
THE SPECTRUM OF THE LAPLACIAN ON RIEMANNIAN

MANIFOLDS

NILS HEMMINGSSON

1. The spectrum of the Laplacian

This section of these lecture notes are based in its entirety on Chapter 3.2 in
Riemannian Geometry and Geometric Analysis by Jürgen Jost [2]

In order to make the statements of these sections precise, we will need a few
results from functional analysis, specifically from the analysis on Sobolev Spaces.
Let us first define the Sobolev space we work on. M will always be a compact
Riemannian manifold. For f, h ∈ C∞(M), we define

(f, h) =

∫
M

f(x)h(x)
√
gdx1 · · · dxd,

and

(df, dh) =

∫
M

⟨df, dh⟩√gdx1 · · · dxd

=

∫
M

gij
∂f

∂xi

∂h

∂xj

√
gdx1 · · · dxd.

Here and throughout
√
g =

√
det gij using the local coordinates xi. Further, we

use the notation

∥f∥L2 =
√

(f, f), ∥df∥L2 =
√
(df, df)

and L2(M) is the closure of C∞(M) using the ∥ · ∥L2-norm. Next,

⟨f, h⟩ = (f, h) + (df, dh).

Let ∥f∥W 1,2 =
√

⟨f, f⟩ and define H1,2 as the closure of C∞(M) using the ∥·∥W 1,2-
norm. To simplify notation we will write H = H1,2.

Our goal is to analyze the functions f ∈ H and the values λ such that

∆f = λf. (1.1)

From the previous lecture we know that

(∆f, h) = (df, dh) = (f,∆h)

for all smooth f and h (recall that M is compact) so if ∆f = λf,

λ(f, f) = (∆f, f) = (df, df)

implies that λ ≥ 0.
We may note that if f ≡ c, c constant, then λ = 0 is a solution and shall later

see that this is the only situation when λ = 0 occurs. In order to further analyze
the situation, we state, without proof, results from functional analysis that will be
needed. Many of these statement may be generalized to a wider class of function
spaces, but we state them in the version we need them here. For a somewhat more
general setting, see Appendix A in [2].
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Theorem 1.1. If f ∈ H and
∫
M
f = 0, then

∥f∥L2 ≤ C∥df∥L2

where C is a uniform constant independent of f .

Theorem 1.2. H is compactly embedded in L2(M), i.e. if (fn) ⊂ H is uniformly
bounded in the ∥∥W 1,2-norm, then a subsequence converges in L2.

We say that the sequence fn converges weakly to f in H if

⟨fn, w⟩ → ⟨f, w⟩
for all w ∈ H.

Theorem 1.3. If H0 is a Hilbert space with norm ∥ · ∥, then every uniformly
bounded sequence (fn) in H0 contains a weakly convergent subsequence and if the
limit is f , then

∥f∥ ≤ lim inf ∥fn∥

Remark 1.4. If (fn) and (dfn) are uniformly bounded, then after extraction of a
subsequence, fn converges weakly in H to f and in L2(M) to f .

The last statement we will need is the following.

Theorem 1.5. If f ∈ H solves∫
M

⟨df, dϕ⟩√gdx1 · · · dxd = λ

∫
M

fϕ
√
gdx1 · · · dxd

for all ϕ ∈ H, then f ∈ C∞(M) and

∆f = λf.

Let v0 = 1 be the first (trivial) solution corresponding to the eigenvalue 0. We
start by finding the first non-trivial solution to Eq. (1.1). We want to find

λ1 = inf
f∈H\{0},

∫
M

f=0

(df, df)

(f, f)
.

Theorem 1.1 yields λ1 > 0. Take fn a sequence such that

λ1 = lim
n→∞

(dfn, dfn)

(fn, fn)
.

By linearity we may assume that ∥fn∥L2 = 1 for all n and by the definition of
λ1 that ∥dfn∥L2 ≤ K for all n. By Remark 1.4 after extraction of a subsequence,
fn converges weakly to v1 ∈ H and in L2 to v1. Since ∥fn∥L2 = 1, this implies
∥v1∥L2 = 1. Then using Theorem 1.3 and the fact that ∥df∥L2 defines a norm in
H,

λ1 ≤ (dv1, dv1) ≤ lim inf
n→∞

(dfn, dfn) = lim
n→∞

(dfn, dfn) = λ1

so we in fact have equality in all steps.
We shall now make an inductive construction. Let us assume that (λi, vi) has

been constructed as above for i = 0, ...,m−1 and λi ≤ λi+1, ∆vi = λivi and finally
that

(vi, vj) = δij .

We define
Hm = {f ∈ H : (f, vi) = 0 : i = 0, · · ·m− 1}

i.e. the orthogonal complement to the span of the vi, i = 0, · · ·m− 1. Note that
if (fn) ⊂ Hm converges to f , then (fn, vi) = 0 for i = 0, ...,m − 1 so (f, vi) = 0
so f ∈ Hm. Hence Hm is closed and being the orthogonal complement of a finite
dimensional subspace, it is also a Hilbert space for all m.
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Then set

λm = inf
f∈Hm

(df, df)

(f, f)

and since Hj ⊃ Hj+1, λj+1 ≥ λj .
As above we find vm ∈ Hm with ∥vm∥L2 = 1 such that

λm = (dvm, dvm) =
(dvm, dvm)

(vm.vm)
.

Now, take ϕ ∈ Hm and t ∈ R. By definition of λm and vm,

λm ≤ (d(vm + tϕ), d(vm + tϕ))

(vm + tϕ, vm + tϕ)

and the right hand side is differentiable with respect to t and has a minimum in
t = 0. Differentiating formally yields

0 = 2

(
(dvm, dϕ)

(vm, vm)
− (dvm, dvm)

(vm, vm)

(vm, ϕ)

(vm, vm)

)
.

Since (dvm, dvm) = λm and (vm, vm) = 1, we find

0 = 2((dvm, dϕ)− λm(vm, ϕ))

and this holds for all ϕ ∈ Hm. Take now instead ϕ ∈ H, Since (vm, vi) = 0 for
i = 0 · · ·m− 1 and (dvm, dvi) = (dvi, dvm) = λi(vi, vm) = 0, we find in fact that

(dvm, dϕ)− λm(vm, ϕ)

for all ϕ ∈ H. Hence∫
M

⟨dvm, dϕ⟩
√
gdx1 · · · dxd = λm

∫
M

vmϕ
√
gdx1 · · · dxd

for all ϕ ∈ H, and by Theorem 1.5, vm ∈ C∞(M) and

∆vm = λmvm.

Next, we see that limm→∞ λm = ∞. Indeed, if this was not the case, then
a subsequence of (dvm) would be uniformly bounded, hence have a convergent
subsequence in L2 by Theorem 1.2, i.e.

∥vmj
− v∥L2 → 0. taking j ̸= l, we find

∥vmj
− vml

∥2L2 = (vmj
, vmj

)− 2(vmj
, vml

) + (vml
, vml

) = 2

contradicting that (vmj
) is Cauchy.

We are ready to state the main theorem of this lecture, a large part of which we
have already proven.

Theorem 1.6. Let M be a compact Riemannian manifold.

∆f = λf, f ∈ H1,2

has a countable set of solutions (vn, λn), i.e.

∆vn = λn

for which

(vm, vn) = δnm,

(dvn, dvm) = λnδnm

Furthermore, λn+1 ≥ λn, λn = 0 if and only if n = 0 corresponding to the constant
functions and

lim
n→∞

λn = ∞.
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For f ∈ L2(M),

f =

∞∑
i=0

(f, vi)vi (1.2)

and for f ∈ H1,2,

(df, df) =

∞∑
i=0

λi(f, vi)
2. (1.3)

Proof. Above we concluded that ∆vn = λnvn. By construction of vj we have

(vm, vn) = δnm,

and since
(dvm, dϕ)− λm(vm, ϕ) = 0 (1.4)

for all ϕ ∈ H, it follows that

(dvm, dvn) = λnδnm.

It remains to prove (1.2) and (1.3). We begin with the former. Write (vi, f) = ai.
Denote by fm the function

m∑
i=0

aivi

and ϕm = f − fm. We shall show that ϕm → 0 so that fm → f in L2(M). To that
end, we clearly have

(ϕm, vi) = 0 (1.5)

for i = 0, 1 · · ·m and so ϕm ∈ Hm+1. Hence,

λm+1 ≤ (dϕm, dϕm)

(ϕm, ϕm)
.

We have from (1.4) and (1.5) that

(dϕm, dvi) = 0, i = 0, ...,m. (1.6)

Moreover,

(ϕm, ϕm) = (f − fm, f − fm) = (f, f)− 2(f, fm) + (fm, fm)

= (f, f)− 2(ϕm + fm, fm) + (fm, fm) = (f, f)− (fm, fm) (1.7)

by (1.5). In the same vein but using (1.6) we conclude

(dϕm, dϕm) = (df, df)− (dfm, dfm). (1.8)

We find that

(ϕm, ϕm) ≤ (dϕm, dϕm)

λm+1
=

(df, df)− (dfm, dfm)

λm+1
≤ (df, df)

λm+1
(1.9)

and since λm → ∞, ϕm → 0 in L2(M). This implies

f = lim
m→∞

fm =

∞∑
i=0

aivi

and (1.2) is proved.
Next,

dfm =

m∑
i=0

aidvi.

Since
(dvm, dvn) = λnδnm,

(dfm, dfm) =

m∑
i=0

λia
2
i .
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By (1.8), (dfm, dfm) ≤ (df, df) for all m and all λi are non-negative. Hence

m∑
i=0

λia
2
i

is a monotone sequence bounded from above and thereby converges. If n ≥ m, then
using (1.6)

(dϕm − dϕn, dϕm − dϕn) = (dfn − dfm, dfn − dfm) =

n∑
i=m+1

λia
2
i ,

so (dϕn) is Cauchy in L2(M). As we have already seen, ϕm → 0 in L2(M) so
ϕm → 0 in H1,2. (1.8) readily yields

(df, df) = lim
m→∞

(dfm, dfm) =

∞∑
i=0

λia
2
i

and (1.3) is proved. We will now verify that there are no other eigenvalues than
the λj and that all eigenvectors are linear combinations of the vj . To that end,
suppose there are two eigenvalues a ̸= b such that

∆u = au, ∆v = bv.

Then for all ϕ ∈ H,

(du, dϕ) = a(u, ϕ)

(dv, dϕ) = b(v, ϕ).

In particular, this is true when choosing ϕ = v and ϕ = u respectively. This yields

a(u, v) = (du, dv) = (dv, du) = b(v, u) = b(u, v)

so

(u, v) = 0.

Now, if there was an eigenvalue a not equal to any of the λm and a corresponds
to an eigenvector v, then (v, vi) = 0 for all i so that v = 0 by (1.2). However, v = 0
has the eigenvalue 0 and λ0 = 0, contradicting that a ̸= λm for all m. Hence, the
λj are all the eigenvalues. As λj → ∞, each eigenvalue corresponds to only finitely
vj . Thereby, for any eigenvector

v =

∞∑
i=0

(v, vi)vi

only finitely many terms are non-zero. This finishes the proof. □

2. The wave and heat equations

This section is very closely based on Section 4, Chapter 1 in Eigenvalues in
Riemannian Geometry by Isaac Chavel[1]. Let us now see how we can use the
spectral decomposition we found in the previous section to analyse the wave and
heat equations on Riemannian manifolds. Notice that the following analysis is a
sketch and a complete verification of the results would need more stringency. The
situation below also covers the situation when M has a non-empty boundary. If
this is not the case, you may simply consider the conditions on the boundary values
as trivially true. Let us first analyze the wave equation. Then, we think of M as a
membrane with fixed boundary and we would like to find the transverse vibration
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of this membrane. We are then looking for a function v : M × [0,∞) → R (the
second variable being time, t,) such that

∆v + ρ/τ
∂2v

∂t2
, (2.1)

v(x, t) = 0

if x ∈ ∂M . Here, ρ is the density and τ the tension of the membrane. The method
we utilize is one where we separate the two variables x and t. That is, we look for
a solution

v(x, t) = X(x)T (t).

Putting this into (2.1) yields

∆X(x)T (t) + ρ/τX(x)T ′′(t).

Dividing with X(x)T (t) gives

∆X(x)

X(x)
= −ρ/τ T

′′(t)

T (t)
.

The left hand side is constant in x and the right hand side is constant in t. Hence
the two sides must be constant and we obtain

T ′′(t) = −λτ
ρ
T (t)

∆X = λX

for some λ and X(x) = 0 if x ∈ ∂M . In the previous section we analyzed the
solutions to the second equation. The former equation has solution

T (t) = A cos(
√
λτ/ρ(t−B))

where A,B are arbitrary constants and λ = λm for some eigenvalue λm of the
Laplacian. By linearity of (2.1), the sums of solutions are again solutions, and we
find that the possible solutions we can find using this separation technique are of
the form

v(x, t) =

∞∑
m=0

Amvm(x)(cos(
√
λmτ/ρ(t−Bm)))

where vm are as in the previous section and Am, Bm arbitrary constants.
If we are given initial conditions

v(x, 0) = f(x),
∂v

∂t
(x, 0) = 0,

the latter implies that Bm = 0. Then

v(x, t) =

∞∑
m=0

Amvm(x)(cos(
√
λτ/ρt))

and so

f(x) =

∞∑
m=0

Amvm(x).

(1.2) now gives that Am = (f, vm). Hence, we can get rid of the constants Am in
the expression for v(x, t) by setting

w(x, y, t) =

∞∑
m=0

vm(y)vm(x)(cos(
√
λτ/ρt))

and finding

v(x, t) =

∫
M

w(x, y, t)f(y)
√
gdy1 · · · dyd.
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Next, for the heat equation we look for a temperature function v : M × [0,∞)
solving (after a normalization of the physical constants)

∆v +
∂v

∂t
= 0, (2.2)

such that νxv(x, t) = 0 if x ∈ ∂M , i.e. that no heat leaves M (νx denotes the
derivative in the normal direction at the boundary point x ∈ ∂M). We once again
separate the two variables and posit v(x, t) = X(x)T (t) and obtain

∆X = λX(x), T ′(t) = −λT (t)
and νxX(x) = 0 on the boundary of M . The latter has solutions

T = A exp(−λt).
Supposing that v(x, 0) = f(x) we obtain as above that if

w(x, y, t) =

∞∑
m=0

vm(y)vm(x)A exp(−λmt)

we find

v(x, t) =

∫
M

w(x, y, t)f(y)
√
gdy1 · · · dyd.

3. Exercises

Exercise 1. Find the eigenvalues and corresponding eigenfunctions of the Lapla-
cian on the circle of radius R,

TR = {x ∈ R2, |x| = R}.

Exercise 2. Let Tn = Rn/Γ be a n-dimensional torus where

Γ = {
n∑
i

aivi; ai ∈ Z, (vi) forms a basis of Rn}

is a lattice. Consider the dual lattice Γ∗, given by all w∗ ∈ Rn such that ⟨w,w∗⟩ ∈ Z
for all w ∈ Γ (where ⟨, ⟩ is the Euclidian scalar product).

Show that every eigenfunction of the Laplacian is of the form

f(x) = exp(2πi⟨w∗, x⟩) w∗ ∈ Γ∗,

that any function of this form is an eigenfunction and that its corresponding eigen-
value is 4π2|w∗|2.

Hint: Use Fourier analysis to show that these are all eigenfunctions.

Exercise 3. Let M be a compact connected Riemannian manifold. Using sep-
aration of variables, find the solutions ψ(x, t) : M × R → C of the normalized
Schrödinger equation:

∆ψ(x, t) + i
∂

∂t
ψ(x, t) = 0.
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