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today:

• Cartan’s Theorem, and the specific case of constant curvature manifolds;

• Main theorem:

Theorem. Any complete Riemannian manifold with constant curvature
has its universal covering space, with the covering metric, isometric to Hn,
Rn or Sn.

• Some group theory and covering spaces.

Remark 0.1. If you dilate the metric by c, then the sectional curvature gets
multiplied by 1

c .

Thus we are just going to assume that the possible constant curvatures are
−1, 0, 1.

1 Theorem of Cartan

Let M and M̃ be two n-dimensional Riemannian manifolds and p ∈ M , p̃ ∈ M̃
two points. Let ι : TpM → Tp̃M̃ be a linear isometry and V be a neighborhood

of p such that expp̃ is defined on ι(exp−1
p (V )). Define f : V → M̃ as

f := expp̃ ◦ι ◦ exp−1
p .

In order to define a second map that we are going to use, note that for every
q ∈ V there exists a unique normalized geodesic

γ : [0, l] →M

0 7→p

l 7→q

.

We also need to define for every q the parallel transport along γ Pl : TpM →
TqM from p = γ(0) to q = γ(l) and P̃l the parallel transport along γ̃ : [0, l] → M̃
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(the unique normalized geodesic with γ̃(0) = p̃ = f(p), γ̃(l) = f(q), γ̃′(0) =
ι(γ′(0))). We then can define the map

ϕl = P̃l ◦ ι ◦ P−1
l : TqM → Tf(q)M̃

which is a linear isometry (it is the composition of linear isometries). Finally,
let R be the curvature of M and R̃ the curvature of M̃.

Theorem 1.1 (Cartan). With the notation above, if for every q ∈ V, x, y, u, v ∈
TqM we have

⟨R(x, y)u, v⟩ = ⟨R̃(ϕl(x), ϕl(y))ϕl(u), ϕl(v)⟩,

then f : V → f(V ) is a local isometry and dfp = ι.

Proof. Let v be an element of TqM and J the Jacobi field along γ with J(0) = 0
and J(l) = v. Let e1, . . . , en−1, γ

′(0)(:= en) an orthonormal basis of TpM and
ei(t) = Pt(ei) for every i (this is still an orthonormal basis, of Tγ(t)M). Then
we can write J as

J(t) =
∑
i

yi(t)ei(t).

Since this satisfies the Jacobi equation

D2

dt2

∑
i

yi(t)ei(t) +R

(∑
i

yi(t)ei(t), en(t)

)
en(t) = 0,

it must satisfy〈
D2

dt2

∑
i

yi(t)ei(t) +R

(∑
i

yi(t)ei(t), en(t)

)
en(t), ej(t)

〉
= 0

for every j, so we have that

y′′j (t) +
∑
i

⟨R(ei(t), en(t))en(t), ej(t)⟩yi(t) = 0

for every j = 1, . . . , n.
If we consider J̃ the vector field along γ̃ given by J̃(t) = ϕt(J(t)), t ∈ [0, l]

and ẽi(t) = ϕt(ei(t)), by linearity of ϕt we get

J̃(t) = ϕt

(∑
i

yi(t)ei(t)

)
=
∑
i

yi(t)ϕt(ei(t)) =
∑
i

yi(t)ẽi(t).

Since by hypothesis ⟨R(ei(t), en(t))en(t), ej(t)⟩ = ⟨R̃(ẽi(t), ẽn(t))ẽn(t), ẽj(t)⟩,
then also J̃ is a Jacobi field. Moreover,

J̃(0) = ϕt(J(0)) = ϕt(0) = 0
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since ϕt is linear and
|J̃(t)| = |ϕt(J(t))| = |J(t)|

since ϕt is an isometry. In particular, for t = l, we get that |J̃(l)| = |J(l)| = |v|
We claim that

J̃(l) = dfq(v).

Then, for u, v ∈ TqM, we will get

⟨u, v⟩q = ⟨Ĵ(l), J(l)⟩q = ⟨ ˜̂J(l), J̃(l)⟩q = ⟨dfq(u), dfq(v)⟩q,

for Ĵ the Jacobi field with Ĵ(l) = u. Hence, f is a local isometry.
Let’s now prove the claim. Using Corollary 1.4.6, we get

J(t) = (d expp)tγ′(0)(tJ
′(0)),

J̃(t) = (d expp̃)tγ̃′(0)(tJ̃
′(0)).

Thus

lι(J ′(0)) = ι(lJ ′(0)) = ι

(
l
(d expp)

−1
lγ′(0)J(l)

l

)
since ι is an isometry, and thanks to the fact that J̃ ′(0) = ι(J ′(0)),

J̃(l) =(d expp̃)lγ̃′(0)(lJ̃
′(0)) = (d expp̃)lγ̃′(0)(lι(J

′(0))) =

=(d expp̃)lγ̃′(0)(ι(d expp)
−1
lγ′(0)J(l)) =

=(d expp̃)lγ̃′(0) ◦ ι ◦ (d expp)−1
lγ′(0)(J(l)) = dfq(J(l)).

Remark 1.2. Note that if expp and expp̃ are diffeomorphisms, then f is defined
on M and it is an isometry.

Corollary 1.3. Let M,M̃ be two n-dimensional Riemannian manifolds of con-
stant curvature κ and p ∈ M, p̃ ∈ M̃ two points. Suppose we have two orthonor-
mal bases {ej}j=1,...,n of TpM and {ẽj}j=1,...,n of Tp̃M̃. Then there exists a

neighborhood V of p, a neighborhood Ṽ of p̃ and a map f : V → Ṽ such that
dfp(ej) = ẽj .

Proof. Choose a linear isometry ι such that for every j ι(ej) = ẽj . We want
to show that the condition on the curvature of the theorem is satisfied. By
Corollary 6.2.7, Lecture notes differential geometry, we have that the curvature
is costant if and only if ⟨R(x, y)u, v⟩ = κ(⟨x, v⟩⟨y, u⟩ − ⟨x, u⟩⟨y, v⟩) for every
x, y, u, v ∈ TqM , so

⟨R(x, y)u, v⟩ =κ(⟨x, v⟩⟨y, u⟩ − ⟨x, u⟩⟨y, v⟩) =
=κ(⟨ϕl(x), ϕl(v)⟩⟨ϕl(y), ϕl(u)⟩ − ⟨ϕl(x), ϕl(u)⟩⟨ϕl(y), ϕl(v)⟩) =
=⟨R(ϕl(x), ϕl(y))ϕl(u), ϕl(v)⟩

(because ϕl is an isometry). Thus f : V → f(V ) =: Ṽ is a local isometry and
dfp = ι. Up to restricting V and Ṽ , we can assume f to be an isometry.

3



As a direct consequence of this corollary, choosing M = M̃, we get the
following.

Corollary 1.4. Let M be an n-dimensional Riemannian manifold of constant
curvature κ and p, q ∈ M a point. Suppose we have two orthonormal bases
{ej}j=1,...,n of TpM and {fj}j=1,...,n of TqM. Then there exists a neighborhood
U of p, a neighborhood V of q and a map g : U → V such that dgp(ej) = fj .

2 Classification of constant curvature manifolds

Before proceeding, we are going to state and prove a lemma that we will need
in the main theorem of today.

Lemma 2.1. Let M,N be two Riemannian manifolds, M connected and f1, f2 :
M → N two local isometries. If there exists a point p ∈ M such that f1(p) =
f2(p) and (df1)p = (df2)p, then f1 ≡ f2.

Proof. Let V be a neighborhood of p such that the restrictions f1|V , f2|V are
diffeomorphisms. For any q ∈ V , there exists a unique v ∈ TpM such that
expp(v) = q. Thus, since fi|V are local isometries and diffeomorphisms, they
are isometries and

f2(q) =f2(expp(v)) = expf2(p)((df2)p(v)) = expf1(p)((df1)p(v)) = f1(expp(v)) =

=f1(q)

and since q was arbitrary, f1|V ≡ f2|V .
Now, since M is connected, for any r ∈ M there exists a path α : [0, 1] → M

such that α(0) = p, α(1) = r. Consider the set

A = {t ∈ [0, 1]| f1(α(t)) = f2(α(t)) and (df1)α(t) = (df2)α(t)}.

By what we just proved, since V \{p} ≠ ∅, there will exists a t0 ∈ (0, 1] such that
α(t0) ∈ V and t0 ∈ A. Thus, 0 < t0 ≤ supA. Suppose by contradiction that
supA < 1. If supA = t1 < 1, we can repeat the argument about the existence
of a neighborhood V of p to a neighborhood of α(t1), and get a contradiction.
Thus, supA = 1, so f1(r) = f2(r), for all r ∈ M.

Another result we will need in the proof of the next theorem is the following.

Lemma 2.2. Let M be a complete Riemannian manifold and let f : M → N
be a surjective local diffeomorphism onto a Riemannian manifold N with the
following property: for all p ∈ M, v ∈ TpM , |dfp(v)| ≥ |v|. Then f is a covering
map.

Proof. Check Lemma 3.3, Chapter 7, M. P. do Carmo, Riemannian Geometry.

We can now take a look at the main theorem of this lecture. Before doing
that, note that by the first remark of today 0.1, we can assume that the constant
curvature of the manifold will be −1 = κ(Hn),0 = κ(Rn) or 1 = κ(Sn).
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Theorem 2.3. Any complete Riemannian manifold M with constant curvature
κ has its universal covering space M̃ , with the covering metric, isometric to:

1. Hn if κ = −1;

2. Rn if κ = 0;

3. Sn if κ = 1.

Proof. Since M̃ is the universal cover, it is simply connected. Moreover, it is
complete Riemannian and since it has the covering metric, its sectional curvature
is κ.

Note that in Hn and Rn, the exponential map is well defined everywhere,
whereas in Sn is only a local diffeomorphism. Thus we are going to divide the
first two cases from the third.

Denote by ∆ Hn as well as Rn. Pick two points p ∈ ∆, p̃ ∈ M̃ and a
linear isometry ι : Tp∆ → Tp̃M̃. The map f = expp̃ ◦ι ◦ expp : ∆ → M̃ is

well defined (∆ and M̃ are complete with non-positive curvature). From the
first corollary of Cartan’s Theorem 1.3, f is a local isometry. By Lemma 2.2,
since for p dfp = ι is an isometry and thus |dfp(v)| = |v| ≥ |v| and for q ̸= p

|dfp(v)| = |J̃(l)| = |J(l)| = |v| ≥ |v|, f is a covering map. Thus π◦f is a covering

map of M (where π is the universal covering). Since M̃ is the universal cover,
by the universal property there exists a unique homeomorphism g : M̃ → ∆
such that the following diagram commutes:

M̃ ∆

M
π◦f

π

f

∃!g

.

Thus f is a diffeomorphism and g is its inverse. Hence, f is an isometry.
Let’s prove the third case. As before, take p ∈ ∆, p̃ ∈ M̃ and a linear

isometry ι : Tp∆ → Tp̃M̃. Let q be the antipodal point of p. Then f = expp̃ ◦ι ◦
expp : Sn\{q} → M̃ is well defined and by Cartan’s theorem it is a local isometry.
Similarly, for p′ ̸= p, q, p̃′ = f(p′), q′ its antipodal point, f ′ = expp̃′ ◦ι′ ◦ expp′ :

Sn \ {q′} → M̃ , where ι′ = dfp′ , is well defined and by Cartan’s theorem it is a
local isometry. Note that Sn \{q, q′} =: W is connected, f(p′) = p̃′ = f ′(p′) and
dfp′ = df ′

p′ , and hence Lemma 2.1 holds, so f |W ≡ f ′|W . We can thus define

the map g : Sn → M̃

g(r) =

{
f(r) r ∈ Sn \ {q}
f ′(r) r ∈ Sn \ {q′}

.

This is a gluing of local isometries, so it’s a local isometry, hence a local dif-
feomorphism. Moreover, since Sn is compact, g must be a covering map, and
since M̃ is simply connected (thus M̃ is its own universal cover), g must be a
diffeomorphism. Thus g is an isometry.
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3 Space forms

Now that we have shown that every complete Riemannian manifold with con-
stant curvature (that are called space forms) has Hn,Rn or Sn as universal
covering, we want to give an idea about how to get all this possible such man-
ifolds. To do so, we first need to recall some information about group actions,
in order to move our problem to a problem in group theory.

Given a group G and a space X, we say that G acts (from the left) on X if
there exists a map

· : G×X → X

(g, x) 7→ g · x

such that 1 ·x = x and g1 · (g2 ·x) = (g1g2) ·x for g1, g2 ∈ G, x ∈ X. We say that
this action is free if g · x = x iff g = 1 and that this action is transitive if for
every x1, x2 ∈ X, there exists a g ∈ G such that x1 = g ·x2. We can restate this
property as ∀x ∈ X, Gx = X, where we denoted by Gx the orbit of x, which
is the set {g · x| g ∈ G}. The set of all the orbits will be denoted by X/G, and
if X is a topological space, it can be endowed with the quotient topology given
by the natural projection

π : X →X/G

x 7→Gx
.

It can be useful, in the case of X a topological space, to take G to be the group
of homeomorphisms. Similarly, if X is differentiable, we can consider G the
group of diffeomorphisms.

Now, consider M a topological space and G a group (in this case we can
take it to be the group of homeomorphisms). We say that G acts in a totally
discontinuous manner on M if for every point x ∈ M, there exists a neighbor-
hood U of x such that g(U) ∩ U = ∅ for every g ∈ G \ {1}. It can be proven
that π is a regular covering map (i.e. π∗(π1(M̃, p̃)) is a normal subgroup of
π1(M,π(p̃))) and G is the group of covering transformations (given two cover-
ings pi : Yi → X a covering transformation is a continuous map F : Y1 → Y2

such that p1 = p2 ◦ F ).
If M is a Riemannian manifold and Γ a subgroup of the group of isometries

of M that acts in a totally discontinuous manner, then M/Γ has a differentiable
structure such that π : M → M/Γ is a local diffeomorphism. In addition, we
can define a Riemannian metric on M/Γ in the following way: for p ∈ M/Γ,
p̃ ∈ π−1(p) and for any u, v ∈ Tp(M/Γ),

⟨u, v⟩p := ⟨dπ−1(u), dπ−1(v)⟩p̃.

With this metric, π is obviously a local isometry.
It is well defined. Indeed, by regularity of the covering map π, we get that

the action of Γ on π−1(p) is transitive, and thus for every q̃ ∈ π−1(p) there
exists a γ ∈ Γ such that γ · p̃ = q̃. This implies that the definition above does
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not depend on the choice of p̃. This metric is called the metric on M/Γ induced
by the covering π.

We have that M/Γ is complete if and only if M is complete, and it has
constant sectional curvature if and only if M has constant sectional curvature.

With the following theorem we want to show that taking M to be Hn,Rn

or Sn (depending on the sign of the constant curvature), we get all the possible
space forms.

Proposition 3.1. Let M be a complete Riemannian manifold of constant sec-
tional curvature κ ∈ {−1, 0, 1}. Let M̃ be the universal covering of M. Then M
is isometric to M̃/Γ, where M̃ is Hn if κ = −1, Rn if κ = 0 and Sn if κ = 1,
and Γ is a subgroup of the group of isometries of M̃ which acts in a totally
discontinuous manner on M̃, and the metric on M̃/Γ is induced by the covering
π : M̃ → M̃/Γ.

Proof. Let p : M̃ → M be the universal covering of M, and provide M̃ with the
covering metric. With the covering metric, p is a local isometry. Let Γ be the
group of covering transformations of p. Then Γ is a subgroup of the group of
isometries of M̃ which acts in a totally discontinuous manner on M̃. Thus, we
can induce on M̃/Γ the Riemannian metric on M̃/Γ induced by the covering
π : M̃ → M̃/Γ.

Since p is regular, we have that p(x̃) = p(ỹ) for x̃, ỹ ∈ M̃ if and only if
π(x̃) = Γx̃ = Γỹ = π(ỹ). Therefore the equivalence classes given by p and π on
M̃ are the same, and this implies that we have a bijection ξ : M → M̃/Γ, such
that π = ξ ◦ p. Since π and p are local isometries, ξ must be a local isometry,
and since it is a bijection, it must be an isometry.

Therefore, we can see how the problem of finding all the space forms is
equivalent to the group theory problem of determining all the possible subgroups
Γ of the group of isometries.

Two nice results coming from this classification are the following.

Proposition 3.2. Let M2n be a space form of sectional curvature κ = 1. Then
M ∼= S2n or M ∼= RP2n.

Proof. See Exercise 3.

Proposition 3.3. Let M2 be compact orientable of genus g > 1. Then this can
be provided with a metric of constant negative curvature κ = −1.

Proof. See Proposition 4.5, Chapter 8, M. P. do Carmo, Riemannian Geometry.

4 Exercises

1. Show that Hn, with metric gi,j(x1 . . . , xn) =
δi,j
x2
n
, has constant sectional

curvature equal to -1.
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2. Show that if G acts in a totally discontinuous manner, then the projection
π : M → M/G is a regular covering map, and G is the group of covering
transformations.

3. Prove Proposition 3.2.
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