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As we have seen, there is a natural way to extend the Laplace operator
on functions in the Euclidean setting, to functions on Riemannian manifolds.
In these notes, we will further extend the Laplace operator to now be defined
on differential forms. The motivations for this extension is manifold (pun in-
tended), but one such motivating fact is that, as we will see in the next talk,
each cohomology class in Hk(M) is uniquely represented by a harmonic k-form.

The text is primarily based on chapter 3.3 of [1].

1 Preliminaries

If the reader is unaware of the concept of the exterior product of vector spaces,
please read chapter 7.1 of the Spring Differential Geometry notes. However,
there is a slight difference. In the Spring notes, they define ΛpV to be what we
will call Λp(V ∗) in this text. With this, everything you need to know, you will
be able to read up in there. However, during the talk, it seemed like some of
you may be unfamiliar with these concepts so we added the following paragraph
for clarification.

Let V be a finite dimensional real vector space. Recall that since V is finite
dimensional, we have that the tensor product

⊗p
d=1 V is canonically isomorphic

to the space of multi-linear maps L : V ∗ × . . . × V ∗ → R (it may even be de-
fined in this way, as it is done in the spring DG-course). We of course have the
analogous identification with

⊗p
d=1 V

∗ and the space of all multilinear maps
L : V × . . .× V → R. With this, one way of defining the exterior product ΛpV
would then be to define it as the subspace of

⊗p
d=1 V for which all multilinear

maps L : V ∗ × . . . × V ∗ → R satisfies L(−, . . . ,−, vi,−, . . . ,−, vj ,− . . . ,−) =
−L(−, . . . ,−, vj ,−, . . . ,−, vi,− . . . ,−).

On the other hand, if you want to view it in the classical sense of the tensor
product you can define it as

ΛpV = (

p⊗
d=1

V )/W,
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whereW is the subspace generated by the set {v1⊗. . .⊗vn | ∃i ̸= j, for which vi =
vj}. The proof of lemma 7.2.1 in the spring DG notes clarifies why these two
definitions are the same.

1.1 On Rn

If V is a n-dimensional vector space with scalar product ⟨·, ·⟩, we can construct
a scalar product on ΛpV , 1 ≤ p ≤ n, by

⟨v1 ∧ · · · ∧ vp, w1 ∧ · · · ∧ wp⟩ = det(⟨vi, wj⟩). (1)

If {vi} is some orthonormal basis of V , then

vi1 ∧ · · · ∧ vip , 1 ≤ i1 < · · · < ip ≤ n, (2)

is an orthonormal basis of ΛpV .

Remark 1.1. The sorting of the indices ik in Equation (2) results in easier
book-keeping. We can ’sort’ any such vector via

vi1 ∧ · · · ∧ vik ∧ vik+1
∧ · · · ∧ vip = (−1)vi1 ∧ · · · ∧ vik+1

∧ vik ∧ · · · ∧ vip . (3)

In particular, if some pair of indices is equal, ia = ib, then Equation (3) illus-
trates that the corresponding vector vi1 ∧ · · · ∧ vip is zero.

We can orient V by defining some basis {vi} as positive. Any other basis
{Avi} is positive if detA > 0, otherwise negative. From now on, assume that
V is oriented.

Definition 1.1. Let V be an oriented vector space of dimension n. For each
0 ≤ p ≤ n, we define the linear star operator

∗p : Λp(V ) → Λn−p(V )

via mapping each basis vector ei1 ∧ . . . ∧ eip to{
ej1 ∧ . . . ∧ ejn−p if ei1 , . . . , eip , ej1 , . . . , ejn−p is a positive basis for V

−ej1 ∧ . . . ∧ ejn−p
if ei1 , . . . , eip , ej1 , . . . , ejn−p

is a negative basis for V

and then extending linearly to all of Λp(V ).

The ∗-map is a vector space isomorphism. A particular property of the
∗-map is that for a orthonormal basis {vi}

∗(1) = v1 ∧ · · · ∧ vn
∗(v1 ∧ · · · ∧ vn) = 1.

(4)

Also, we can show that for some n× n matrix A

∗(Avi1 ∧ · · · ∧Avin) = det(A) ∗ vi1 ∧ . . . ∧ vin . (5)
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Lemma 1.1. The map ∗ ◦ ∗ : Λp(V ) → Λp(V ) equals (−1)p(n−p) : Λp(V ) →
Λp(V ).

Proof. Exercise.

Lemma 1.2. For v, w ∈ Λp(V ), we have

⟨v, w⟩ = ∗(w ∧ ∗v) = ∗(v ∧ ∗w) (6)

Proof. We only need to show Equation (6) for the positive basis vectors {ei =
vi1 ∧ · · · ∧ vip}. The general result then follows from the linearity of ⟨·, ·⟩, and ∗.

First, let e1 ⊥ e2. Then there is some pair indices ia, jb in

e1 = vi1 ∧ · · · ∧ vip , ∗e2 = vj1 ∧ · · · ∧ vjn−p
(7)

such that via = vjb . Thus e1 ∧ ∗e2 = 0. If e1 = ±e2, then

e1 ∧ ∗e2 = ±v1 ∧ · · · ∧ vn. (8)

By Equation (4), ∗(e1 ∧ ∗e2) = ±1.

Lemma 1.3. Let {vi} be a positive basis of V 1. Then

∗(1) = 1√
det⟨vi, vj⟩

v1 ∧ · · · ∧ vn. (9)

Proof. If {ei} is some orthonormal basis of V , then

v1 ∧ · · · ∧ vd =
√
det⟨vi, vj⟩e1 ∧ · · · ∧ en. (10)

The conclusion then follows from Equation (4).

1Not necessarily orthonormal
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1.2 On Riemannian Manifolds

Let (M, g) be a Riemannian manifold with orientation. We may then orient
TpM , and T ∗

pM in a consistent manner.

Define the Euclidean basis { ∂
∂xi

∈ Rn} to be positive. A chart transition has

positive determinant. Thus, we can define {dϕ−1( ∂
∂xi

)} to be positive.

Since gij = (gij)
−1, by Lemma 1.3, we have

∗(1) = 1√
det gij

dx1 ∧ · · · ∧ dxn =
√
det gijdx

1 ∧ · · · ∧ dxn. (11)

This we can identify as the volume form

vol(M) =

∫
M

∗(1). (12)

With this we can define the L2-product on (M, g):

Definition 1.2. Let α, β ∈ Ωp(M). Define the L2-product by

(α, β) =

∫
M

⟨α, β⟩ ∗ (1) =
∫
M

α ∧ ∗β. (13)

Further, define the L2-norm as |α| := (α, α)1/2.

2 Laplace Operator on Forms

We follow the same approach as in [1] and assume that the manifold M is
compact (and of course still also orientable). Only slight changes regarding
some compact support assumptions must be made to fit the non-compact cases
and the reader may see it as an exercise to figure out the details.

Definition 2.1. We define the operator d∗ as the formal adjoint to d on⊕n
p=0 Ω

p(M) with regards to (·, ·). That is, for all α ∈ Ωp−1(M) and β ∈
Ωp(M), d∗ is the operator satisfying

(dα, β) = (α, d∗β). (14)

Thus, d∗p : Ω
p(M) → Ωp−1(M). However, we shall often omit the subscript and

just write d to be a map from
⊕n

p=0 Ω
p(M) or as a map from Ωp(M).

Lemma 2.1. The map d∗ is well defined as satisfies d∗ = (−1)n(p+1)+1 ∗ d∗.

Proof. Uniqueness: Suppose there exists two maps d∗1 and d∗2 such that for all
α ∈ Ωp−1(M) and all β ∈ Ωp(M), we have

(dα, β) = (α, d∗1β) = (α, d∗2β) ⇒

0 = (α, d∗1β − d∗2β) =

∫
M

⟨α, d∗1β − d∗2β⟩ ∗ (1),
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and one finishes the proof of uniqueness by taking α = d∗1β−d∗2β. Next, we wish
to show that the map (−1)n(p+1)+1 ∗ d∗ satisfies the formal adjoint property.
By appealing to Stokes theorem, we have that

0 =

∫
M

d(α ∧ ∗β).

By Lemma 1.1, and by Lemma 7.2.1 (i) of the Spring DG course, we get that

d(α ∧ ∗β) = dα ∧ ∗β + (−1)p−1α ∧ d ∗ β
= dα ∧ ∗β + (−1)p−1(−1)(p−1)(n−p+1)α ∧ ∗ ∗ d ∗ β
= dα ∧ ∗β − (−1)n(p+1)+1α ∧ ∗ ∗ d ∗ β

Applying ∗ to both sides of the Lemma 1.2 and appealing to Lemma 1.1 we get
that the above equals

∗(⟨dα, β⟩ − (−1)n(p+1)+1⟨α, ∗d ∗ β⟩)

and thus

0 =

∫
M

(⟨dα, β⟩ − (−1)n(p+1)+1⟨α, ∗d ∗ β⟩ ∗ (1) ⇐⇒∫
M

⟨α, d∗β⟩ ∗ (1) =
∫
M

⟨α, (−1)n(p+1)+1 ∗ d ∗ β⟩ ∗ (1),

which finishes the proof.

Remark 2.1. Note that by the formal adjoint property, we have that (d∗)2 = 0.

We are now ready to define the Laplace-Beltrami operator:

Definition 2.2. The Laplace-Beltrami operator on Ωp(M) is given by

∆ := dd∗ + d∗d : Ωp(M) → Ωp(M). (15)

If ∆ω = 0 for ω ∈ Ωp(M), then ω is said to be a harmonic p-form.

Remark 2.2. To be more precise, we will in accordance with the above some-
times write

∆p = dp−1d
∗
p−1 + d∗pdp.

Corollary 2.1. We have that ∆ is formally self-adjoint, i.e (∆α, β) = (α,∆β)
for every α, β ∈ Ωp(M).

Proof. Immediate by definition.

Proposition 2.1. For every α ∈ Ωp(M), we have that

(∆α, α) = (dd∗α, α) + (d∗dα, α) = (d∗α, d∗α) + (dα, dα). (16)

Furthermore, ∆ is non-negative and ∆α = 0 if and only if d∗α = 0 and dα = 0.
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Proof. (16) follows by definition, and since the right hand side is non-negative,
we get that ∆ is non-negative (recall that for linear operators A and B, we say
that A ≤ B if (Ax, x) ≤ (Bx, x) for all x). Next, if ∆α = 0, then trivially
we must have that d∗α = 0 = dα. Conversely, if d∗α = 0 = dα, we get that
(∆α, α) = 0 and by using that Im(∆)⊥ = Ker(∆), one gets that ∆α = 0.

Remark 2.3. One can view the above statement as reducing the second order
differential equation ∆α = 0, to two first order differential equations dα = 0 =
d∗α.

Corollary 2.2. On a compact Riemannian manifold, every harmonic function
is constant.

Proposition 2.2. ∗∆ = ∆∗

Proof. Exercise.

2.1 Spectrum of The Laplace Operator on Forms

We continue to let M be compact and we make the reader aware of the fact
that the following need to be altered slightly more to fit with the non-compact
case. We note that the following notation is extremely unfortunate, because we
have already used p for the degree of the form and is thus resorted to define Lk

spaces for p-forms, while the more standard way would be to define Lp spaces
for k-forms.

Definition 2.3. For 1 ≤ k < ∞, let Lkp(M) be the set of equivalence classes
consisting of all sections of Λp(M), (i.e maps ω : M → Λp(M) with ω(x) ∈
Λp(T ∗

xM)) such that
∫
M

|ω|k ∗ (1) < ∞, where we identify sections on sets of
measure 0. In the case of k = 2, we endow it with the L2 inner product of forms
defined above to turn it into a Hilbert space. For all other k we only have a
norm, namely

∥ω∥Lk
p(M) = (

∫
M

|ω|k ∗ (1)) 1
k .

(We remind the reader that |ω| :=
√

⟨ω, ω⟩.)

Remark 2.4. Note that since M is compact and thus a finite measure space,
we have the inclusion that Lkp(M) ⊂ Lℓp(M) for all k ≥ ℓ.

We shall need the notion of a weak derivative of p-forms.

Definition 2.4. For ω ∈ L1
p(M), and 0 ≤ p < n we say that ω has a weak

exterior derivative if there exists η ∈ L1
p+1(M) such that for all φ ∈ Ωp+1(M)

(η, φ) = (ω, d∗φ)
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and we write dω = η. Similarly, for 0 < p ≤ n we say that ω has a weak
d∗-derivative if there exists some ψ ∈ Ωp−1(M) such that for all φ ∈ Ωp−1(M),
we have that

(ψ,φ) = (ω, dφ),

and we write d∗ω = ψ. We make the definition that for sections ω of Λn(M),
we have dω = 0. Similarly, for sections ω of Λ0(M), d∗ω = 0.

Lemma 2.2. The above definitions corresponds to the classical definitions of
d and d∗ if the corresponding section is smooth. Furthermore, d2 = 0 = (d∗)2

also in this setting.

Proof. Volountary exercise.

With this, one can define the corresponding sobolev spaces of p-forms.

Definition 2.5. For 1 ≤ k <∞, letW 1,k
p be the set of all ω ∈ Lkp(M) such that

dω, and d∗ω exists weakly and are elements of their corresponding Lk-spaces. In
the case of k = 2, we shall denote this space by Hp and define an inner product
on this space via

(ω, η)Hp
:= (ω, η) + (dω, dη) + (d∗ω, d∗η),

making this into a Hilbert space. For any other k, we just have a norm

∥ω∥W 1,k
p (M) := (∥ω∥kLk

p(M) + ∥dω∥kLk
p+1(M) + ∥d∗ω∥kLk

p−1(M))
1
k .

Definition 2.6. We say that ω ∈ Hp is a weak eigensection of ∆ with eigenvalue
λ if for every φ ∈ Hp, we have that

(dω, dφ) + (d∗ω, d∗φ) = λ(ω, φ).

Remark 2.5. For smooth sections ω ∈ Ωp(M) we could equivalently have
defined eigenforms in the classical sense: ∆ω = λω. This is eay to check.

Lemma 2.3. Let π : Λp(M) →M be the footprint map, ψ : U → V be a chart,

and φ : Λp(M)|π−1(U) → V × R(
n
p) be a local trivialization (i.e just a chart of

the manifold Λp(M). Then

∥·∥W 1,k
p (ψ(U)) and ∥φ(·))∥W 1,k

Eucl(ψ(U))

are equivalent norms on the vector space W 1,k
p (ψ(U)).

Proof. We shall skip the proof the lemma, but the idea is to use normal coordi-
nates to around each point of U , a neighbourhood so small that |δij−gij(x)| < ε
for all x ∈ U . The special case k = 2 can be found as Lemma 3.4.1 in [1].

7



Remark 2.6. If one extends the above lemma to Wα,k
p , for α ≥ 1, then we can

transfer Sobolev space results from Rm locally to the manifold. In particular, we
can transfer results about uniformly elliptic PDE:s on euclidean space. However,
this extension to arbitrary α is not straightforward and requires the notion of
the covariant derivative on tensor fields, which is something we have not yet
discussed. Hence, we take it for granted and is thus provided with the following
useful corollary:

Corollary 2.3. All eigensections of ∆ are smooth.

In the next talk, you will probably see that we have the following orthogonal
decomposition

L2
p(M) = Bp ⊕B∗

p ⊕Hp,

where Bp is the L2
p closure of {dα | α ∈ Ωp−1(M)}, B∗

p is the L2
p closure of

{d∗β | β ∈ Ωp+1(M)} and Hp is the space of smooth, harmonic p-forms.

Now, we shall discuss the spectrum of the Laplacian on p-forms. By Corollary
2.3, all eigenforms are smooth. We shall write σ(∆) for the set of eigenvalues
of ∆.

Lemma 2.4. All eigenvalues of ∆ are non-negative and eigenforms correspond-
ing to different eigenvalues are orthogonal.

Proof. Exercise.

We will consider the case of positive eigenvalues. By the above decomposition
of L2

p(M), we have that any eigenform v ∈ Ωp(M) corresponding to a positive
eigenvalue λ is contained in Bp ⊕ B∗

p and so we may write v = v1 + v2, where
v1 ∈ Bp and v2 ∈ B∗

p . The reason we get no contribution from Hp is that it only
consists of harmonic p-forms. Now, it is not necessarily true that if the sum of
two forms is smooth, that they must be smooth individually (coming up with a
counterexample on R is easy). However, we at least have that

Lemma 2.5. With the notation of the previous paragraph, we have that

dv1 = 0 = d∗v2

Proof. For (i), note that for any φ ∈ Ωp+1(M) we have that

(0, φ) = 0 = (v1, d
∗φ),

since v1 ∈ Bp ⊥ B∗
p and d∗φ ∈ B∗

p . Thus dv1 = 0. Similarly, one shows that
d∗v2 = 0.

Thus, with the above lemma, we get that

λ(v1 + v2) = ∆v = (dd∗ + d∗d)(v1 + v2) = dd∗v1 + d∗dv2.
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Furthermore, we see that

(dd∗v1, d
∗dv2) = (d2d∗v1, dv2) = (0, dv2) = 0,

and so dd∗v1 ⊥ d∗dv2. We make the reader aware that the above calculations are
not a-priori defined, because it is not certain that d∗v1 even exists for example.
The way around this is to use the theory of distributions and thus be able to
obtain the above in that sense. However, including that would make this text
unnecessarily lengthy so we chose to omit it. Taking that for granted, we may
conclude that

Dpv1 := dp−1d
∗
p−1v1 = λv1 and D′

pv2 := d∗pdpv2 = λv2. (17)

Therefore we have shown that

σ(∆p) \ {0} = σ(Dp) \ {0} ∪ σ(D′
p) \ {0}. (18)

To further simplify the above, we shall use the following.

Lemma 2.6. For any two linear operators A : X → Y and B : Y → X,
where X and Y are normed vector spaces, we have that their (point) spectrum
σ satisfies

σ(AB) \ {0} = σ(BA) \ {0}

Proof. Take λ ∈ σ(AB) \ {0}. Then there exists ϕ ̸= 0 such that ABϕ = λϕ.
Thus, we get that

(BA)Bϕ = Bλϕ = λBϕ

Hence, λ ∈ σ(BA) \ {0} and we may finish the proof due to symmetry reasons.

This lemma allows us to summarize our findings in the following theorem

Theorem 2.1.

σ(∆p) \ {0} = σ(D′
p−1) \ {0} ∪ σ(D′

p) \ {0}

Proof. By using (18), together with Dp = dp−1d
∗
p−1, we see by Lemma 2.6 that

σ(∆p) \ {0} = σ(Dp) \ {0} ∪ σ(D′
p) \ {0}

= σ(dp−1d
∗
p−1) \ {0} ∪ σ(D′

p) \ {0}
= σ(d∗p−1dp−1) \ {0} ∪ σ(D′

p) \ {0}
= σ(D′

p−1) \ {0} ∪ σ(D′
p) \ {0}
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2.2 Consistency with other definitions

We still assume M to be compact but in these sections, only minor changes
would have to be made in order to fit the non-compact case.

Now we shall perform some calculations in local coordinates to check that the
Laplace operator on forms agrees with previous definitions made in the course.
Recall that for f ∈ C∞(M) = Ω0(M), we defined the Laplace-Beltrami opera-
tor, call it ∆̃ (on functions) as

∆̃f = − 1
√
g
∂j(

√
ggij∂i(f))

Since d∗f = 0, we get that the Laplace-Beltrami operator on forms, ∆, satisfies
∆f = d∗df in this case. Hence, for any test function φ ∈ C∞(M) we may
compute that∫
d∗df · φ√gdx1 ∧ . . . ∧ dxn = (d∗df, φ) = (df, dφ)

=

∫
⟨df, dφ⟩ ∗ (1) =

∫
gij∂i(f)∂j(φ)

√
gdx1 ∧ . . . dxn

= −
∫
∂j(

√
ggij∂i(f))φdx

1 ∧ . . . ∧ dxn

= −
∫

1
√
g
∂j(

√
ggij∂i(f))φ

√
gdx1 ∧ . . . ∧ dxn,

and thus ∆ = ∆̃. We saw by Gauss Theorem (Lecture ”The Laplacian of
Riemannian manifolds”) that∫

M

d∗df ∗ (1) =
∫
M

∆f ∗ (1) = 0.

Which one can equivalently express as, for any exact 1-form ω (i.e there exists
f ∈ Ω0(M) such that ω = df), we have that∫

M

d∗ω ∗ (1) = 0.

However, with what has been developed in this text, we can also conclude that
for any 1-form ω, the above still holds. Indeed, if we let 1 denote the constant
function x 7→ 1, we get that∫

M

d∗ω ∗ (1) = (d∗ω, 1) = (ω, d1) = (ω, 0) = 0.

2.3 Local calculations

Lemma 2.7. For any η ∈ Ωp(M), ∗η ∈ Ωn−p(M) is the unique element satis-
fying

ω ∧ ∗η = ⟨ω, η⟩ ∗ (1), (19)
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for all ω ∈ Ωp(M).

Proof. First, fix η, ω ∈ Ωp(M). By Lemma 1.2, we have that

∗(ω ∧ ∗η) = ⟨ω, η⟩.

Applying ∗ to both sides and using Lemma 1.1, we get that

∗ ∗ (ω ∧ ∗η) = ∗⟨ω, η⟩ ⇐⇒ (ω ∧ ∗η) = ⟨ω, η⟩ ∗ (1),

And thus, we have shown that ∗η satisfies (19). For uniqueness, keep η fixed
and suppose there exists another such element η̃ ∈ Ωn−p(M) that satisfies (19)
for every ω ∈ Ωp(M). Then, we get that

0 = ω ∧ ∗η − ω ∧ η̃ = ω ∧ ∗η − η̃ = ∗η − η̃ ∧ ω.

In particular, with ω = ∗(∗η − η̃), we may use the previous to obtain

0 = ∗η − η̃ ∧ ∗(∗η − η̃) = ⟨∗η − η̃, ∗η − η̃⟩

and thus ∗η − η̃ = 0, which completes the proof.

Remark 2.7. With this above lemma, one can compute local expressions for ∗η,
d∗η and ultimately ∆η, and check that this coincides with the definition given
for d∗η for 1-forms given in the talk ”The Laplacian of Riemannian manifolds”.
To get some inspirations for other local computations, see pages 140-143 in [1].

3 Exercises

1. Prove Lemma 1.1

2. Prove Proposition 2.2

3. LetM be a compact Riemannian manifold. Show the following statements
for the Laplace operator ∆ : Ωp(M) → Ωp(M).

(a) All eigenvalues are nonnegative.

(b) All eigenspaces are finite dimensional.

(c) Eigenvectors corresponding to different eigenvalues are orthogonal.
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