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Notation: We will use the notation of the reference M. P. do Carmo, Riemannian
Geometry. In particular the curvature tensor has opposite sign and the covariant
derivative of a vector field V defined along a curve c will simply be denoted V ′

instead of ∇
dtV . So, for instance, with our notation the Jacobi equation is written

as
J ′′ +R(γ′, J)γ′ = 0.

Motivation behind the theorem

Throughout we use M to denote a n-dimensional Riemannian manifold. Recall
the following result:

Proposition. If γ : [0, l] → M is a normalized geodesic, i.e., parametrized by
arc-length, J is a Jacobi field along γ with J(0) = 0 and ⟨γ′(0), J ′(0)⟩ = 0, then
as t → 0

|J(t)| = |J ′(0)|
(
t− 1

6
Kt3 + o(t3)

)
,

where K is the sectional curvature of the plane generated by γ′(0) and J ′(0).

Hence, for small times, the smaller K, the large |J(t)| will be. Consider now
another triple M̃, γ̃, J̃ with the same conditions as above. Then,

K̃ ≥ K implies |J̃(t)| ≤ |J(t)|, for small t.

The Rauch theorem provides the conditions when this inequality holds for all times.
It allows to compare the Jacobi fields on different manifolds if one sectional cur-
vature dominates the other.

Proof of Proposition. Expand |J(t)|2 into Taylor series around the origin.

⟨J(t), J(t)⟩ =
4∑

n=0

⟨J, J⟩(n)(0) t
n

n!
+ o(t4).

1



Computing the derivatives we take into account the initial condition J(0) = 0
and the Jacobi equation J ′′(t)+R(γ′(t), J(t))γ′(t) = 0 which implies J ′′(0) = 0.

⟨J, J⟩(1)(0) = 2⟨J, J ′⟩|t=0 = 0

⟨J, J⟩(2)(0) = 2 (⟨J, J ′′⟩+ ⟨J ′, J ′⟩) |t=0 = 2|J ′(0)|2

⟨J, J⟩(3)(0) = 2 (⟨J, J ′′′⟩+ 3⟨J ′, J ′′⟩) |t=0 = 0

⟨J, J⟩(4)(0) = 2
(
⟨J, J (4)⟩+ 4⟨J ′, J ′′′⟩+ 3|J ′′|2|

)
|t=0 = 8⟨J ′, J ′′′⟩(0)

Now it is left to compute J ′′′. For any field W we have

d

dt
⟨R(γ′,W )γ′, J⟩

∥

= ⟨(R(γ′,W )γ′)′, J⟩+ ⟨R(γ′,W )γ′, J ′⟩

d

dt
⟨R(γ′, J)γ′,W ⟩ = ⟨(R(γ′, J)γ′)′︸ ︷︷ ︸

J′′′

,W ⟩+ ⟨R(γ′, J)γ′,W ′⟩

Subtracting one from the other and evaluating at t = 0 we obtain

⟨J ′′′,W ⟩(0) = −⟨R(γ′,W )γ′, J ′⟩(0) = −⟨R(γ′, J ′)γ′,W ⟩(0),

so that
J ′′′(0) = R(γ′, J ′)γ′|t=0.

The 4th derivative becomes

⟨J, J⟩(4)(0) = −8⟨J ′, R(γ′, J ′)γ′⟩(0) = −8K|J ′(0)|2,

where K is the sectional curvature build on vectors γ′(0) and J ′(0). Therefore,

|J(t)|2 = |J ′(0)|2
(
t2 − K

3
t4
)
+ o(t4)

or

|J(t)| = t− K

6
t3 + o(t3).

The index lemma

Let V be a piecewise differentiable vector field along a geodesic γ : [0, a] → M .
For all t0 ∈ [0, a], define

It0(V, V ) =

t0∫
0

(⟨V ′, V ′⟩ − ⟨R(γ′, V )γ′, V ⟩) dt.

Let V0 ∈ Tγt0
M and consider all piecewise differentiable fields V along γ with

prescribed values V (0) = 0 and V (t0) = V0. Provided that γ(t0) is not conjugate
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to γ(0), there exists a unique Jacobi field J along γ with the same prescribed
values J(0) = 0 and J(t0) = Vt0 . With additional assumption that there are no
conjugate points in the whole interval (0, t0), the index lemma asserts that this
Jacobi field J minimises the expression above.

Lemma. Let
• γ : [0, a] → M be a geodesic without conjugate points to γ(0) on (0, a];
• J be a Jacobi field along γ, with ⟨J, γ′⟩ = 0;
• V be a piecewise differentiable vector field along γ, with ⟨V, γ′⟩ = 0;
• J(0) = V (0) = 0 and J(t0) = V (t0) for some t0 ∈ (0, a].
Then

It0(J, J) ≤ It0(V, V )

and equality occurs if and only if V = J on [0, t0].

Proof. The vector space of all Jacobi fields J along γ with J(0) = 0 and ⟨J, γ′⟩ =
0 has dimension n − 1, where n = dimM . Let {J1, ..., Jn−1} be any collection
of Jacobi fields that form a basis for that space, so that

J =

n−1∑
i=1

αiJi,

where {αi}n−1
i=1 are constants.

Since there are no conjugate points on (0, a], the collection {J1(t), ..., Jn−1(t)}
forms a basis in γ′(t)⊥ ⊂ Tγ(t)M , i.e., the subspace orthogonal to γ′(t). There-
fore, for t ̸= 0, we can decompose our vector field V as

V (t) =

n−1∑
i=1

fi(t)Ji(t),

where fi are piecewise differentiable functions on (0, a].
Now we are going to rewrite the expression for the integrand in the defi-

nition of It0 via {fi}. Working on the interior of each subinterval where V is
differentiable we will obtain the following identity:

⟨V ′, V ′⟩ − ⟨R(γ′, V )γ′, V ⟩ =

∣∣∣∣∣∑
i

f ′
iJi

∣∣∣∣∣
2

+
d

dt
⟨
∑
i

fiJi,
∑
j

fjJ
′
j⟩. (1)

The first term on the left-hand side of (1) becomes

⟨V ′, V ′⟩ = ⟨
∑
i

f ′
iJi,

∑
j

f ′
jJj⟩+ ⟨

∑
i

f ′
iJi,

∑
j

fjJ
′
j⟩

+ ⟨
∑
i

fiJ
′
i ,
∑
j

f ′
jJj⟩+ ⟨

∑
i

fiJ
′
i ,
∑
j

fjJ
′
j⟩
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For the second term the Jacobi equation yields

R(γ′, V )γ′ = R(γ′,
∑
i

fiJi)γ
′ =

∑
i

fiR(γ′, Ji)γ
′ = −

∑
i

fiJ
′′
i ,

so that
⟨R(γ′, V )γ′, V ⟩ = −⟨

∑
i

fiJ
′′
i ,

∑
j

fjJj⟩,

and together the left-hand side reads

⟨V ′, V ′⟩ − ⟨R(γ′, V )γ′, V ⟩ =

∣∣∣∣∣∑
i

f ′
iJi,

∣∣∣∣∣
2

+ ⟨
∑
i

f ′
iJi,

∑
j

fjJ
′
j⟩+ ⟨

∑
i

fiJ
′
i ,
∑
j

f ′
jJj⟩

+ ⟨
∑
i

fiJ
′
i ,
∑
j

fjJ
′
j⟩+ ⟨

∑
i

fiJ
′′
i ,

∑
j

fjJj⟩.

The derivative of the right-hand side of (1) is

d

dt
⟨
∑
i

fiJi,
∑
j

fjJ
′
j⟩ = ⟨

∑
i

f ′
iJi,

∑
j

fjJ
′
j⟩+ ⟨

∑
i

fiJi,
∑
j

f ′
jJ

′
j⟩

+ ⟨
∑
i

fiJ
′
i ,
∑
j

fjJ
′
j⟩+ ⟨

∑
i

fiJi,
∑
j

fjJ
′′
j ⟩.

It is left to show that the blue terms are the same. Define

h(t) = ⟨J ′
i , Jj⟩ − ⟨Ji, J ′

j⟩.

Note that h(0) = 0 and, using Jacobi equation,

h′(t) = ⟨J ′′
i , Jj⟩+ ⟨J ′

i , J
′
j⟩ − ⟨J ′

i , J
′
j⟩ − ⟨Ji, J ′′

j ⟩
= −⟨R(γ′, Ji)γ

′, Jj⟩+ ⟨Ji, R(γ′, Jj)γ
′⟩.

It follows that h′(t) = 0 from the permutation-of-arguments property of the
curvature. Hence, h(t) ≡ 0 and the claim follows by the distributivity of the
curvature, which concludes the proof of (1).

Therefore, integrating over t we obtain

It0(V, V ) = ⟨
∑
i

fiJi,
∑
j

fjJ
′
j⟩(t0) +

t0∫
0

∣∣∣∣∣∑
i

f ′
iJi

∣∣∣∣∣
2

dt,

and for the Jacobi field

It0(J, J) = ⟨
∑
i

αiJi,
∑
j

αjJ
′
j⟩(t0).

The condition J(t0) = V (t0) forces αi = fi(t0) which yields

It0(V, V )− It0(J, J) =

t0∫
0

∣∣∣∣∣∑
i

f ′
iJi

∣∣∣∣∣
2

dt ≥ 0.
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This proves the first part of the lemma.
If It0(V, V ) = It0(J, J), then

∑
i f

′
iJi = 0, which implies f ′

i = 0, for all
t ∈ (0, t0], by the linear independence of {Ji}. Hence, fi(t) = fi(t0) = αi, i.e.,
V = J .

Rauch comparison theorem

Theorem. (Rauch) Let (M, g) and (M̃, g̃) be n- respectively (n+k)-dimensional
Riemannian manifolds (k ≥ 0). Let γ : [0, a] → M and γ̃ : [0, a] → M̃ , k ≥ 0,
be geodesics such that |γ′(t)| = |γ̃′(t)|. Let J and J̃ be Jacobi fields along γ and
γ̃, respectively, such that

J(0) = 0, J̃(0) = 0,

⟨J ′(0), γ′(0)⟩ = ⟨J̃ ′(0), γ̃′(0)⟩,

|J ′(0)| = |J̃ ′(0)|.

Assume that γ̃ does not have conjugate points on (0, a] and that for all t ∈ [0, a],
x ∈ Tγ(t)M , and x̃ ∈ Tγ̃(t)M̃ (not parallel to γ′ resp. γ̃′), we have

K(γ′(t), x) ≤ K̃(γ̃′(t), x̃).

Then,
|J̃(t)| ≤ |J(t)| for all t ∈ [0, a].

Moreover, if for some t0 ∈ (0, a], |J̃(t0)| = |J(t0)|, then K(γ′(t), J(t)) =
K̃(γ̃′(t), J̃(t)) for all t ∈ (0, t0].

Proof. From Lemma 1.4.7 we have that

J∥(t) =
t

|γ′|2
⟨J ′(0), γ′(0)⟩γ′(t) +

1

|γ′|2
⟨J(0), γ′(0)⟩γ′(t),

J̃∥(t) =
t

|γ̃′|2
⟨J̃ ′(0), γ̃′(0)⟩γ̃′(t) +

1

|γ̃′|2
⟨J̃(0), γ̃′(0)⟩γ̃′(t).

Therefore, |J∥(t)|2 = |J̃∥(t)|2, so we may assume that ⟨J(t), γ′(t)⟩ = ⟨J̃(t), γ̃′(t)⟩ =
0. We may also assume that |J ′(0)| = |J̃ ′(0)| ≠ 0, for otherwise J ≡ 0 ≡ J̃ .

Define v(t) := |J(t)|2, and ṽ(t) := |J̃(t)|2. Since γ̃ has no conjugate point on

(0, a] and J̃ ̸≡ 0, we have ṽ(t) ̸= 0 on (0, a]. Thus, v(t)
ṽ(t) is well-defined for all

t ∈ (0, a] and using L’Hospital’s rule we see that

lim
t→0+

v(t)

ṽ(t)
= lim

t→0+

⟨J(t), J(t)⟩
⟨J̃(t), J̃(t)⟩

= lim
t→0+

⟨J(t), J(t)⟩′

⟨J̃(t), J̃(t)⟩′
= lim

t→0+

2⟨J ′(t), J(t)⟩
2⟨J̃ ′(t), J̃(t)⟩

= lim
t→0+

⟨J ′′(t), J(t)⟩+ ⟨J ′(t), J ′(t)⟩
⟨J̃ ′′(t), J̃(t)⟩+ ⟨J̃ ′(t), J̃ ′(t)⟩

=
|J ′(0)|2

|J̃ ′(0)|2
= 1.
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So, if we show that d
dt (

v(t)
ṽ(t) ) ≥ 0 for all t ∈ (0, a], or equivalently

v′(t)ṽ(t) ≥ v(t)ṽ′(t) (2)

for all t ∈ (0, a], it will follow that |J̃(t)| ≤ |J(t)| for all t ∈ [0, a].

Fix t0 ∈ (0, a]. If v(t0) = 0 then v′(t0) = 2⟨J ′(t0), J(t0)⟩ = 0 so (2) is satis-
fied. If not, then define

U(t) :=
1√
v(t0)

J(t), Ũ(t) :=
1√
ṽ(t0)

J̃(t).

Then,

v′(t0)

v(t0)
=

2⟨J ′(t0), J(t0)⟩
⟨J(t0), J(t0)⟩

= 2⟨U ′(t0), U(t0)⟩ = 2

∫ t0

0

⟨U ′, U⟩′dt

= 2

∫ t0

0

(
⟨U ′, U ′⟩+ ⟨U ′′, U⟩

)
dt = 2

∫ t0

0

(
⟨U ′, U ′⟩ − ⟨R(γ′, U)γ′, U⟩

)
dt

= 2It0(U,U).

Similarly, ṽ′(t0)
ṽ(t0)

= 2It0(Ũ , Ũ). Therefore, if we show It0(Ũ , Ũ) ≤ It0(U,U), (2)

follows.

Let {ei}ni=1 and {ẽi}n+k
i=1 be parallel orthonormal bases along γ and γ̃, respec-

tively, such that
e1(t) = γ′(t)/|γ′(t)|, e2(t0) = U(t0),

ẽ1(t) = γ̃′(t)/|γ̃′(t)|, ẽ2(t0) = Ũ(t0).

For each vector field V (t) =
∑n

i=1 gi(t)ei(t) along γ we define a vector field ϕV
along γ̃ by (ϕV )(t) =

∑n
i=1 gi(t)ẽi(t). For any V1, V2 we have

⟨ϕV1, ϕV2⟩(t) =
n∑

i=1

g1,i(t)g2,i(t)(t) = ⟨V1, V2⟩,

since the bases are orthonormal. Moreover, since the bases are parallel

(ϕV )′ =

n∑
i=1

g′i(t)ẽi(t) = ϕ(V ′).

By the assumption on the sectional curvature we therefore have

⟨U,R(γ′, U)γ′⟩ = 1

|γ′|2|U |2
K(U, γ′) ≤ 1

|γ̃′|2|ϕU |2
K̃(ϕU, γ̃′) = ⟨ϕU, R̃(γ̃′, ϕU)γ̃′⟩.

As a consequence,

It0(ϕU, ϕU) =

∫ t0

0

(
⟨(ϕU)′, (ϕU)′⟩ − ⟨ϕU, R̃(γ̃′, ϕU)γ̃′⟩

)
dt

≤
∫ t0

0

(
⟨U ′, U ′⟩ − ⟨U,R(γ′, U)γ′⟩

)
dt = It0(U,U).
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Furthermore, Ũ and ϕU are both vector fields along γ̃ (which by assumption
does not have conjugate points on (0, a]), and Ũ is a Jacobi field and ϕU is
differentiable, both are orthogonal to γ′ and satisfy Ũ(0) = ϕU(0) = 0, Ũ(t0) =
ϕU(t0) = ẽ2(t0). Therefore, by the index lemma,

It0(Ũ , Ũ) ≤ It0(ϕU, ϕU).

Since, t0 ∈ (0, a] was arbitrary this shows that (2) holds for all t ∈ (0, a], as
desired.

It only remains to show the last part of the theorem. Suppose t0 ∈ (0, a] is such

that |J̃(t0)| = |J(t0)|. Then, based on what we have already shown, d
dt (

v(t)
ṽ(t) ) = 0

for all t ∈ (0, t0], or equivalently v′(t)ṽ(t) = v(t)ṽ′(t) for all t ∈ (0, t0]. But this
shows that

It(Ũ , Ũ) = It(ϕU, ϕU) = It(U,U)

for all t ∈ (0, t0]. From the first equality it follows that Ũ = ϕU for all t ∈ [0, t0]
(using the index lemma). And from the second it follows that

⟨U,R(U, γ′)γ′⟩(t) = ⟨ϕU, R̃(ϕU, γ̃′)γ̃′⟩(t)

for all t ∈ (0, t0]. But then

K(J(t), γ′(t)) = K(U(t), γ′(t)) = K̃(Ũ(t), γ̃′(t)) = K̃(J̃(t), γ̃′(t)),

for all t ∈ (0, t0].

Corollary

Corollary. Suppose that the sectional curvature K of a manifold M satisfies

L ≤ K ≤ H

for some positive constants L,H. Then the distance d between two consecutive
conjugate points along a geodesic on M satisfies

π√
H

≤ d ≤ π√
L
.

Proof. Let p be any point on M and γ be a unit-speed geodesic with γ(0) = p.
Let J be a Jacobi field along γ with J(0) = 0, ⟨J, γ′⟩ and |J ′(0)| = 1

For the lower bound on d we compare M with the n-dimensional sphere of
curvature H, Sn(H). Note that Sn(H) has distance π/

√
H between its conju-

gate points. Let γ̃ : [0,∞) → Sn(H) be a unit-speed geodesic on S2(H) and
let J̃ be a Jacobi field along γ̃ with J̃(0) = 0, ⟨J̃ , γ̃⟩ = 0 and |J̃ ′(0)| = 1. Then
the Rauch comparison theorem applies on the interval t ∈ [0, π/

√
H), implying

that 0 < |J̃(t)| ≤ |J(t)| for all t ∈ (0, π/
√
H). Therefore, since γ and J were
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chosen arbitrarily (up to scale), it follows that the distance between conjugate
points d ≥ π/

√
H.

For the upper bound on d we compare M with the n-dimensional sphere of
curvature L, Sn(L). Let γ̃ and J̃ be analogous to γ̃ and J̃ above. Suppose that
d > π/

√
L, so that γ has no conjugate points on [0, π/

√
L]. Then the Rauch

comparison theorem applies (with the roles of M and M̃ swapped). This shows
that

0 < |J(t)| ≤ |J̃(t)|
for all t ∈ [0, π/

√
L]. But γ̃ has a conjugate point of dimension n − 1 at

t = π/
√
L, so J̃(π/

√
L) = 0, a contradiction. We deduce that d ≤ π/

√
L.

Exercises

Problem 1. Let (M, g) be a complete Riemannian manifold with non-positive
sectional curvature. Use Rauch comparison theorem to show that for any p ∈ M ,
Xp ∈ TpM and Yp ∈ TpM = TXp

(TpM) we have

|(d expp)Xp
(Yp)| ≥ |Yp|.

Conclude that for any (differentiable) curve c : [0, a] → TpM it follows that

L(c) ≤ L(expp ◦c).

Problem 2. Let (M, g) be a complete Riemannian manifold with non-positive
sectional curvature and consider a geodesic triangle in M with side lengths a, b
and c with opposite angles A, B and C respectively.

1. Show that a2 + b2 − 2ab cosC ≤ c2.

2. Show that A+B + C ≤ π.

Hint: Use Problem 1.

Problem 3. Fix points p ∈ M , p̃ ∈ M̃ and isometry I : TpM → Tp̃M̃ . Consider
in TpM a piece-wise smooth path v[0, a] → TpM and let γ = expp(v), γ̃ =
expp̃(I ◦ v). Suppose that for every s ∈ [0, a] the geodesic t → expp(tv(s)),
0 ≤ t ≤ 1, does not have conjugate points with respect to p. Then, if for every
sectional curvatures we have K(p, σ) ≥ K(p̃, σ̃), show the following relation
between the lengths of curves holds:

L(γ) ≤ L(γ̃).

Remark: For simplicity assume that v is always non-zero. Note also that M
here plays the role of M̃ in the formulation of Rauch theorem above.

Hint: Consider the geodesic variation σ(t, s) = expp(tv(s)) and the Jacobi field

t → Js(t) =
∂
∂sσ(t, s). Apply the Rauch theorem to J⊥

s and the corresponding

field J̃⊥
s on M̃ .
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