a beam with a continuous power of about 20 W at λ =
1064 nm. It is generated by a high-stability Nd:YAG master laser coupled with a
Nd : YVO4 slave laser which delivers the high power. Before entering the interferom-
eter, the beam goes through the so-called Input Mode-Cleaner cavity (IMC). It consists
in a triangular cavity, 144 meters long with a finesse F ' 1000. This cavity is used to
filter the beam jitter of the source, but it also acts as an active frequency stabilization
device. Then the beam passes the power recycling mirror (PR) which has a reflectivity
R = 92%. The beamsplitter (BS) splits the beam equally and each part goes through the
two cavities. Originally, both arm cavities had input mirrors with a reflectivity R = 88%
and end mirrors with a reflectivity R ' 1 leading to a finesse F ' 50 for both arm cavi-
ties. A first improvement on the input mirrors have raised the reflectivity to R = 96%,
leading to a finesse F ' 150.

The mirrors used in the original Virgo were made of high quality fused silica. The
power recycling mirror, along with the cavities mirrors, weighed 21 kg, for a 35 cm
diameter. The beam splitter was significantly smaller: 23 cm diameter for 5 kg.

3.1.2 Infrastructure

The very high sensitivity needed can only be reached if the interferometer is placed in
high vacuum. Moreover, a complex filtering system needs to be built to filter the seismic
noise. All the mirrors are therefore suspended to structures that isolate them from the
ground seismic noises. The mirrors and their suspensions are placed in vacuum towers,
and those towers are linked by smaller vacuum pipes where the laser beam passes.
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3.2 Advanced Virgo

Even though Virgo has reached its extreme goal sensitivity (a displacement noise spectral
density of 10−18 m/

√
Hz), a gravitational wave detection has not been achieved since

the rate of the involved astrophysical events was too low. Therefore, a new generation of
gravitational waves detectors (Advanced Virgo [14] and Advanced LIGO [15]) has been
studied and it is now under construction. The goal of the Advanced detectors is to extend
the distance at which a target source can be detected by a factor ∼ 10, which corresponds
to increase the event rate by a factor ∼ 1000 with respect to the detectors of the first
generation. The final sensitivity goal will be gradually reached [16]: as the sensitivity
improves, the detection rate, as well as the source localization capability, will improve.
The improved sensitivity of the Advanced detectors suggests that a gravitational wave
detection could be possible in the next few years.

3.2.1 Improvements

Here are the main improvements of Advanced Virgo compared to initial Virgo [14]:

Figure 3.1: A simplified scheme of the optical layout of Advanced Virgo. Figure taken
from [14]
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optical configuration Figure 3.1 shows the simplified optical layout of Advanced
Virgo (AdV).

Advanced Virgo is a dual-recycled Michelson interferometer. A signal recycling cav-
ity is placed in the interferometer, besides the power recycling cavity. It consists in a
signal recycling mirror installed between the beamsplitter and the output mode-cleaner.
The signal recycling cavity has tunable parameters, allowing to optimize the sensitivity
for different sources of gravitational waves. The finesse of the Fabry-Pérot cavities is
increased up to 443. The beam spot size has been increased on the mirrors, in order
to reduce thermal noise on the mirrors coating. Having larger beam implies having new
telescopes to achieve mode-matching on the arm cavities and the output mode-cleaner
cavity. The output mode-cleaner cavity (OMC) has been changed. It consists of two
identical bow-tie cavities placed in series. Each one is a monolithic fused silica block.
Such a compact design allows to limit the cavity length noise. Its round trip length is
248 mm and it has a finesse of 143.

laser power To improve the sensitivity at high frequency, the laser power is increased.
The reference level, on which the reference sensitivity is based, is 125 W after the input
mode-cleaner. It corresponds to a laser power of 175 W at the source, considering the
loss in the injection system. At the beginning of the operations a lower laser power will
be used.

thermal control system Higher laser power also means higher thermal lensing effects.
Besides increasing the spot size, a complex thermal compensation system is built. CO2

laser will shine on compensation plates placed before the input mirrors of the arm cavities.
By heating those plates, the thermal lensing effect can be coped with. Moreover, ring
heaters placed around mirrors can be used to modify their radius of curvature. Such
systems also implies the use of sensors and cameras to measure the variations of the radii
of curvature and of the thermal lensing.

Mirrors Higher laser power also means higher radiation pressure. To counter this
effect, the AdV mirrors are twice as heavy (42 kg) compared to the Virgo mirrors. The
most critical are made of ultra high homogeneity fused silica. They achieved a flatness
< 0.5 nm rms thanks to state of the art polishing techniques.

Stray light control Part of the light in the interferometer can be back-scattered and
pollute the signal and therefore the sensitivity of the detector. To cope with this prob-
lem, baffles are installed in the interferometer, either suspended around the mirrors or
connected to the ground inside the vacuum links.

3.2.2 Sensitivity goals

Figure 3.2 shows the sensitivity reference curve of advanced Virgo along with all the
limiting noises. The quantum noise is the main limiting source of noise at frequency
> 300 Hz. For lower frequency, < 50 Hz, the sensitivity is limited by the sum of
quantum noise, magnetic noise, the thermal noise in the suspension and the gravity
gradient, mainly. For the frequency range 50 < f < 300 Hz, the limiting noise is mainly
the coating Brownian thermal noise of the optics.
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Figure 3.2: The Advanced Virgo design sensitivity curve and its reference noise Budget.
Figure taken from [14]
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Figure 3.3 shows three sensitivity curves of Advanced Virgo for three different oper-
ating regimes and, in comparison, the sensitivity curve of the initial Virgo.

Figure 3.3: AdV sensitivity for the three different configurations: early operation (dash-dotted
line), 25W input power, no signal recycling (SR); mid-term operation, wideband tuning (dashed
line), 125W input power, tuned signal recycling; late operation, 125W input power, detuned
signal recycling. The best sensitivity obtained with Virgo+ is shown for comparison. Figure
taken from [14]
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Chapter 4

The telescopes in Advanced Virgo

The main beam that illuminates the Virgo interferometer is a fundamental Gaussian
beam. A Gaussian beam is fully characterized by 3 parameters: its beam waist w0, the
position of the latter, z0, and its wavelength λ. Other properties can be defined, the
Rayleigh length zR and the divergence θ, as:

zR =
πw2

0

λ
; θ ' λ

πw0

. (4.1)

The beam spot radius at a distance z from the waist position is given by:

w(z) = w0

√
1 +

(
z

zR

)2

. (4.2)

Those parameters are depicted in 4.1.

Figure 4.1: Gaussian beam parameters. Θ is defined as Θ = 2θ. Figure taken from [22]

After several zR from the waist position, the beam can be considered as a spherical
wave. Its radius of curvature is defined as:

R(z) = z

[
1 +

(zR
z

)2]
. (4.3)

Now, for such a beam to be resonant in a cavity, its waist needs to be unchanged
after a loop in the cavity, therefore the radius of curvature of the beam has to be equal
to the radius of curvature of the mirrors. For a fixed cavity, it means that the beam has
to be tuned to match the cavity parameters. This can be done by using mode-matching
telescopes.
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4.1 Mode-matching telescopes in Advanced Virgo

Advanced Virgo contains two mode matching telescopes. One placed at the input of the
interferometer, and the other one placed at the output [14]. The aim of the former is to
adapt the beam properties to the ones of the arm cavities. The latter aims at reducing the
dimension of the interference beam so that it could be collected at the output photodiodes.
Figure 4.2 shows the position of those telescopes in Advanced Virgo.

Figure 4.2: The two parabolic telescopes in Advanced Virgo.

The design of the mode-matching telescopes follows many requirements [17]. In par-
ticular, they have to provide a very large magnification, respectively a factor 19 for the
input telescope and a factor 38 for the output one, filling in a small space (a maximum
surface of 80x30 cm2). Moreover the telescopes have to introduce negligible aberrations
and provide beams with excellent wavefront quality: a theoretical matching with res-
onant cavities above 95 % and possibly ∼ 99 % is aimed for the beams given by the
telescopes. The two telescopes are installed on optical benches that will be suspended in
vacuum with a residual pressure of the order of 10−6 mbar. In addition, they will have to
provide angular, longitudinal and transversal movements. That implies the installation
of very accurate actuators, characterized by minimum incremental motion of the order
of tens of nm, on the mechanical mounts.
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4.2 Tuning of the output mode-matching telescope

The output mode-matching telescope contains two parts. A reflective part, which is an
afocal off-axis parabolic telescopes formed by two mirrors M1 and M2, and a refractive
part consisting in a meniscus lens L combined with the anti-reflective face of the signal
recycling mirror. Figure 4.3 shows a scheme of the telescopes and figure 4.4 shows a
picture of the output mode-matching telescope on its bench . The most critical part in
the installation is the alignment of the reflective part. In an ideal configuration, the two
axes of the parabolic mirrors should perfectly overlap. In addition the input beam should
be perfectly align with those axes to minimize the aberrations.

Figure 4.3: Optical layout of the mode-matching telescopes in Advanced Virgo.

4.2.1 Tuning procedure

Pre-alignment phase - It is decided to have the parabola axes perpendicular to one
of the lateral surfaces of the optical bench. The angles of the two parabolic mirrors
M1 and M2, both installed in gimbals mounts, are aligned using a reference mirror
(RM) installed in two different positions on the side of the bench behind M2, i.e. about
coaxially with respect to M1 (position P1) and M2 (position P2). The reference mirror
mount lies on a clamp, which is machined to have the mirror surface parallel to the side
surface of the bench. This allows RM to slide from P1 to P2 parallel to the bench edge.

The bench is rectified and, in addition, the reproducibility of RM angle when clamped
to different positions on the bench side is verified: by observing the retro-reflection of
two laser beams which have been aligned parallel to each other to better than 150µrad,
the mirror angle changes by less than 150µrad.

As a first step a preliminary alignment of the telescope is performed: transverse
mirror positions are measured with respect to reference points on the optical bench using
a calliper; angular positions are aligned using the RM and two autocollimators.
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Figure 4.4: Picture of the output mode-matching telescope mounted on its bench in Advanced
Virgo.

The transversal horizontal position of the two parabolic mirrors M1 and M2 with
respect to the centre of the bench is determined by screwing some posts on the table
and measuring the distances between the posts centres and the vertical gimbals axes of
mirrors mounts. The uncertainty of the measurements is of the order of 200µm, with
nearly equal contributions from calliper precision, post positioning errors, and mechanical
tolerances of mirror mounts.

Similarly, the transversal vertical position of both parabolic mirrors is determined by
measuring the distance between the plane of the optical bench and the horizontal gimbals
axes with a calliper. In addition, mirror rotation around the longitudinal axis is defined
by reference marks provided by the manufacturer. The measurement uncertainty is of
the order of 500µm, dominated by the mirror rotation.

The telescope axis is parallel to the lines of threaded holes on the optical bench.
The longitudinal distance between the two parabolic mirrors M1 and M2 is determined
by measuring its projection along the telescope axis with some posts and a calliper.
A post is placed in front of each mirror, at about the mirror centre, and the distance
between the post centres and the vertical gimbals axes of the mirror mounts is measured.
Then the distance between the two gimbals axes along the parabola axis is determined
from the two measurements and the knowledge of holes spacing in the optical bench.
The measurement uncertainty is of the order of 250µm, with nearly equal contributions
from calliper precision, post positioning errors, mechanical tolerances on bench holes
machining and mechanical tolerances of mirror mounts.

The angular positions of the two parabolic mirrors are measured and adjusted with
respect to the reference plane defined before with the help of two autocollimators (named
AC1 and AC2). The procedure follows five successive steps, as described below and
shown in figure 4.5.
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Figure 4.5: Set-up for the alignment of the angular degrees of freedom of M1 and M2 mirrors
with autocollimators and a reference flat mirror.

� Step 1: The RM is clamped on the bench edge at position P1. AC1 is placed
on an external, auxiliary bench just behind the nominal position of M1, then it is
aligned with respect to the RM .

� Step 2: Mirror M1 is placed on the bench at its nominal positions. To this
purpose the distances between the rotation centre of the mirror and some reference
positions on the bench are measured, as described above, and the horizontal and
vertical position of the mirror are tuned with the corresponding picomotors.

� Step 3: he angular position of the M1 mount is align by using the reflection of
the flat back face of the parabolic mirror on the AC1, which was previously aligned
with respect to the RM at step 1. It was required to the manufacturer to provide
a polished and reflective mirror rear face parallel to the parabola vertex tangent
plane.

� Step 4: AC1 is placed on the bench, just in front of the nominal position of M2.
RM is clamped at position P2, i.e. in front of AC1, and the latter is aligned with
respect to RM . RM is removed, AC2 is placed on a second external, auxiliary
bench just behind the nominal position of M2, then AC2 is align with respect to
AC1.

� Step 5: The parabolic mirror M2 is placed on its nominal position, with the same
procedure described for M1 in Step 2, and it is aligned using the reflection of the
back flat surface on AC2. Also the rear face of M2 is polished, reflective and
parallel to the parabola vertex tangent plane.

Since the autocollimators feature a resolution of 150µrad, the resulting uncertainty
on the angular degrees of freedom is 250µrad for M1 and 300µrad for M2.
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Fine-tuning phase - A small beam enters the telescope impinging on the the mirror
M2. A reference mirror is placed in front of M1 so that the beam travels back through the
telescope and is observed after M2. After a dual-pass, the beam, which is characterized
by a small size, can be observed using standard wavefront sensors and cameras.

Since the input beam is perpendicular to the reference mirror, a non null angle between
back-reflected and input beams indicates a misalignment of the telescope. The two beams
can be superposed with a precision of 100µrad by tweaking the angular degrees of freedom
of either M1 or M2 and observing the back-reflected beam on a diaphragm centred on
the input beam after an optical path of about 4 m from the reference mirror.

A method to obtain a good superposition of the two parabola axes consists in tuning
the translational and angular degrees of freedom of one parabolic mirror while observing
both the propagation direction and the shape of the back-reflected beam. In the ideal
configuration of the telescope, the reflected beam must overlap with the input beam, it
must be collimated and have no distortions. If a non null off-axis is compensated with a
mirror tilt an astigmatic shape will appear on the reflected beam.

A beamsplitter is placed on the path of the input beam before M2 to pick off the
retro-reflected beam and let it propagate for a distance of about 5 m after M2. We
analyse the beam shape with a beam profiler and a wavefront sensor at three different
positions: a few cm after the beam splitter, about 2.5 m after it and about 5 m after it. A
scheme of the set-up is shown in figure 4.6. This allows us to determine the astigmatism
and divergence of the back-reflected beam.

4.2.2 Figure of merit

In the ideal, afocal configuration, the telescope should not introduce any distortion to the
laser beam mode. Given a TEM00 input beam, both the single-pass and the double-pass
beams should provide a pure TEM00 mode.

In principle, residual distortions of the output beam can be described in terms of a
set of parameters such as the astigmatism, the waist asymmetry, or the coefficients of
Zernike polynomials. As a general figure of merit we take the overlap integral of the
beam at the telescope output with an ideal Gaussian beam. We indicate by It(r) the
intensity distribution of the real laser beam at the output of the telescope, and by Ig(r)
the intensity distribution of a pure Gaussian laser beam. The overlap integral is then
given by:

η =

∫∫
It(r) · Ig(r)dS√∫∫

I2t (r)dS ·
√∫∫

I2g (r)dS
(4.4)

4.2.3 Experimental results

The beam is observed for different distances after M2. Figure 4.7 shows the profile of
the beam 5 m after M2 for different cases of misalignment.

The telescope is tuned following an iterative process to obtain a quite circular beam
with dimensions similar to the input beam. Figure 4.8 shows a situation where the
telescope is in a good alignment configuration. The output beam and the input beam
are quite similar.
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Figure 4.6: Scheme of the experimental set-up for the tuning procedure of the mode-matching
telescope.

Figure 4.7: Back-reflected beam in presence of slight misalignment of the telescope: (a)
non-perfect superposition of the parabola axes in horizontal and vertical direction, (b) wrong
horizontal off-axis.
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Figure 4.8: (a) Beam at the input of the telescope; (b) Back-reflected beam in a good align-
ment configuration.

After obtaining a situation where the output beam is quite circular, meaning that
the parabola axes are quite superposed, the beam parameters are measured for different
longitudinal positions of M1 in order to obtain the dimensions that maximize the overlap
integral η of eq. 4.4. Figure 4.9 shows the different measured parameters (the beam waist
and the waist position) for the different longitudinal positions.

This allows to identify the longitudinal offset with respect to the nominal longitudi-
nal position of M1 that gives the best matching: 0.6 ± 0.1 mm. By approaching this
configuration, a matching of η = 98% has been achieved.

4.3 Errors simulation

The output mode-matching telescope, along with its bench, will be suspended in vacuum.
During this procedure, a small detuning of the telescope is to be expected. In order to
anticipate the consequences of such possible detuning, a simulation of the possible errors
is achieved.

4.3.1 Single error analysis

Method Using ZEMAX [18], we model the output mode-matching telescope in its
real working configuration: single-pass from the meniscus lens to the mirror M2. The
beam will be observed two meters after the M2 mirror. The measured parameters are
the position of the beam in the transversal (X,Y) plane, the beam spot size in the
transversal X and Y directions, and the waist and waist position. The coupling with an
ideal Gaussian beam can then be computed using the waist and waist position through
Matlab.

We limit the analysis to displacements of the beam < ±5 mm and beam spot size
variation < ±350 µm.

The simulation configuration and reference beam are presented in 4.10.
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Figure 4.9: Waist radius w0 and waist position z0 versus the longitudinal position zl of M1.
The zero in the horizontal scale corresponds to the nominal position. Circles and squares are
experimental data; error bars are from least-squares fit made with equation (4.2); solid lines are
values from the numerical simulation. An offset of −0.6 mm has been applied to the horizontal
scale of the simulation, in order to match the experimental data.

Figure 4.10: The simulation configuration and the reference beam parameters at the point of
observation with an illustration of the beam relative intensity profile.
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Analysis First, for each degree of freedom, the beam displacement in the (X,Y) plane
and the beam size along X and Y are plotted as functions of the error on the degree of
freedom, in the range of the analysis. Figure 4.11 shows an example of such curves. The
X and Y positions of the beam are plotted as function of the error on the M1 mirror
angular position around the x-axis, θx.

Figure 4.11: Plot of the beam X and Y position as functions of the error on M1 θx angular
position.

Then, for each degree of freedom, the value of the error on this degree of freedom
that makes the beam parameters goes to the analysis limits (the value of the error that
makes the beam position drift to ±5 mm for example) is noted.

Finally, the value of each error on the degrees of freedom that makes the coupling
with an ideal Gaussian beam goes to 95% is noted.

Results All the previous errors values are listed in table 4.1. For each value, a beam
spot relative intensity profile is available. Figure 4.12 shows example of such profiles.
The coupling on the OMC is also computed for each value.

Figure 4.12: Example of the beam relative intensity profile for different errors.

Conclusions The obtained results lead to the following conclusions:

� Except for the longitudinal position of M1, the beam is always good (coupling
> 99%) in the range ±5 mm.
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Table 4.1: Errors analysis results. The highlighted values are the most critical values for each
error.

� Large errors are needed to worsen the quality of the beam: errors that make the
coupling with an ideal Gaussian beam are larger than what is expected to be
possible.

� Except for the longitudinal position of M1, the beam deformation is always elliptical
(astigmatism).

� The most critical errors are the two tilts of M1.

In the future suspension of the bench inside the vacuum tower, a particular attention
will then have to be paid on the M1 mirror angular positions.

4.3.2 Coupled errors analysis

The effect of errors applied to two different degrees of freedom at the same time is also
studied. In particular, the possibility that two errors can compensate their effect on the
beam quality and position is evaluated. It appears that a couple of errors never has the
same effect on both the quality and the beam position. An example of this analysis is
shown in figure 4.13. Considering a Gaussian beam of waist w = 1.470 mm and inducing
an error on M1 yaw angular position of +0.045 deg. and an error of about −0.6 mm on
the horizontal off-axis distance between the two mirrors, the effects on the beam size
compensate each other (points specified in figures 4.13(a) and 4.13(b)) so that the beam
shown in figure 4.13(c) is obtained at the output of the telescope and an overlap integral
with an ideal Gaussian beam of 99.9% is achieved. However, the effects on the beam
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position lead to a shift along x of about +24 mm at a distance of 2 m from M2 with
respect to the nominal one, as shown in figure 4.13(d). This shift corresponds to a beam
deflection of 12 mrad; in many practical cases, e.g. in the Advanced Virgo telescopes,
such a large tilt would produce unacceptable misalignment of the beam on the optical
components after the telescope output.

Figure 4.13: Effect of errors on the M1 yaw angular position and on the off-axis distance: (a)
trend of the beam size along the horizontal direction; (b) trend of the size along the vertical
direction; (c) image of the beam shape in the configuration indicated with a cross in the plots; (d)
horizontal position of the beam at a distance of 2 m from M2 (results obtained with ZEMAX [18]
simulations).

4.3.3 Experimental results validation: single-pass configuration
vs double-pass configuration.

The experimental measurement performed on the output mode-matching telescope has
been carried out in a double-pass configuration. The laser beam undergoes two reflection
on each mirrors, thus the possible aberrations due to misalignment are introduced twice.
Therefore, the resulting deviation from a ideal Gaussian beam is expected to be amplified
in such a configuration.

In order to validate this expectation, it is decided to compare the computed values
of the coupling with an ideal Gaussian beam in a single-pass configuration (the one
of Advanced Virgo, used in the previously described simulations) and in a double-pass
configuration.
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Procedure - For three different errors (longitudinal position of M1, off-axis position of
M2 and M1 pitch) we simulate the beam profile after a double-pass in the the telescope.
The overlap integral with a ideal Gaussian beam is then computed and compared to the
value obtained previously, in a single-pass configuration. The results are showed in figure
4.14.

Figure 4.14: Overlap Integral in a single pass configuration vs. Overlap integral in a double-
pass configuration for different amplitude of different errors (blue curve = longitudinal distance
between the two mirrors; green curve = off-axis distance between the two mirrors; red curve =
M1 pitch angle).

It appears that the points are all over the x = y line, which confirm the hypothe-
sis. The coupling with an ideal Gaussian beam is better in a single-pass configuration
than in a double-pass configuration. The measurement of this coupling in a double-pass
configuration is thus relevant.

4.4 Wavefront sensor and cavity experiment

In Advanced Virgo, the beam coming out of the output telescope will be matched inside
an output mode-cleaner cavity. Two more lenses are needed to obtain the right beam
parameters. In order to check the effect of different configurations of the parabolic
telescope, in particular the longitudinal distance between the two mirrors, an experiment
has been implemented in laboratory.
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4.4.1 Experimental setup

The experimental set-up consist of an off-axis parabolic afocal telescope and a plano-
concave Fabry-Pérot cavity in series. A first pair of lenses is used to select the dimension
of the beam that enters the telescope. A second pair of lenses, placed between the
telescope and the cavity, allows to tune the beam to achieve the matching on the cavity.
The telescope is composed by two parabolic mirrors M1 and M2, like the telescopes in
Advanced Virgo. The beam is divided in two at the output of the parabolic telescope:
the first beam is acquired with a wavefront sensor, while the other one is matched on the
cavity. The optical layout is shown in figure 4.15 and figure 4.16 shows a picture of the
experiment in the laboratory.

Figure 4.15: Optical layout of the experiment.

4.4.2 Tuning procedure

Tuning of the telescope First, the two mirrors are placed in their nominal positions
and the output beam is aligned. The wavefront sensor placed at the output of the
telescope, about 120 cm behind M2, acquires the output beam. The next step consists
in superposing the axes of the parabolic mirrors by tuning the different degrees of freedom
on M1. This gives an opportunity to validate and exploit the results of the performed
simulations. The profile of the acquired beam can indeed be compared to the simulated
profiles and the errors can be qualitatively identified, so that one knows what degree of
freedom has to be tuned.
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Figure 4.16: Picture of the experiment in the laboratory.

This is what practically happened: the tuning procedure had been quite simplified
by the simulations results. The experiment is in agreement with the simulations. Figure
4.17 shows the acquired beam profile before the tuning procedure (left) and the simulated
profile when an error on the M1 roll (θx) in introduced. This allows to tell that the main
source of misalignment in the experiment is the roll of M1. This is only a qualitative
comparison, since the simulations concern a system with different parameters!

Figure 4.18 shows the beam profile before and after the tuning procedure: at the
beginning the beam is slightly astigmatic, while at the end of the procedure it is well
circular.

Tuning of the Fabry-Pérot cavity First, the two needed lenses are determined by
numerical simulation in order to obtain a beam that will match the cavity.

The end mirror of the cavity is mounted on a piezoelectric. This allows to modify the
cavity length periodically to scan the different resonant modes. Two modes are used in
the experiment: the fundamental Gaussian mode (TEM00) and the mode of matching,
which is a Laguerre-Gauss mode (LG01). All the other modes are due to the misalignment
of the cavity. Tuning the different degrees of freedom on the cavity mounts allows to get
rid of them.

4.4.3 Mode-matching experimental results

The cavity is scanned using the piezoelectric mount and the output signal of the pho-
todiode, which is expressed in terms of Volts and is directly proportional to the optical
power, is plotted as a function of time. Each resonant mode in the cavity appears as a
peak on the plot. A camera acquires the image in parallel, so that each mode can be
identified. The ratio between the power of the matching mode LG01 and the fundamental
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Figure 4.17: Acquired beam profile (left) and simulated beam profile when an error on M1
roll (θx) is introduced. (right)

Figure 4.18: Beam profile before (left) and after (right) tuning procedure.
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Gaussian mode TEM00 modes is chosen as a figure of merit to evaluate quantitatively
the quality of the matching. The closer it is to zero, the better is the matching. Figure
4.19 shows these two modes.

Figure 4.19: The TEM00 (left) and LG01 (right) modes. Figure taken from [22]

Figure 4.20 shows the output signal of the photodiode when the parabolic telescope
is its reference position. The two peaks have been identified and the quality factor is in
this case 1.3%± 0.1%.

When the longitudinal distance between the two mirrors of the parabolic telescope
is increased by 500 µm, the quality factor goes to 1.5% ± 0.1%. When it is decreased
by 500 µm, the quality factor goes to 2.9%± 0.1%. However, in three different position,
the beam parameters measured at the wavefront sensor stay relatively unchanged. For
example the beam radius at the wavefront sensor remains 2.0± 0.1 mm.
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Figure 4.20: Output signal of the photodiode during the scanning of the cavity. The peak on
the left is the TEM00 while the one on the right is the LG01. The corresponding quality factor
is 1.3%± 0.1%.
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Chapter 5

Conclusion

Advanced Virgo is a second generation gravitational waves interferometric detector. Its
design requires the implementation of compact off-axis parabolic telescopes. My work has
been dedicated to the installation and the characterization of the output mode-matching
telescope, which aims at reducing the beam dimension and achieving a good matching
with the output mode-cleaner cavity.

The output mode-matching telescope has been well aligned, so that a coupling of 98%
with an ideal Gaussian beam has been achieved. This had been possible thanks to the
particular alignment method that had been developed.

This procedure has been followed by numerical simulations in order to better predict
the behaviour of the telescope after it is suspended under vacuum. These simulations
give qualitative and quantitative information on the consequences of every errors on each
degrees of freedom of the two parabolic mirrors. It has been shown that the most critical
errors are the angular ones of M1. Thus, a particular attention will have to be paid to
the tuning of M1 after the bench is suspended since errors due to the suspension and
vacuum procedure might be large enough to deteriorate the beam position and quality.
The fact that two different errors cannot compensate both the position and quality errors
on the beam has also been shown. The alignment procedure and the simulations results
will be presented in a scientific paper to be submitted soon [19].

Finally, an experiment has been performed in the laboratory to observe the behaviour
of a wavefront sensor and of a Fabry-Pérot cavity when the longitudinal distance between
the two parabolic mirrors varies. In particular, the beam transmitted by the cavity has
been acquired to analyse the scan of the various modes that resonate in the cavity. The
result was that the matching on the cavity deteriorates, but it is not clearly visible on
the wavefront sensor. As a consequence, attention will have to be paid to the scan of
the output mode-cleaner cavity, since the wavefront sensor alone will not be sufficient to
evaluate the quality of the matching.
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2.4 Scheme of a simple Fabry-Pérot cavity . . . . . . . . . . . . . . . . . . . 16

3.1 A simplified scheme of the optical layout of Advanced Virgo. Figure taken
from [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 The Advanced Virgo design sensitivity curve and its reference noise Bud-
get. Figure taken from [14] . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 AdV sensitivity for the three different configurations: early operation
(dash-dotted line), 25W input power, no signal recycling (SR); mid-term
operation, wideband tuning (dashed line), 125W input power, tuned sig-
nal recycling; late operation, 125W input power, detuned signal recycling.
The best sensitivity obtained with Virgo+ is shown for comparison. Figure
taken from [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Gaussian beam parameters. Θ is defined as Θ = 2θ. Figure taken from [22] 24
4.2 The two parabolic telescopes in Advanced Virgo. . . . . . . . . . . . . . . 25
4.3 Optical layout of the mode-matching telescopes in Advanced Virgo. . . . 26
4.4 Picture of the output mode-matching telescope mounted on its bench in

Advanced Virgo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Set-up for the alignment of the angular degrees of freedom of M1 and M2

mirrors with autocollimators and a reference flat mirror. . . . . . . . . . 28
4.6 Scheme of the experimental set-up for the tuning procedure of the mode-

matching telescope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7 Back-reflected beam in presence of slight misalignment of the telescope: (a)

non-perfect superposition of the parabola axes in horizontal and vertical
direction, (b) wrong horizontal off-axis. . . . . . . . . . . . . . . . . . . . 30

4.8 (a) Beam at the input of the telescope; (b) Back-reflected beam in a good
alignment configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

44



4.9 Waist radius w0 and waist position z0 versus the longitudinal position zl of
M1. The zero in the horizontal scale corresponds to the nominal position.
Circles and squares are experimental data; error bars are from least-squares
fit made with equation (4.2); solid lines are values from the numerical
simulation. An offset of −0.6 mm has been applied to the horizontal scale
of the simulation, in order to match the experimental data. . . . . . . . . 32

4.10 The simulation configuration and the reference beam parameters at the
point of observation with an illustration of the beam relative intensity
profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.11 Plot of the beam X and Y position as functions of the error on M1 θx
angular position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.12 Example of the beam relative intensity profile for different errors. . . . . 33
4.13 Effect of errors on the M1 yaw angular position and on the off-axis dis-

tance: (a) trend of the beam size along the horizontal direction; (b) trend
of the size along the vertical direction; (c) image of the beam shape in the
configuration indicated with a cross in the plots; (d) horizontal position of
the beam at a distance of 2 m from M2 (results obtained with ZEMAX [18]
simulations). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.14 Overlap Integral in a single pass configuration vs. Overlap integral in a
double-pass configuration for different amplitude of different errors (blue
curve = longitudinal distance between the two mirrors; green curve =
off-axis distance between the two mirrors; red curve = M1 pitch angle). . 36

4.15 Optical layout of the experiment. . . . . . . . . . . . . . . . . . . . . . . 37
4.16 Picture of the experiment in the laboratory. . . . . . . . . . . . . . . . . 38
4.17 Acquired beam profile (left) and simulated beam profile when an error on

M1 roll (θx) is introduced. (right) . . . . . . . . . . . . . . . . . . . . . 39
4.18 Beam profile before (left) and after (right) tuning procedure. . . . . . . 39
4.19 The TEM00 (left) and LG01 (right) modes. Figure taken from [22] . . . . 40
4.20 Output signal of the photodiode during the scanning of the cavity. The

peak on the left is the TEM00 while the one on the right is the LG01. The
corresponding quality factor is 1.3%± 0.1%. . . . . . . . . . . . . . . . . 41

45



List of Tables

4.1 Errors analysis results. The highlighted values are the most critical values
for each error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

46



Bibliography

[1] M. Maggiore, Gravitational Waves. Vol. 1: Theory and Experiments, Oxford Uni-
versity Press, Oxford, 2007.

[2] P. R. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors,
World Scientific, Singapore, 1994.

[3] D. G. Blair (ed.), The Detection of Gravitational Waves, Cambridge University
Press, Cambridge, 1991.

[4] D. G. Blair (ed.), et al., Advanced Gravitational Wave Detectors, Cambridge Uni-
versity Press, Cambridge, 2012.

[5] M. Bassan (ed.), Advanced Interferometers and the Search for Gravitational Waves,
Springer, Switzerland, 2014.

[6] F. Acernese et al. (Virgo Collaboration), Classical Quantum Gravity, 25, 184001,
2008.

[7] B.P. Abbott et al. (LIGO Scientific Collaboration), Rep. Prog. Phys. 72, 076901,
2009.

[8] M. Barsuglia et al., Virgo Internal Note VIR-0010B-12, 2012.

[9] A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie, Annalen der Physik
354, 769 (1916)

[10] M. Maggiore, Gravitational wave experiments and early universe cosmology, Phys.
Rep. 331, 283 (2000)

[11] A. Abramovici et al., LIGO: The Laser Interferometer Gravitational-Wave Obser-
vatory, Science 256, 325 (1992)

[12] C. Bradaschia et al., The VIRGO Project: A wide band antenna for gravitational
wave detection, Nucl. Instrum. Meth. A 289, 518 (1990)

[13] B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, E. L. Ginzton, P. J. King, S. U.
Seel and R. L. Savage Jr., Spatial and temporal altering of a 10-W Nd:YAG laser
with a Fabry-Perot ring-cavity premode cleaner, Opt. Lett. 23, 1704 (1998)

[14] F. Acernese et al. (Virgo Collaboration), Class. Quantum Grav., 32, 024001, 2015.

[15] The LIGO Scientific Collaboration, Advanced LIGO, Class. Quantum Grav. 32
074001 (2015).

47



[16] J. Aasi et al. (LIGO Scientific Collaboration and Virgo Collaboration),
arXiv:1304.0670v1, 2013.

[17] C. Buy, E. Genin, M. Barsuglia, R. Gouaty, M. Tacca, Design of a high-
magnification and low-aberration compact catadioptric telescope for Advanced Virgo
laser interferometer, Paper in preparation.

[18] M. Tacca, F. Sorrentino, C. Buy, M. Laporte, G. Pillant, E. Genin, P. La Penna and
M. Barsuglia, Tuning of a high magnification and low aberration compact parabolic
telescope for cm-scale laser beams (to be submitted).

[19] ttp://www.zemax.com

[20] http://www.ligo.org/science/GW-Inspiral.php

[21] https://inspirehep.net/record/1223270/plots

[22] https://en.wikipedia.org/wiki/Gaussian beam

48


	Introduction
	Outline of the Thesis
	Author's Contribution
	Gravitational waves and their sources
	Gravitational waves
	Einstein equations and its Wave solution
	Emission of gravitational waves

	Astrophysical sources of gravitational waves
	Coalescing binaries
	Pulsars
	Magnetars
	Supernovae
	Stochastic background


	Interferometric detection of gravitational waves
	Geodesic deviation
	Michelson interferometers
	Noise sources
	Sensitivity improvements
	Fabry-Pérot arm cavity
	Power recycling
	Mode-cleaner cavities


	Virgo and Advanced Virgo
	Virgo, a first generation detector
	The Virgo initial optical layout
	Infrastructure

	Advanced Virgo
	Improvements
	Sensitivity goals


	The telescopes in Advanced Virgo
	Mode-matching telescopes in Advanced Virgo
	Tuning of the output mode-matching telescope
	Tuning procedure
	Figure of merit
	Experimental results

	Errors simulation
	Single error analysis
	Coupled errors analysis
	Experimental results validation: single-pass configuration vs double-pass configuration.

	Wavefront sensor and cavity experiment
	Experimental setup
	Tuning procedure
	Mode-matching experimental results


	Conclusion
	Acknowledgement
	Bibliography

