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1 Introduction

The Gauss-Bonnet theorem is a profound result in differential geometry that establishes a re-
markable connection between the geometry of a surface and its topology. Named after Carl
Friedrich Gauss and Pierre Ossian Bonnet, this theorem encapsulates the intrinsic curvature of
a two-dimensional manifold.

At its core, the theorem relates the integral of the Gaussian curvature over a surface to topo-
logical invariants. For a closed, orientable surface (think of a compact, boundary-free shape like a
sphere or a torus), the Gauss-Bonnet theorem states that the integral of the Gaussian curvature is
equal to 2π times the Euler characteristic of the surface.

Mathematically, the theorem can be expressed as:∫
S

K dA = 2πχ(M) (1)

Here, S represents the surface, K is the Gaussian curvature, dA is the area element, and
χ(M) denotes the Euler characteristic of the underlying manifold M . The Euler characteristic is a
topological invariant that captures the essence of the surface’s ”holes” or handles.

In essence, the Gauss-Bonnet theorem beautifully connects local geometry (Gaussian curva-
ture) with global topology (Euler characteristic). This bridge between differential and topological
properties has profound implications in various fields, including physics and mathematics. It’s a
testament to the deep interplay between geometry and topology, revealing the intrinsic beauty and
unity in mathematical structures. In this note, we’re handing you the mathematical tools you need
to dive into the proof of (1), fully based on [1].

Rotation Index and Curved Polygon

Consider the function γ : [a, b] → R2 representing an admissible curve within the plane. We call γ
to be a simple closed curve if it adheres to the condition γ(a) = γ(b) while maintaining injectivity
across the interval [a, b]. The unit tangent vector field along γ is denoted as T and is defined on
each smooth segment as follows:

T (t) =
γ′(t)

∥γ′(t)∥
.
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Given that each tangent space to R2 naturally corresponds to R2 itself, we conceptualize T as a
mapping into R2. Notably, as a consequence of its unit length, T takes values within the unit circle
S1.

In instances where γ is a smooth (or at least continuously differentiable) curve, we intro-
duce a tangent angle function for γ as a continuous function θ : [a, b] → R such that T (t) =
(cos θ(t), sin θ(t)) for all t ∈ [a, b]. The existence of such a function is derived from the theory of
covering spaces, where the map q : R → S1 defined by q(s) = (cos s, sin s) serves as a smooth cover-
ing map. The path-lifting property of covering maps ensures the existence of a continuous function
θ : [a, b] → R satisfying q(θ(t)) = T (t). The unique lifting property establishes the uniqueness of
a lift once its value at any single point is determined, with any two lifts differing by a constant
integral multiple of 2π.

In the scenario where γ is a continuously differentiable simple closed curve with γ′(a) = γ′(b),
we observe that (cos θ(a), sin θ(a)) = (cos θ(b), sin θ(b)), resulting in θ(b) − θ(a) being an integral
multiple of 2π. For such cases, we introduce the rotation index of γ as the following integer:

ρ(γ) =
1

2π
(θ(b)− θ(a)) .

Here, θ represents any tangent angle function for γ. Notably, the rotation index remains inde-
pendent of the chosen tangent angle function, as θ(a) and θ(b) undergo changes by the addition of
the same constant for any alternative θ.

Rotation Index of Piece-wise Regular Closed Curves

Assume γ : [a, b] → R2 is an admissible simple closed curve, and (a0, . . . , ak) be an admissible
partition of [a, b]. The possible singular (non-smooth) points of γ(ai) are called the vertices of γ
and each piece γ|[ai−1,ai] is called an edge or a side. We can investigate three scenarios (recall

that at any vertex ai on the curve there are left-hand and right-hand velocity vectors γ′(a−i ) and
γ′(a+i ) respectively. These are tangent, with respect to the orientation of γ, to the ”incoming and
outcoming edges” respectively. See Figure 1 for details.):

1. If T (a−i ) ̸= ±T (a+i ), then γ(ai) is an ordinary vertex.

2. If T (a−i ) = T (a+i ), then γ(ai) is a flat vertex.

3. If T (a−i ) = −T (a+i ), then γ(ai) is a cusp vertex.

Now, we can define the exterior angle at γ(ai) to be the oriented measure ϵi of the angle from T (a−i )
to T (a+i ), chosen to be in the interval (−π, π), with a positive sign if

(
T (a−i ), T (a

+
i )

)
is an oriented

basis for R2, and a negative sign otherwise; see Figure 1. Throughout this note, we exclude the
possibility of a cusp vertex in γ since the definition of the exterior angle is not well-defined in such
cases.

Definition 1.1. A curved polygon in the plane is an admissible simple closed curve without cusp
vertices, whose image is the boundary of a precompact open set Ω ⊂ R2. The set Ω is called the
interior of γ.

Let γ : [a, b] → R2 represent a curved polygon. If γ is parameterized in such a way that at
its smooth points, the tangent vector γ′(t) aligns positively with the induced orientation on ∂Ω
as per Stokes’s theorem, we designate γ as positively oriented. In simpler terms, this implies that
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Figure 1: [1] Fig. 9.2 & Fig. 9.3. The above are depictions of an exterior angle and a cusp vertex.
Notice how the vectors T (a+i ) and T (a−i ) are tangent to different edges of the curve γ.

γ is parametrized in the counterclockwise direction, or, in an intuitive sense, that Ω consistently
resides to the left of γ. Before stating rotation index for a curved polygon γ : [a, b] → R2, we need
the notion of tangent angle function for γ. This can be done by defining θ(ai) = limt→a−

i
θ(t) + ϵi

and θ(b) = limt→b− θ(t) + ϵk, where ϵi is the exterior angle at γ(ai). For this curve, we define the
rotation index of γ to be ρ(γ) = 1

2π (θ(b)− θ(a)); see (2).

Figure 2: [1] Fig. 9.5 & Fig. 9.6

Theorem 1.1 ([1], Theorem 9.1). The rotation index of a positively oriented curved polygon in the
plane is +1.
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The Gauss-Bonnet Formula

The concept of curved polygon and rotation index can be viewed on an oriented Riemannian
2-manifold (M, g) instead of the plane.

Curved polygon on M : Take an admissible simple closed curve γ : [a, b] → M such that the
image of γ is the boundary of a precompact open set Ω ⊆ M , and there is an oriented smooth
coordinate disc Ω such that the image of γ is a curved polygon in the corresponding chart; see
Section 1.

Exterior angle of γ at γ(ai): Let T (t) = γ′(t)/|γ′(t)|g then the oriented measure ϵi is defined
by the angle from T (a−i ) to T (a+i ) with respect to the g-inner product and the given orientation of
M i.e.,

ϵi =
dVg(T (a

−
i ), T (a

+
i ))

|dVg(T (a
−
i ), T (a

+
i ))|

arccos⟨T (a−i ), T (a
+
i )⟩g. (2)

Now, we seek a curved polygon rotation index theorem tailored for M . Imagine γ : [a, b] → M
as a curved polygon with Ω as its interior. Let (U, ϕ) be a smoothly oriented chart containing Ω.
Using the coordinate map ϕ to project γ, Ω, and g onto the plane, we can assume g is a metric on
an open subset Û ⊂ R2, and γ is a curved polygon in Û . Define an oriented orthonormal frame
(E1, E2) for g via the Gram–Schmidt algorithm on (∂x, ∂y), ensuring E1 is a positive scalar multiple

of ∂x throughout Û .
We introduce a tangent angle function for γ as a piecewise continuous function θ : [a, b] → R

satisfying
T (t) = cos θ(t)E1|γ(t) + sin θ(t)E2|γ(t)

where γ′ is continuous, and it is continuous from the right at vertices. The existence of such a
function follows as in the planar case, utilizing the fact that

T (t) = u1(t)E1|γ(t) + u2(t)E2|γ(t)

for piecewise continuous functions u1, u2 : [a, b] → R viewed as coordinate functions of a map
(u1, u2) : [a, b] → S1 since T has unit length.
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The rotation index of γ is ρ(γ) = 1
2π (θ(b)− θ(a)). Despite the role of the specific frame

(E1, E2) in the definition, it’s not immediately evident that the rotation index has any coordinate-
independent meaning. However, an easy consequence of the rotation index theorem shows that it
is independent of coordinate choice.

Lemma 1.1 (Lemma 9.2, [1]). For an oriented Riemannian 2-manifold M , the rotation index of
every positively oriented curved polygon in M is +1.

From this point onward, we assume for convenience that our curved polygon γ is given a unit-
speed parametrization, so the unit tangent vector field T (t) is equal to γ′(t). There is a unique
unit normal vector field N along the smooth portions of γ such that (γ′(t), N(t)) is an oriented
orthonormal basis for Tγ(t)M for each t. If γ is positively oriented as the boundary of Ω, this is
equivalent to N being the inward-pointing normal to ∂Ω. We define the signed curvature of Ω at
smooth points of γ by

κN (t) = ⟨Dtγ
′(t), N(t)⟩g.

By differentiating |γ′(t)|2 = 1, we see that Dtγ
′(t) is orthogonal to γ′(t), and therefore we can

write Dtγ
′(t) = κN (t)N(t), and the (unsigned) geodesic curvature of γ is κ(t) = |κN (t)|. The sign

of κN (t) is positive if γ is curving toward Ω, and negative if it is curving away.

Theorem 1.2 (The Gauss–Bonnet Formula). Let (M, g) be an oriented Riemannian 2-manifold.
Suppose γ is a positively oriented curved polygon in M , and Ω is its interior. Then∫

Ω

K dA+

∫
γ

κNds+

k∑
i=1

ϵi = 2π, (3)

where K is the Gaussian curvature of g, dA is its Riemannian volume form, and θ1, . . . , θk are
the exterior angles of γ. The second integral is taken with respect to arc length.

Proof. Let (a0, . . . , ak) be an admissible partition of [a, b], and let (x, y) be oriented smooth coor-
dinates on an open set U containing Ω. Let θ : [a, b] → R be a tangent angle function for γ. Using
the rotation index theorem one can write

2π = θ(b)− θ(a) =

k∑
i=1

ϵi +

k∑
i=1

∫ ai

ai−1

θ′(t)dt. (4)

Let (E1, E2) be the oriented g-orthonormal frame as before. At smooth points of γ the following
formula holds:

γ′(t) = cos θ(t)E1|γ(t) + sin θ(t)E2|γ(t) (5)

N(t) = − sin θ(t)E1|γ(t) + cos θ(t)E2|γ(t) (6)

By differentiating γ′ we get

Dtγ
′ = −(sin θ)θ′E1+(cos θ)∇γ′E1+(cos θ)θ′E2+(sin θ)∇γ′E2 = θ′N+(cos θ)∇γ′E1+(sin θ)∇γ′E2

(7)
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Now, we are interested in covariant derivatives of E1 and E2. Since (E1, E2) is an orthonormal
frame, for every vector v, thus

0 = ∇v|E1|2 = 2⟨∇vE1, E1⟩,
0 = ∇v|E2|2 = 2⟨∇vE2, E2⟩,
0 = ∇v(E1, E2) = ⟨∇vE1, E2⟩+ ⟨E1,∇vE2⟩.

The first two equations show that ∇vE1 is a multiple of E2 and ∇vE2 is a multiple of E1. Define
a 1-form ω by

ω(v) = ⟨E1,∇vE2⟩ = −⟨∇vE2, E1⟩
It follows that the covariant derivatives of the basis vectors are given by

∇vE1 = −ω(v)E2; (8)

∇vE2 = ω(v)E1 (9)

Therefore, we can compute the signed curvature of γ as follows:

κN = ⟨Dtγ
′, N⟩

= ⟨θ′N,N⟩+ cos θ⟨∇γ′E1, N⟩+ sin θ⟨∇γ′E2, N⟩
= θ′ − cos θ⟨ω(γ′)E2, N⟩+ sin θ⟨ω(γ′)E1, N⟩
= θ′ − cos2 θω(γ′)− sin2 θω(γ′)

= θ′ − ω(γ′).

Therefore, (4) becomes

2π =

k∑
i=1

ϵi +

k∑
i=1

∫ ai

ai−1

κN (t)dt+

k∑
i=1

∫ ai

ai−1

ω(γ′(t))dt

=

k∑
i=1

ϵi +

∫
γ

κNds+

∫
γ

ω.

So, we only need to prove ∫
γ

ω =

∫
Ω

KdA. (10)

Because Ω is a smooth manifold with corners, we can apply Stokes’s theorem and conclude that
the left-hand side of (10) is equal to

∫
Ω
dω. The last step of the proof is to show that dω = KdA.

Since (E1, E2) is an oriented orthonormal frame, we have that that dA(E1, E2) = 1 (see [1], Prop
2.41). Therefore, we have

KdA(E1, E2) = K

= R(E1, E2, E2, E1) = ⟨∇E1∇E2E2 −∇E2∇E1E2 −∇[E1,E2]E2, E1⟩
= ⟨∇E1(ω(E2)E1)−∇E2(ω(E1)E1)− ω([E1, E2])E1, E1⟩
= ⟨E1(ω(E2))E1 + ω(E2)∇E1E1 − E2(ω(E1))E1 − ω(E1)∇E2E1 − ω([E1, E2])E1, E1⟩
= E1(ω(E2))− E2(ω(E1))− ω([E1, E2])

= dω(E1, E2).
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The global Gauss-Bonnet

Figure 3: An example of a simplicial complex

Recall first, that a simplicial complex K is a set of simplices such that for every σ ∈ K

• For every face τ of σ, we have τ ∈ K

• If σ1, σ2 ∈ K and τ = σ1 ∩ σ2 is non-empty, then τ is a face of both σ1 and σ2.

Let X be any (topological) manifold. A triangulation of X is a pair (X̃, h), where X̃ is the
realization of some simplicial complex and h : X̃ → X is a homeomorphism. Similarly, we may define
smooth triangulations; for general smooth manifolds X, a smooth triangulation is a triangulation
s.t h|σ : σ → X is a smooth embedding. Let M be a smooth, compact Riemannian 2-manifold; the
definition of smooth triangulation will be more restrictive.

Definition 1.2. • A curved triangle in M is a curved polygon with exactly three vertices and
three edges.

• A smooth triangulation of M is a finite collection of curved triangles with disjoint interi-
ors, such that the union of the triangles with their interiors is M , and the (if non-empty)
intersection of any pair of triangles is either a vertex in each or a single edge of each.

In general, a manifold M may have many different triangulations (which are of course same up
to homeomorphism).

Remark. The definition of a smooth triangulation is precisely that of a triangulation, where the
simplicial complex is built out of curved triangles. One should think of a smooth triangulation as
approximating a manifold via a smooth simplicial complex.

The requirement to be smoothly triangulable is not restrictive; any smooth, compact surface
has a smooth triangulation. In fact, every compact topological 2-manifold has a (not necessarily
smooth) triangulation and any smooth n-manifold has a smooth triangulation (this is a theorem of
Whitehead).

In order to pass from the Gauss-Bonnet formula, which is a local statement, to the Gauss-
Bonnet theorem, which is a global statement, we will use smooth triangulations on M . Suppose in
the sequel that M is triangulated.

Definition 1.3. The Euler characteristic χ of M with respect to a given triangulation is

χ(M) = V − E + F,

where V,E, F are respectively the numbers of vertices, edges and faces in the triangulation.
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The Euler characteristic is invariant under homeomorphism (even homotopy equivalence), so
thus in particular under diffeomorphisms and isometries. Thus, the choice of triangulation does not
matter.

Theorem 1.3 (Gauss-Bonnet, [1] Thm. 9.7). If (M, g) is a smootly triangulated compact Rieman-
nian 2-manifold, then ∫

M

KdA = 2πχ(M),

where K is the Gaussian curvature of M and dA is its Riemannian density.

If M is orientable, the Riemannian density dA is given as |dVg|, where dVg is the Riemannian
volume form. The proof will be split into two cases, based on whether M is orientable or not. Note,
that we may assume M is connected; if not, we integrate over each component and take the sum
of the integrals.

Proof when M is orientable. Suppose M is orientable. Choose an orientation and interpret the
integral

∫
M

KdA as integration with respect to the Riemannian volume form (since M is orientable,
this is equal to integrating w.r.t the density). Let {Ωi | i = 1, . . . , F} denote the faces of the
triangulation, and for each i, let {γij | j = 1, 2, 3} denote the edges of Ωi and {θij | j = 1, 2, 3}
its interior angles. Each exterior angle is π − θij , so applying the Gauss-Bonnet formula to each
triangle and summing over i we have

F∑
i=1

∫
Ωi

KdA+

F∑
i=1

3∑
j=1

∫
γij

κNds+

F∑
i=1

3∑
j=1

(π − θij) =

F∑
i=1

2π. (11)

Suppose we look at a single triangle Ωi and its edges γi1, γi2, γi3. Then to each edge there will
correspond another face of the triangulation, which will necessarily have opposite orientation. Thus
all the edge integrals in (11) cancel out. Since the Ωi cover M , we simplify (11) to get∫

M

KdA+ 3πF −
F∑
i=1

3∑
j=1

θij = 2πF. (12)

Note, that similarly each interior angle θij appears exactly once. Furthermore, the interior angles
at a vertex have to add up to 2π, so we may rearrange the sum of the angles in (12) to get∫

M

KdA = 2πV − πF. (13)

Since each edge appears in exactly two triangles and each triangle has exactly three edges, the total
number of edges counted with multiplicity is 2E = 3F ; we count each edge once for each triangle
it appears in. Thus F = 2E − 2F , so (13) becomes∫

M

KdA = 2πV − 2πF + 2πE = 2πχ(M).

For the non-orientable case, we need more tools.
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Proposition 1 ([2] Thm. 15.41, [1] B.18). If M is a connected, non-orientable smooth manifold,
then there exists an oriented smooth manifold M̂ and a two-sheeted smooth covering map π̂ : M̂ →
M .

This covering is often called the orientation double cover; the existence of the orientation double
cover in particular means we can always pass to an orientable manifold.

One can show given a finite covering π̂ : M̂ → M , that compactness of M implies compactness
of M̂ (in fact, this can be refined to say that M is compact and M̂ → M is a finite sheeted covering
if and only if M̂ is compact).

Proof when M is non-orientable. Choose an oriented smooth manifold M̂ covering M as above, so
that M̂ is compact. We give M̂ the pullback metric ĝ = π̂∗g. Then the Riemann density of M̂

is d̂A = π̂∗dA and the curvature is K̂ = π̂∗K. Thus π̂∗(KdA) = K̂d̂A. One can show that for a
k-sheeted Riemannian covering M̂ → M of connected compact Riemannian manifolds there is an
equality

V ol(M̂) = k · V ol(M).

Thus, we get ∫
M̂

K̂d̂A = 2

∫
M

KdA,

as our chosen covering is 2-sheeted. All that is left is to compare the Euler characteristics of M̂ and
M . To do this, we show that the triangulation of M lifts to a triangulation on M̂ . Let γ be any
curved triangle inM with interior Ω. By definition, there exists a smooth chart (U, ϕ) whose domain
contains Ω̄ and whose image is a disk D ⊂ R2, where ϕ(Ω̄) = Ω̄0 and Ω̄0 is the interior of a curved
triangle γ0 in R2. Now ϕ−1 is an embedding of D into M , which restricts to a diffeomorphism
F : Ω̄0 → Ω̄. Covering space theory tells us the following: because D is simply connected, ϕ−1

has a lift to M̂ which is smooth, since π̂ is a local diffeomorphism. Because the covering is 2-
sheeted, there are exactly two such lifts F1 and F2. Each lift is injective, since π̂ ◦Fi = F and their
images are disjoint, since if they were to agree at a point, the lifts would be the same. From this
one verifies that the triangulation of M̂ given by lifting curved triangles of M using the maps Fi

gives a triangulation which has exactly two times the number of vertices, edges and faces. Thus
χ(M̂) = 2χ(M). Thus, applying the orientable Gauss-Bonnet theorem for the manifold M̂ , we get∫

M

KdA =
1

2

∫
M̂

K̂d̂A =
1

2
· 2πχ(M̂) = πχ(M̂) = 2πχ(M),

which finishes the proof.

The Gauss-Bonnet theorem has significant implications not only on the possible Gaussian cur-
vatures of compact surfaces but also on the topological properties of the given manifold. Recall that
every compact, connected orientable 2-manifold M is homeomorphic to a sphere or a connected
sum of n tori, and every non-orientable such manifold is homeomorphic to a connected sum of n
copies of RP 2. The number n is called the genus of M ; one can show that χ(M) = 2 − 2n for an
orientable surface and χ(M) = 2−n for a non-orientable surface. We obtain the following corollary.

Corollary 1. Let (M, g) be a compact Riemannian 2-manifold and let K be its Gaussian curvature.

1. If M is homeomorphic to the sphere or the projective plane, then K > 0 for some point on
M .

9



2. If M is homeomorphic to the torus or the Klein bottle, then K = 0, or K takes on both
positive and negative values.

3. If M is any other compact surface, then K < 0 for some point on M .

Proof. The proof is immediate from the Gauss-Bonnet theorem and knowledge of the Euler char-
acteristics of the given surfaces.

The corollary has a deep converse: if K is any smooth function on a compact 2-manifold M
with the sign conventions of the above corollary, then there is a Riemannian metric g on M , such
that K is the Gaussian curvature of M .

Exercises

Exercise 1

Let (M, g) be a compact Riemannian 2-manifold and K its Gaussian curvature.

1. If K > 0 everywhere on M , then the universal covering M̃ of M is (homeomorphic to) S2

(the 2-sphere), and π1(M) is either trivial or (isomorphic to) Z/2.

2. If K ≤ 0 everywhere on M , then M̃ is (homeomorphic to) R2 and π1(M) is infinite.

Hint: use the classification theorem of compact surfaces and knowledge of the Euler characteristics
of compact surfaces. In 2), use the fact that any fiber of a covering M̃ → M has the cardinality of
π1(M).

Exercise 2

Let M ⊂ R3 be a compact, embedded, 2-dimensional Riemannian submanifold. Show that M
cannot have K ≤ 0 everywhere. Hint: look at a point p ∈ M where the distance from the origin is
maximized; study the principal curvatures at p.

Exercise 3

Let M ⊂ R3 be a compact, connected, regular orientable 2-dimensional Riemannian submanifold,
which is not homeomorphic to a sphere. Show that M has points where the Gaussian curvature is
negative, positive and zero. Hint: use Exercise 2 and the Gauss-Bonnet theorem.
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