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There is in general no natural notion of volume in smooth manifolds, but with the addition
of a Riemannian metric this is no longer true—the key idea being that the tangent vectors
at any point of the manifold generate a parallelepiped of a certain volume determined by
the inner product. This observation leads to the definition of the canonical measure on
Riemannian manifolds, allowing us to speak of volume in that setting.

It is natural that the volume of a ball centered around a given point of the manifold depends
on the curvature of the manifold in some way, raising the question of whether suitable
assumtions on the curvature can lead to upper or lower bounds for the volume. This lecture
culminates in a proof of the Bishop–Günther volume comparison theorem, which answers
the question in the affirmative.

This introduction to volume comparison in Riemannian geometry is based on Section 3H in
the book of Gallot, Hulin and Lafontaine [1].

1 Preliminaries

The following is a consequence of Hopf–Rinow’s theorem.

Proposition 1.1. Let (𝑀, 𝑔) be a complete Riemannian manifold, and 𝑐 a geodesic with
points 𝑎 < 𝑏 in its domain.

(i) if there exists no geodesic shorter than 𝑐 from 𝑐(𝑎) to 𝑐(𝑏), then 𝑐 is minimal on
[𝑎, 𝑏];

(ii) if 𝑐 is minimal on [𝑎, 𝑏] and there exists another geodesic of the same length as 𝑐
from 𝑐(𝑎) to 𝑐(𝑏), then 𝑐 is no longer minimal on any [𝑎, 𝑏 + 𝜀], 𝜀 > 0;

(iii) if 𝑐 is minimal on an interval 𝐼, then it is also minimal on any subinterval 𝐽 ⊆ 𝐼.

Let (𝑀, 𝑔) be a complete Riemannian manifold and fix 𝑝 ∈ 𝑀. For 𝑣 ∈ 𝑇𝑝𝑀, denote
𝑐𝑣 (𝑡) = exp𝑝 𝑡𝑣 and let

𝐼𝑣 = {𝑡 ∈ ℝ : 𝑐𝑣 is minimal on [0, 𝑡]} .

From Proposition 1.1 it follows that 𝐼𝑣 is closed and of the form 𝐼𝑣 = [0, 𝜌(𝑣)], where 𝜌(𝑣)
is possibly infinite. Furthermore, the map 𝑣 ↦→ 𝜌(𝑣) is continuous, implying that the set

𝑈𝑝 =

{
𝑣 ∈ 𝑇𝑝𝑀 : ∥𝑣∥ < 𝜌

(
𝑣

∥𝑣∥

)}
=

{
𝑣 ∈ 𝑇𝑝𝑀 : 𝜌(𝑣) > 1

}
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is an open neighborhood of 0 in 𝑇𝑝𝑀 , with boundary 𝜕𝑈𝑝 =
{
𝑣 ∈ 𝑇𝑝𝑀 : 𝜌(𝑣) = 1

}
.

Definition 1.2. Let (𝑀, 𝑔) be a complete Riemannian manifold and 𝑝 ∈ 𝑀 . The cut-locus
of 𝑝 is defined as

Cut𝑝 = exp𝑝 (𝜕𝑈𝑝),
with𝑈𝑝 as above.

Proposition 1.3. For any 𝑝 ∈ 𝑀 , exp𝑝 (𝑈𝑝) and Cut𝑝 are disjoint, and

𝑀 = exp𝑝 (𝑈𝑝) ∪ Cut𝑝 .

Proof. Let 𝑞 ∈ 𝑀. We know from Hopf–Rinow’s theorem that there exists a minimal
geodesic 𝑐𝑣 : [0, 1] → 𝑀 from 𝑝 to 𝑞. Then 𝜌(𝑣) ⩾ 1, so 𝑣 is in the closure of 𝑈𝑝. This
proves the equality.

For the second part, suppose 𝑞 ∈ exp𝑝 (𝑈𝑝) ∩ Cut𝑝. Since 𝑞 ∈ exp𝑝 (𝑈𝑝), there exists a
geodesic 𝑐 with 𝑐(0) = 𝑝 and 𝑐(𝑎) = 𝑞 that is minimal on [0, 𝑎 + 𝜀] for some 𝜀 > 0. But
since 𝑞 ∈ Cut𝑝, there also exists a geodesic 𝛾 with 𝛾(0) = 𝑝 and 𝛾(𝑏) = 𝑞 that is minimal,
but no longer minimal after 𝑏. This contradicts Proposition 1.1 (ii). □

Example 1.4. Let 𝑝 ∈ 𝑆𝑛. All geodesics in 𝑆𝑛 are minimizing before distance 𝜋 but not
after it, so 𝜌(𝑣) = 𝜋 for all 𝑣 ∈ 𝑇𝑝𝑆𝑛 with ∥𝑣∥ = 1. We get

𝑈𝑝 =
{
𝑣 ∈ 𝑇𝑝𝑆𝑛 : ∥𝑣∥ < 𝜋

}
= 𝐵(0, 𝜋),

so exp𝑝 (𝑈𝑝) = 𝑆𝑛 \ {−𝑝} and Cut𝑝 = {−𝑝}.

2 Densities and the canonical measure

Definition 2.1. Let 𝑀𝑛 be a smooth manifold with an atlas (𝑈𝑖, 𝜑𝑖). A density on 𝑀

associates to each chart a measure 𝜇𝑖 on 𝜑𝑖 (𝑈𝑖) with the following properties:

(i) 𝜇𝑖 is absolutely continuous and has strictly positive density with respect to the
Lebesgue measure;

(ii) if𝑈𝑖 ∩𝑈 𝑗 ≠ ∅ and 𝑓 is continuous with compact support in 𝜑𝑖 (𝑈𝑖 ∩𝑈 𝑗 ), then∫
𝜑𝑖 (𝑈𝑖∩𝑈 𝑗 )

𝑓 𝑑𝜇𝑖 =

∫
𝜑 𝑗 (𝑈𝑖∩𝑈 𝑗 )

(
𝑓 ◦ 𝜑𝑖 ◦ 𝜑−1

𝑗

) �� 𝐽 (𝜑𝑖 ◦ 𝜑−1
𝑗

) �� 𝑑𝜇 𝑗 . (1)

A density (𝜇𝑖) can be used to define a positive measure 𝛿 on the manifold 𝑀 by setting

𝛿( 𝑓 ) =
∫
𝜑𝑖 (𝑈𝑖)

𝑓 ◦ 𝜑−1 𝑑𝜇𝑖

for continuous functions 𝑓 with support contained in 𝑈𝑖, and extending to arbitrary
continuous functions using partitions of unity. The compatability condition (1) ensures
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that 𝛿 is well-defined. Furthermore, it is easily verified that if 𝛿 and 𝛿′ are the measures
associated with two densities, then there exists a strictly positive continuous function 𝑓 such
that 𝛿 = 𝑓 𝛿′.

For a Riemannian manifold (𝑀, 𝑔), the metric suggests a natural definition for the densities
of each chart (𝑈, 𝜑). Recall that the parallelepiped generated by the tangent vectors
𝜕1, . . . , 𝜕𝑛 at a point 𝑝 ∈ 𝑈 has volume

√︁
det(𝑔𝑖 𝑗 ), where

𝑔 |𝑈 = 𝑔𝑖 𝑗𝑑𝑥
𝑖 ⊗ 𝑑𝑥 𝑗

is the local expression of 𝑔 in𝑈.

Definition 2.2. Let (𝑀𝑛, 𝑔) be a Riemannian manifold with an atlas (𝑈𝑘 , 𝜑𝑘 ). The canonical
measure 𝑣𝑔 on 𝑀 is given by the densities

𝜇𝑘 (𝐴) =
∫
𝐴

√︃
det(𝑔𝑖 𝑗 ) ◦ 𝜑−1 𝑑𝜆,

where 𝐴 ⊆ 𝜑𝑘 (𝑈𝑘 ) is any Borel set, 𝑔𝑖 𝑗 are the coefficient functions of 𝑔 in𝑈𝑘 , and 𝜆 is the
Lebesgue measure on ℝ𝑛.

One can show that 𝑣𝑔 is independent of both the atlas and the partition of unity chosen in its
construction. In particular, if 𝑀 is orientable, then 𝑣𝑔 is given by a volume form.

Definition 2.3. The volume of a Riemannian manifold 𝑀 is given by the (possibly infinite)
integral

vol(𝑀, 𝑔) =
∫
𝑀

𝑣𝑔 .

The following result makes it easier to compute volumes in practice.

Lemma 2.4. Let 𝑀 be a complete Riemannian manifold. For any 𝑝 ∈ 𝑀, the cut-locus
Cut𝑝 has measure zero.

Proof. Exercise. □

Using the exponential chart, it follows that

vol(𝑀, 𝑔) = vol(exp𝑝 (𝑈𝑝), 𝑔) =
∫
𝑈𝑝

√︃
det(𝑔𝑖 𝑗 ) ◦ exp𝑝 𝑑𝜆

=

∫
𝑆𝑛−1

∫ 𝜌(𝑢)

0

(√︃
det(𝑔𝑖 𝑗 ) ◦ exp𝑝

)
(𝑡𝑢)𝑡𝑛−1 𝑑𝑡𝑑𝑢, (2)

where 𝑑𝑢 is the canonical measure on the unit sphere in (𝑇𝑝𝑀, 𝑔𝑝).

Let 𝑐(𝑡) = exp𝑝 𝑡𝑢 with 𝑢 ∈ 𝑆𝑛−1 and take an orthonormal basis {𝑢, 𝑒2, . . . , 𝑒𝑛} of 𝑇𝑝𝑀.
We denote by 𝑌𝑖 the Jacobi fields satisfying

𝑌𝑖 (0) = 0 and 𝑌 ′
𝑖 (0) = 𝑒𝑖
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(notation: 𝑌 ′ = ∇
𝑑𝑡
𝑌 ). Recall that 𝑇𝑡𝑢 exp𝑝 (𝑢) = 𝑐′(𝑡) and 𝑇𝑡𝑢 exp𝑝 (𝑒𝑖) = 1

𝑡
𝑌𝑖 (𝑡), so we have

(𝑔𝑖 𝑗 ◦ exp𝑝) (𝑡𝑢) = 𝑔
(
𝑇𝑡𝑢 exp𝑝 (𝑒𝑖), 𝑇𝑡𝑢 exp𝑝 (𝑒 𝑗 )

)
=

1
𝑡2
𝑔(𝑌𝑖 (𝑡), 𝑌 𝑗 (𝑡))

when 𝑖, 𝑗 > 1, and (𝑔1𝑖 ◦ exp𝑝) (𝑡𝑢) = 𝛿1𝑖 since both 𝑌𝑖 (0) and 𝑌 ′
𝑖
(0) are orthogonal to 𝑐′.

Hence(√︃
det(𝑔𝑖 𝑗 ) ◦ exp𝑝

)
(𝑡𝑢) =

√︃
𝑡−2(𝑛−1) det(𝑔(𝑌𝑖 (𝑡), 𝑌 𝑗 (𝑡))) = 𝑡−(𝑛−1)

√︃
det(𝑔(𝑌𝑖 (𝑡), 𝑌 𝑗 (𝑡)))︸                              ︷︷                              ︸
C𝐽 (𝑢,𝑡)

,

and we can rewrite the integral in (2) as

vol(𝑀, 𝑔) =
∫
𝑆𝑛−1

∫ 𝜌(𝑢)

0
𝐽 (𝑢, 𝑡)𝑡𝑛−1 𝑑𝑡𝑑𝑢. (3)

Note in particular that 𝐽 (𝑢, 𝑡) is independent of our choice of 𝑒2, . . . , 𝑒𝑛, since also the
integrand in (2) is.

Example 2.5. Consider 𝑆𝑛 with its canonical measure. With the notation used above we
have 𝑌𝑖 (𝑡) = sin(𝑡)𝐸𝑖 (𝑡), where 𝐸𝑖 is the parallel vector field satisfying 𝐸𝑖 (0) = 𝑒𝑖. We get

vol(𝑆𝑛, can) =
∫
𝑆𝑛−1

∫ 𝜋

0

(
sin 𝑡
𝑡

)𝑛−1
𝑡𝑛−1 𝑑𝑡𝑑𝑢 = vol(𝑆𝑛−1, can)

∫ 𝜋

0
(sin 𝑡)𝑛−1 𝑑𝑡,

from which the known formulas

vol(𝑆2𝑛, can) = (4𝜋)𝑛 (𝑛 − 1)!
(2𝑛 − 1)! and vol(𝑆2𝑛+1, can) = 2

𝜋𝑛+1

𝑛!

can be recovered.

3 Volume Estimates

Let 𝑉 𝑘 (𝑟) denote the volume of a ball of radius 𝑟 is the complete simply connected
Riemannian manifold with constant curvature 𝑘 . Recall that, for a manifold with constant
sectional curvature 𝑎 we have Ric = (𝑛 − 1)𝑎𝑔.

Theorem 3.1 (Bishop–Günther). Let (𝑀, 𝑔) be a complete Riemannian manifold, and
𝐵𝑝 (𝑟) be a ball which does not meet the cut-locus of 𝑝.

(i) If there is a constant 𝑎 such that Ric ⩾ (𝑛 − 1)𝑎𝑔, then

vol(𝐵𝑝 (𝑟)) ⩽ 𝑉𝑎 (𝑟).

(ii) If there is a constant 𝑏 such that 𝐾 ⩽ 𝑏, then

vol(𝐵𝑝 (𝑟)) ⩾ 𝑉 𝑏 (𝑟).
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Proof. We first proceed to establish the function 𝐽 (𝑢, 𝑡) in terms of Jacobi fields that will
be most convenient in our context. Let 𝑢 ∈ 𝑆𝑛−1. Suppose that 0 ⩽ 𝑟 ⩽ 𝜌(𝑢).

For the chosen 𝑢, take the geodesic 𝑐(𝑡) = exp𝑝 𝑡𝑢 from 𝑝 and an orthonormal basis
{𝑢, 𝑒2, . . . , 𝑒𝑛}. For each 2 ⩽ 𝑖 ⩽ 𝑛, let us consider the parallel transport vector field 𝐸𝑖
along 𝑐 such that 𝐸𝑖 (0) = 𝑒𝑖.

Note that for such a choice of 𝑟 , 𝑇𝑟𝑢 exp𝑝 : 𝑇𝑝𝑀 → 𝑇𝑐(𝑟)𝑀 is an isomorphism. Thus, there
exists a unique 𝑣𝑖 ∈ 𝑇𝑝𝑀 such that 𝑇𝑟𝑢 exp𝑝 (𝑟𝑣) = 𝐸𝑖 (𝑟). Then,

𝑌 𝑟𝑖 (𝑡) := 𝑇𝑡𝑢 exp𝑝 (𝑡𝑣).

is a unique Jacobi field on 𝑐 such that

𝑌 𝑟𝑖 (0) = 0,
𝑌 𝑟𝑖 (𝑟) = 𝐸𝑖 (𝑟),

(𝑌 𝑟𝑖 )′(0) = 𝑣𝑖 .

Now, using the above obtained expressions of Jacobi field, we obtain

𝐽 (𝑢, 𝑡) = 𝑡1−𝑛
det

(
𝑌 𝑟2 (𝑡), . . . , 𝑌

𝑟
𝑛 (𝑡)

)
det

(
𝑌 ′𝑟

2(0), . . . , 𝑌 ′𝑟
𝑛 (0)

) = 𝑡1−𝑛𝐶𝑟 det
(
𝑌 𝑟2 (𝑡), . . . , 𝑌

𝑟
𝑛 (𝑡)

)
.

Now, we set 𝑓 (𝑡) = 𝐽 (𝑢, 𝑡). Now we introduce a new lemma that would let us compare the
𝑓 (𝑡) of the chosen manifold to that of constant curvature 𝑎.

Before we proceed, let us recall some definitions and properties that will be used later.

1. For a differentiable map 𝐴(𝑡) from an interval in ℝ to 𝐺𝐿𝑛 (ℝ), we have

(det 𝐴)′ = (det 𝐴) tr(𝐴−1𝐴′).

2. Note that, for a Jacobi field 𝑌 on 𝑐, we can consider its corresponding geodesic
variation 𝑐𝑡 . For this geodesic variation, we can consider its energy 1

2

∫ 𝑟

0 |𝑐′𝑡 (𝑠) |2𝑑𝑠
whose the second variation formula is given by

𝐼 (𝑌,𝑌 ) = 𝑑2

𝑑𝑡2
𝐸 (𝑐𝑡) |𝑡=0 =

∫ 𝑟

0

(
|𝑌 ′|2 − 𝑅(𝑌, 𝑐′, 𝑌 , 𝑐′)

)
𝑑𝑠.

3. For the inner product of vector fields, we have the following identity:

𝑔(𝑋′, 𝑌 ′) = (𝑔(𝑋,𝑌 ′))′ − 𝑔(𝑋,𝑌 ′′).

Lemma 3.2. Denoting 𝐼 by the index form of energy, we have

𝑓 ′(𝑟)
𝑓 (𝑟) =

𝑛∑︁
𝑖=2

𝐼 (𝑌 𝑟𝑖 , 𝑌 𝑟𝑖 ) −
(𝑛 − 1)
𝑟

.
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Proof. From the definition of the Jacobi fields, we have�� det
(
𝑌 𝑟2 , . . . , 𝑌

𝑟
𝑛

) �� = (
det 𝑔

(
𝑌 𝑟𝑖 , 𝑌

𝑟
𝑗

))1/2
.

Let 𝐷 (𝑡) denote the determinant det
(
𝑔

(
𝑌 𝑟
𝑖
, 𝑌 𝑟

𝑗

))
. Then, we have

𝑓 ′(𝑡) = 𝐶𝑟
(
−(𝑛 − 1)𝑡−𝑛+2(𝐷 (𝑡))1/2 + 𝑡−(𝑛−1) 𝐷′(𝑡)

2(𝐷 (𝑡))1/2

)
=⇒ 𝑓 ′(𝑡)

𝑓 (𝑡) =
𝐷′(𝑡)
2𝐷 (𝑡) −

𝑛 − 1
𝑡

.

Note that, due the orthonormality of the parallel vector fields, for 𝑡 = 𝑟, the matrix[
𝑔(𝑌 𝑟

𝑖
, 𝑌 𝑟

𝑗
)
]

is the unit matrix, from property 1, we have

𝐷′(𝑟) = 2
𝑛∑︁
𝑖=2

𝑔
(
(𝑌 𝑟𝑖 )′, 𝑌 𝑟𝑖

)
.

Now, using property 2 and 3, for each of the Jacobi fields 𝑌 𝑟
𝑖
, we obtain

𝐼 (𝑌,𝑌 ) =
∫ 𝑟

0

(
|𝑌 ′|2 − 𝑅(𝑌, 𝑐′, 𝑌 , 𝑐′)

)
𝑑𝑠

=

∫ 𝑟

0
((𝑔(𝑌 ′, 𝑌 ))′ − 𝑔(𝑌 ′′, 𝑌 ) + 𝑅(𝑌, 𝑐′, 𝑐′, 𝑌 )) 𝑑𝑠

=

∫ 𝑟

0
((𝑔(𝑌 ′, 𝑌 ))′ − 𝑔(𝑅(𝑌, 𝑐′)𝑐′, 𝑌 ) + 𝑅(𝑦, 𝑐′, 𝑐′, 𝑦))

=

∫ 𝑟

0
((𝑔(𝑌 ′, 𝑌 ))′ − 𝑅(𝑌, 𝑐′, 𝑐′, 𝑌 ) + 𝑅(𝑌, 𝑐′, 𝑐′, 𝑌 )) = [𝑔(𝑌,𝑌 ′)]𝑟0,

and this proves our lemma. □

The following result was presented in Talk 3, on the Rauch–Jacobi field comparison theorem.

Lemma 3.3. If 𝑐 : [𝑎, 𝑏] → 𝑀 is a minimizing geodesic, 𝑌 is a Jacobi field and 𝑋 is a
vector field along 𝑐 with the same values as 𝑌 at the ends, then 𝐼 (𝑋, 𝑋) ⩾ 𝐼 (𝑌,𝑌 ), with
equality only if 𝑋 = 𝑌 .

Proof of (i). For each 𝑖, let us define a new vector field 𝑋𝑟
𝑖

on 𝑐 give by,

𝑋𝑟𝑖 (𝑡) =
𝑠(𝑡)
𝑠(𝑟)𝐸𝑖 (𝑡),

where

𝑠(𝑡) = sin(
√
𝑎𝑡), if 𝑎 > 0,
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𝑠(𝑡) = 𝑡, if 𝑎 = 0,
𝑠(𝑡) = sinh(

√
−𝑎𝑡) if 𝑎 < 0.

From Lemma 3.3, we have
𝑛∑︁
𝑖=2

𝐼 (𝑌 𝑟𝑖 , 𝑌 𝑟𝑖 ) ⩽
𝑛∑︁
𝑖=2

𝐼 (𝑋𝑟𝑖 , 𝑋𝑟𝑖 ).

Now, each of the index form in the right satisfies

𝐼 (𝑋𝑟𝑖 , 𝑋𝑟𝑖 ) =
∫ 𝑟

0

(
𝑔((𝑋𝑟𝑖 )′, (𝑋𝑟𝑖 )′) − 𝑅(𝑋𝑟𝑖 , 𝑐′, 𝑋𝑟𝑖 , 𝑐′)

)
𝑑𝑠

=

∫ 𝑟

0

(
(𝑔(𝑋𝑟𝑖 , (𝑋𝑟𝑖 )′))′ − 𝑔(𝑋𝑟𝑖 , (𝑋𝑟𝑖 )′′) − 𝑅(𝑋𝑟𝑖 , 𝑐′, 𝑋𝑟𝑖 , 𝑐′)

)
𝑑𝑠

=

∫ 𝑟

0

((
𝑠(𝑡)
𝑠(𝑟)

)2 (
𝑎 − 𝑅(𝐸𝑟𝑖 , 𝑐′, 𝐸𝑟𝑖 , 𝑐′)

))
𝑑𝑠 + 𝑔(𝑋𝑟𝑖 , (𝑋𝑟𝑖 )′) (𝑟)

=⇒
𝑛∑︁
𝑖=2

𝐼 (𝑋𝑟𝑖 , 𝑋𝑟𝑖 ) =
∫ 𝑟

0

((
𝑠(𝑡)
𝑠(𝑟)

)2
((𝑛 − 1)𝑎 − Ric(𝑐′, 𝑐′))

)
𝑑𝑠 +

𝑛∑︁
𝑖=2

𝑔
(
𝑋𝑟𝑖 , (𝑋𝑟𝑖 )′

)
(𝑟).

Note that, from the hypothesis of the theorem the integral in the above equation is negative.
Further, using Lemma 3.2 and the definition of 𝑋𝑟

𝑖
, we obtain the following.

𝑓 ′(𝑟)
𝑓 (𝑟) ⩽ (𝑛 − 1)

(√
𝑎 cotan

√
𝑎𝑟 − 1

𝑟

)
if 𝑎 > 0,

𝑓 ′(𝑟)
𝑓 (𝑟) ⩽ 0 if 𝑎 = 0,

𝑓 ′(𝑟)
𝑓 (𝑟) ⩽ (𝑛 − 1)

(√
−𝑎 cotanh

√
−𝑎𝑟 − 1

𝑟

)
if 𝑎 < 0.

In any of the above cases, if 𝑓𝑎 (𝑟) denotes the function 𝐽 (𝑢, 𝑟) for the space with constant
curvature 𝑎, we have

𝑓 ′(𝑟)
𝑓 (𝑟) ⩽

𝑓 ′𝑎 (𝑟)
𝑓𝑎 (𝑟)

.

By integrating the above we obtain, 𝑓 (𝑟) ⩽ 𝑓𝑎 (𝑟) and the result follows from further
integration using the formula for volume.

Proof of (ii). Let 𝑌 denote one of the Jacobi fields (𝑌 𝑟
𝑖
) defined earlier. Then, from the

reduced equation for the index form, we have the following:

𝑔 (𝑌,𝑌 ′) (𝑟) =
∫ 𝑟

0
(𝑔(𝑌 ′, 𝑌 ′) − 𝑅(𝑌, 𝑐′, 𝑌 , 𝑐′)) 𝑑𝑠

⩾

∫ 𝑟

0
(𝑔(𝑌 ′, 𝑌 ′) − 𝑏𝑔(𝑌,𝑌 )) 𝑑𝑠
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We can express the Jacobi fields, in terms of the parallel transports 𝐸𝑖 (𝑡), as:

𝑌 (𝑡) =
𝑛∑︁
𝑖=2

𝑦𝑖 (𝑡)𝐸𝑖 (𝑡)

On the simply connected manifold with constant curvature 𝑏, take a geodesic manifold 𝑐 of
length 𝑟 , and define vector fields �̃�𝑖 along 𝑐 in the same was as the vectors 𝐸𝑖. Set

𝑌 (𝑡) =
𝑛∑︁
𝑖=2

𝑦𝑖 (𝑡)�̃�𝑖 (𝑡).

Then we have ∫ 𝑟

0

(
|𝑌 ′|2 − 𝑏 |𝑌 |2

)
𝑑𝑡 =

∫ 𝑟

0

(
|𝑌 ′|2 − 𝑏 |𝑌 |2

)
𝑑𝑡 = 𝐼 (𝑌,𝑌 ).

Now, we apply Lemma 3.3 to the simply connected manifold with constant curvature 𝑏, and
get

𝐼 (𝑌 𝑟𝑖 , 𝑌 𝑟𝑖 ) ⩾ 𝐼 ( �̃�𝑟𝑖 , �̃�𝑟𝑖 ),

where �̃�𝑟
𝑖
(𝑡) = 𝑠(𝑡)

𝑠(𝑟) �̃�𝑖 (𝑡) is the Jacobi field which takes at the ends of 𝑐 the same values as
𝑌 𝑟
𝑖
. Finally, using Lemma 3.2, we have

𝑓 ′(𝑟)
𝑓 (𝑟) ⩾

𝑓 ′
𝑏
(𝑟)

𝑓𝑏 (𝑟)
,

and the proof follows from integrating the above. □

The first estimate was further strengthened by Bishop and Gromov to obtain that the ratio
𝑟 ↦→ vol(𝐵𝑝 (𝑟))

𝑉𝑎 (𝑟) is a nonincreasing function, whose limit is 1 as 𝑟 → 0.

Exercises

1. Let 𝑝 ∈ ℝℙ𝑛. Show that Cut𝑝 is a submanifold isometric to ℝℙ𝑛−1.

2. Prove Lemma 2.4.

3. Let (𝑀, 𝑔) be a complete Riemannian manifold with Ric ⩾ (𝑛 − 1)𝑎𝑔 for some
constant 𝑎, and assume that there exists a point 𝑝 ∈ 𝑀 and radius 𝑟 > 0 (small
enough so that 𝐵𝑝 (𝑟) does not meet Cut𝑝) with vol(𝐵𝑝 (𝑟)) = 𝑉𝑎 (𝑟). The goal of this
exercise is to prove that 𝐵𝑝 (𝑟) is isometric to the corresponding ball in the model
space of constant curvature 𝑎.

(a) Prove that every Jacobi field 𝐽 along a unit-speed geodesic 𝑐 starting from 𝑝,
satisfying 𝐽 (0) = 0, |𝐽 (𝑟) | = 1 and ⟨𝐽, 𝑐′⟩ = 0, is of the form

𝐽 (𝑡) = 𝑠(𝑡)
𝑠(𝑟)𝐸𝑖 (𝑡) for 𝑡 ∈ [0, 𝑟],
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with 𝐸𝑖 and 𝑠(𝑡) as in the proof of Theorem 3.1.

Hint. Use the equality case of Lemma 3.3.

(b) Let 𝑝 be a point in the model space �̃� (= 𝑆𝑛, ℝ𝑛 or ℍ𝑛) of constant curvature 𝑎,
and 𝜄 : 𝑇𝑝𝑀 → 𝑇𝑝�̃� a linear isometry. Prove that

exp𝑝 ◦ 𝜄 ◦ exp−1
𝑝 |𝐵𝑝 (𝑟) : 𝐵𝑝 (𝑟) → �̃�

is an isometry onto its image.

Hint. Look at the proof of Cartan’s theorem (Talk 2).
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