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Notation: We will use the notation of the reference M. P. do Carmo, Riemannian
Geometry. In particular the curvature tensor has opposite sign and the covariant
derivative of a vector field V defined along a curve ¢ will simply be denoted V'
instead of %V. So, for instance, with our notation the Jacobi equation is written
as

J"+ R+, J)y =0.

Motivation behind the theorem

Throughout we use M to denote a n-dimensional Riemannian manifold. Recall
the following result:

Proposition. If v : [0,]] = M is a normalized geodesic, i.e., parametrized by
arc-length, J is a Jacobi field along v with J(0) = 0 and (7'(0), J'(0)) = 0, then
ast—0

1
0] = 170) (1= GK + o))
where K is the sectional curvature of the plane generated by v'(0) and J'(0).

Hence, for small times, the smaller K, the large |J(¢)| will be. Consider now
another triple M, 7, J with the same conditions as above. Then,

K > K implies |J(t)| < |J(t)|, for small t.

The Rauch theorem provides the conditions when this inequality holds for all times.

It allows to compare the Jacobi fields on different manifolds if one sectional cur-
vature dominates the other.

Proof of Proposition. Expand |J(¢)|? into Taylor series around the origin.

(T, () = S UL DO + o).

n=0



Computing the derivatives we take into account the initial condition J(0) = 0
and the Jacobi equation J” (t) + R(v'(¢), J(t))v'(¢t) = 0 which implies J”(0) = 0.

(1, 7)M(0) = 2(J,J")|i=0 = 0

(1, D)2(0) = 2((J,J") + (J', ")) li=0 = 2|7 (0)

(1, 1) 3(0) =2 ((J,J") +3(J", ")) li=0 = 0

(D)D) = 2 ((1TD) 4+ 40T, ") + 315" 2] li=o = 847, ") (0)

Now it is left to compute J"”’. For any field W we have

d

dt<R(v S T) = (RO, W)Y, J) + (R(Y, W)y, J")

jtm(v IS W) = (RO, 1)), W) + (R(Y, T, W)
————
J///

Subtracting one from the other and evaluating at t = 0 we obtain
<JW7 W> (O) = _<R(7Ia W)’YI’ J/>(0) = _<R<'7,> J/)7/7 W> (0)7

so that
J"(0) = R(Y', I )7 ls=0-

The 4% derivative becomes
<J’ J>(4) (0) = _8<J/7 R('7,7 Jl)’V/)(O) = _8K‘J/(O)|2a

where K is the sectional curvature build on vectors 7/(0) and J’(0). Therefore,

IOP =1 O (# - 5t )+ o)

or K
|J(t)] =t — th + o(t?%).

The index lemma
Let V be a piecewise differentiable vector field along a geodesic v : [0,a] — M.
For all ¢y € [0, a], define

to

Ly(V.V) = / (V' V') — (R V) V) db.
0

Let Vo € T',,, M and consider all piecewise differentiable fields V' along v with
prescribed values V(0) = 0 and V' (tg) = Vp. Provided that v(¢¢) is not conjugate



to v(0), there exists a unique Jacobi field J along v with the same prescribed
values J(0) = 0 and J(t9) = V;,. With additional assumption that there are no
conjugate points in the whole interval (0, ¢g), the index lemma asserts that this
Jacobi field J minimises the expression above.

Lemma. Let

e v:[0,a] = M be a geodesic without conjugate points to v(0) on (0, al;
e J be a Jacobi field along v, with {J,~') = 0;

o V be a piecewise differentiable vector field along vy, with (V,v') = 0;

e J(0) =V(0) =0 and J(tg) = V(to) for some ty € (0,a].

Then

Iy (1, J) < 11y (V, V)

and equality occurs if and only if V.= J on [0, ).

Proof. The vector space of all Jacobi fields J along v with J(0) = 0 and (J,~") =
0 has dimension n — 1, where n = dimM. Let {Ji,..., J,_1} be any collection
of Jacobi fields that form a basis for that space, so that

n—1
J = Z OéiJi,
i=1

where {a;}7'-]' are constants.

Since there are no conjugate points on (0, a], the collection {Jy (t), ..., Jo—1(t)}
forms a basis in v/(t)* C T,)M, i.e., the subspace orthogonal to 7/(t). There-
fore, for t # 0, we can decompose our vector field V as

V(D) = Y RO,

where f; are piecewise differentiable functions on (0, al.

Now we are going to rewrite the expression for the integrand in the defi-
nition of I;, via {f;}. Working on the interior of each subinterval where V is
differentiable we will obtain the following identity:

> fis
i
The first term on the left-hand side of (1) becomes
VIV = fiTi D i) + O T Y i)
i J i J
+ ORI BT+ O FILY 1))
i J i J

2

V'V~ ROV V) = PO DI DT NG




For the second term the Jacobi equation yields
R(Y, V)Y =R(Y,)Y fidi)y' =Y [iR(Y, Ji

so that

(R(Y',V QR D i)

and together the left-hand side reads

(V' V') =(R(Y, V)Y, V) =

Y7

+ ORI 5T
i J

The derivative of the right-hand side of (1) is

2
+ OIS )+
7 J

Z fz J//

<Z fz-J{,Zf}Jﬁ
ZfZJ” ST
J

d
@Q: fiJi,ijJp = <Z f{Ji,ijJ]’) - <Z fl-JZ-,ij’-JQ
(2 J 7 i
+ O RIS £ Zfsz,ZfJJ”
@ J

It is left to show that the blue terms are the same. Define

h(t) = (Ji, J;) = (i, Tj).

2R

Note that h(0) = 0 and, using Jacobi equation,

W(t) = (Ji' J5) + (i, J5) = (T4 Tg) = (i T

Yy

:—<R(’V,Ji)’y,=]j> <Ji7R(77Jj)7>'

1797 17 9)]

)

It follows that h/(t) = 0 from the permutation-of-arguments property of the
curvature. Hence, h(t) = 0 and the claim follows by the distributivity of the

curvature, which concludes the proof of (1).
Therefore, integrating over ¢t we obtain

I, (V,V) ZM,ZL ) (to) +

and for the Jacobi field
Iy (J, J) Zazjz,zaj

The condition J(tg) = V(o) forces a; = f;(to) which yields

> |

to

Ito (‘/a V) Ito (J J /
0

dt > 0.

dt,



This proves the first part of the lemma.
If I,,(V,V) = L,(J,J), then ), f/J; = 0, which implies f; = 0, for all
t € (0,t9], by the linear independence of {J;}. Hence, f;(t) = fi(to) = au, i.e.,
V=J.
O

Rauch comparison theorem

Theorem. (Rauch) Let (M, g) and (M, §) be n- respectively (n-+k)-dimensional
Riemannian manifolds (k >0). Let y : [0,a] = M and 7 : [0,a] — M, k >0,
be geodesics such that |y (t)] = |7 (t)|. Let J and J be Jacobi fields along v and
5, respectively, such that

J(0) =0, J(0)=0,

(J'(0),7'(0)) = (J(0), 7 (0)),
[7'(0)] = |J(0)]-
Assume that 7y does not have conjugate points on (0,a] and that for allt € [0, a],
x € TyyyM, and & € Ty M (not parallel to ' resp. 7'), we have
K(Y(t),z) < K(7(t),%).

Then, R
[J(t)] < |J(t)] for allt € [0,al.

Moreover, if for some to € (0,a], |J(to)] = |J(to)|, then K(v'(t),J(t)) =
K3 (t), J(t)) for all t € (0,t0].

Proof. From Lemma 1.4.7 we have that

TNE) = g (70,7 O () + i (T(0), 7' O (1),
ol vl
gy = 0V, A (ONA (8 + — (F(0). 5 (0N
JU(t) W\2< (0), 7 (0)¥'(t) + WI2< (0),5(0))7'(t)
Therefore, | JI(£)|2 = |JI(#)[2, so we may assume that (J(t),7'(t)) = (J(t t),7'(t)) =
0. We may also assume that |J'(0)| = |.J/(0)| # 0, for otherwise J =0 = .J.

Define v(t) := |J(t)|?, and ©(t) := |J(t)|?. Since 4 has no conjugate point on

0,a] and J # 0, we have 0(t 0 on (0,a]. Thus, v(t) is well-defined for all
o(t)

t € (0,a] and using L'Hospital’s rule we see that




So, if we show that 4 (222) > 0 for all ¢ € (0,a], or equivalently
V(8)o(t) = ()’ () (2)
for all ¢ € (0,a], it will follow that |J(t)| < |.J(t)| for all t € [0, a].

Fix tg € (0,a]. If v(tg) = 0 then v'(tg) = 2(J'(to), J(to)) = 0 so (2) is satis-
fied. If not, then define

v'(to) _ 2(J'(to), J(to))
v(to) (J(to), J(to))

=2 [ (v o= [ (@) - (RGO )
0 0

=2(U'(t0),U(ty)) = /0t0<U’,U>’dt

=21, (U,U).
Similarly, ;’g;;; = 21, (U,U). Therefore, if we show I,,(U,U) < I, (U,U), (2)
follows.

Let {e;}, and {&}""F be parallel orthonormal bases along v and 7, respec-
tively, such that
er(t) ='(t)

/Iy

é(t) =7t/

For each vector field V(1) =>"." ; g;
along 7 by (¢V)(t) = 321, gi(t)é(t

"(t)], ex(to) = U(to),
Y (#)], éx(to) = Ulto)-
(t)ei(t) along v we define a vector field ¢V
). For any V1, V> we have

)
(OV1, oV2)(t Zgu )92,:(D)(t) = (V1, V),

since the bases are orthonormal. Moreover, since the bases are parallel

= Zg;(wéi(t) = p(V).

By the assumption on the sectional curvature we therefore have

K(U,Y) < ——-_R(6U,7) = (6U, R(7, U)3).

U,R®,U)) = _—
< ) (’Ya )7> ‘,’?/‘2‘¢U|2

1
Y PIUT?

As a consequence,
to B
10, (6U, 6U) = /O (U (8U)) — (8U, R(F, 6U)7Y)di

S/O ' (U, U"y = (U,R(,U)y))dt = I, (U, U).



Furthermore, U and U are both vector fields along 4 (which by assumption
does not have conjugate points on (0,al), and U is a Jacobi field and ¢U is
differentiable, both are orthogonal to v’ and satisfy U(0) = ¢U(0) = 0, U(ty) =
@U(to) = é2(tg). Therefore, by the index lemma,

1,,(U,U) < I, (U, ¢U).

Since, to € (0,a] was arbitrary this shows that (2) holds for all ¢ € (0,a], as
desired.

It only remains to show the last part of the theorem. Suppose ty € (0, a] is such
that |.J(to)| = |J(to)|. Then, based on what we have already shown, %(?(t)) =0
for all t € (0,tp], or equivalently v'(£)o(t) = v(t)v'(¢) for all t € (0,%o]. But this
shows that

1,(U,0) = I(¢U, U) = I,(U,U)
for all ¢ € (0,to]. From the first equality it follows that U = ¢U for all t € [0, t]
(using the index lemma). And from the second it follows that
(U, R(U2)Y)(t) = (6U, R(¢U.7')7) (1)
for all ¢ € (0,to]. But then
K(J(6),7 () = KU(1),7'(t)) = K(U(1),7 (1)) = K(J(t),7 (1)),

for all ¢t € (0, 1o]. O

Corollary
Corollary. Suppose that the sectional curvature K of a manifold M satisfies
L<K<H

for some positive constants L, H. Then the distance d between two consecutive
conjugate points along a geodesic on M satisfies

7T<d<7l'

VH = VL
Proof. Let p be any point on M and ~y be a unit-speed geodesic with v(0) = p.
Let J be a Jacobi field along v with J(0) =0, (J,7') and |J'(0)| =1

For the lower bound on d we compare M with the n-dimensional sphere of
curvature H, S™(H). Note that S™(H) has distance /v H between its conju-
gate points. Let 7 : [0,00) — S™(H) be a unit-speed geodesic on S?(H) and
let J be a Jacobi field along 4 with .J(0) = 0, (J,4) = 0 and |J(0)| = 1. Then
the Rauch comparison theorem applies on the interval ¢ € [0,7/v/H), implying
that 0 < [J(¢)] < |J(t)| for all t € (0,7/v/H). Therefore, since v and J were



chosen arbitrarily (up to scale), it follows that the distance between conjugate
points d > 7 /v H.

For the upper bound on d we compare M with the n-dimensional sphere of
curvature L, S™(L). Let 4 and J be analogous to 4 and J above. Suppose that
d > 7/V'L, so that v has no conjugate points on [0,7/v/L]. Then the Rauch
comparison theorem applies (with the roles of M and M swapped). This shows
that 5
0<[J(@B)] <[J(@)]

for all t € [0,7/v/L]. But 4 has a conjugate point of dimension n — 1 at
t =7/VL, so J(m/v/L) =0, a contradiction. We deduce that d < 7/vL. O

Exercises

Problem 1. Let (M, g) be a complete Riemannian manifold with non-positive
sectional curvature. Use Rauch comparison theorem to show that for any p € M,
X, € T,M and Y, € T,M = Tx,(T,,M) we have

[(dexp,)x, (Yp)] = [Vl
Conclude that for any (differentiable) curve ¢ : [0, a] — T, M it follows that
L(c) < L(exp,, oc).

Problem 2. Let (M, g) be a complete Riemannian manifold with non-positive
sectional curvature and consider a geodesic triangle in M with side lengths a, b
and ¢ with opposite angles A, B and C respectively.

1. Show that a2 + b2 — 2abcos C < 2.

2. Show that A+ B+C <.
Hint: Use Problem 1.
Problem 3. Fix pointsp € M, p € M and isometry I : T,M — T,;M. Consider
in T,M a piece-wise smooth path v[0,a] — T,M and let v = exp,(v), ¥ =
exp;(1 o). Suppose that for every s € [0,a] the geodesic t — exp,(tv(s)),
0 <t <1, does not have conjugate points with respect to p. Then, if for every

sectional curvatures we have K(p,0) > K(p,5), show the following relation
between the lengths of curves holds:

L(y) < L(9).

Remark: For simplicity assume that v is always non-zero. Note also that M
here plays the role of M in the formulation of Rauch theorem above.

Hint: Consider the geodesic variation o(t, s) = exp,(tv(s)) and the Jacobi field
t— Js(t) = %J(t, s). Apply the Rauch theorem to J and the corresponding
field J* on M.



