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1 Introduction
This talk explores the representation of cohomology classes through harmonic
forms. We begin by revisiting some essential definitions.

Definition 1.1. A differential form α ∈ Ωp(M) is called closed if dα = 0, and
it is called exact if there exists η ∈ Ωp−1(M) such that dη = α.

Given the operator d : Ωp(M) → Ωp+1(M) and its property d ◦ d = 0 (see
Lemma 7.2.11, the spring DG course), it follows that every exact forms is indeed
closed.

Definition 1.2. Two closed forms α, β ∈ Ωp(M) are called cohomologous if
α− β is exact, i.e. there exists a form η ∈ Ωp−1(M) such that α− β = dη.

This property establishes an equivalence relation on the space {α ∈ Ωp(M) | dα =
0}.

Definition 1.3. The set of equivalence classes - closed forms in Ωp(M) modulo
the exact forms - forms a vector space over R, that is known as the p-th de
Rham cohomology group Hp

dR(M,R).

The primary goal of this talk is to prove the following theorem.

Theorem 1.4 (Hodge). Let M be a compact Riemannian manifold. Then
every cohomology class in Hp

dR(M,R) (0 ≤ p ≤ d = dimM) contains precisely
one harmonic form.

The general strategy, illustrated by the Hodge theorem, is fundamental in
geometric analysis. The main idea is to choose a particular representative from
a class of geometric objects (here a cohomology class). The selection is achieved
either by imposing a suitable differential equation or, alternatively, by mini-
mizing a specific functional within the given class. In this case, the imposed
differential equation is d∗η = 0, which, alongside the standard cohomology class
equation dη = 0, results in the harmonic equation ∆η = 0. We will illustrate
the Hodge theorem using a variational method. The central technical tool will
be Rellich’s embedding theorem, which will be restated below in the particular
form required for our purposes in Lemma 1.9.
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Proof. Uniqueness. Assume we have two cohomologous harmonic differential
forms ω1, ω2 ∈ Ωp(M). For the case where p = 0, it follows that ω1 = ω2, since
every class of H0

dR(M) contains just one element.
If p > 0 there exists a form η ∈ Ωp−1(M) such that ω1 − ω2 = dη. Conse-

quently,

(ω1 − ω2, ω1 − ω2) = (ω1 − ω2, dη) = (d∗(ω1 − ω2), η) = 0,

where, in the last step, we use the fact that ω1 and ω2 are harmonic, implying
d∗ω1 = 0 and d∗ω2 = 0 (see Proposition 2.1, Talk 7).

Since the scalar product is positive definite, we conclude that ω1 = ω2 which
implies uniqueness.

To establish the existence, a more challenging task, we will use Dirichlet’s
principle. Let ω0 be a closed differential form, representing a given cohomology
class in Hp(M). Then any form cohomologous to ω0 can be written as

ω = ω0 + dα with α ∈ Ωp−1(M).

Now we minimise the L2-norm D(ω) = (ω, ω) in the class of all forms co-
homologous to ω0. Assume that the infimum is achieved by a smooth form η,
and let η + tdβ with β ∈ Ωp−1(M) be a variation of that form. Then η has to
satisfy the following Euler–Lagrange equations for D

0 =
d

dt
(η + tdβ, η + tdβ)|t=0

= 2(η, dβ)

= 2(d∗η, β)

(1)

which implies d∗η = 0, and hence the harmonicity of η.
Since our objective is to minimize the L2-norm, we need a space that is

complete with respect to L2-convergence. Thus, we have to work with the space
of L2 forms, instead of the space of the smooth forms. For technical reasons, it
is necessary to define the Sobolev space in the current context.

Definition 1.5. Let E be a vector bundle over M and s :M → E a section of
E with compact support. A section s is contained in the Sobolev space Hk,r(E),
if for any bundle atlas with the property that on compact sets all coordinate
changes and all their derivatives are bounded and for any bundle chart from
such an atlas

φ : E|U → U × Rn

we have that φ ◦ s|U is contained in Hk,r(E)

Remark 1.6. It is possible to obtain such an atlas by making coordinate neigh-
borhood smaller if necessary
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Consider a new scalar product on Ωp(M)

((ω, ω)) := (dω, dω) + (d∗ω, d∗ω) + (ω, ω)

and the norm
∥ω∥H1,2(M) := ((ω, ω))

1
2 .

We consider a completion of the space Ωp(M) of smooth p-forms with respect
to the ∥·∥H1,2(M)-norm. The resulting Hilbert space will be denoted asH1,2

p (M),
or simply H1,2(M), when the index p is clear from the context.

Recall that for a given open set V ⊂ Rd and a smooth map f : V → Rn, the
Euclidean Sobolev norm is given by

∥f∥H1,2
eucl.(V ) :=

(∫
V

f · f +

∫
V

∂f

∂xi
· ∂f
∂xi

) 1
2

For every x0 ∈M there exists an open neighborhood U and a diffeomorphism

φ : Λp(M)|U → V × Rn

where V is open in Rd and n is the dimension of the fibers of Λp(M) and it
equals

(
d
p

)
. We also define the projection π : V ×Rn → V which maps the fiber

over x ∈ U to a fiber {π(φ(x))} × Rn.

Lemma 1.7. On any subset U ′ of U with U ′ ⊂ U and V ′ = π(φ(U ′)), the
norms

∥ω∥H1,2(U ′) and ∥φ(ω)∥H1,2
eucl.(V

′)

are equivalent.

Proof. If we restrict ourselves to relatively compact subsets U ′ of U , we know
that all coordinate changes lead to equivalent norms. Then, it is enough to find
for every x in U ′ a neighborhood U ′′ on which the norms are equivalent, since
the claim then follows by a covering argument.

Recall that the local coordinates defined by the chart (exp−1
p , U) are called

normal coordinates with center p. We also will need the following result.

Theorem 1.8. In normal coordinates, we have for the Riemannian metric
gij(0) = δij, Γi

jk(0) = 0 for all i, j, k.

We can assume that π ◦ φ is the map onto normal coordinates with center
x0, thus by continuity there exists ε > 0 such that in the neighborhood U ′′ of
x0 we have

|gij(x)− δij | ≤ ε, for i, j = 1, .., d, (2)

|Γi
jk(x)| ≤ ε for i, j, k = 1, .., d, (3)

To continue we will need first to obtain some quantities.
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Let α, β ∈ Ωp(M) and write them as

α = αi1..ipdx
i1 ∧ ... ∧ dxip ,

β = βj1..jpdx
j1 ∧ ... ∧ dxjp .

then
< α, β >= αi1..ipβj1..jpg

i1j1gi2j2 ...gipjp . (4)

Recall that

dα =

d−p∑
k=1

∂αi1..ip

∂xjk
dxjk ∧ dxi1 ∧ ... ∧ dxip .

Then
< dα, dβ >=

∂αi1..ip

∂xk
∂βj1..jp
∂xl

gklgi1j1gi2j2 ...gipjp (5)

Recall (from the talk 5) that if ω ∈ Ω1(M) we have that

d∗ω = −gkl
(
∂ωk

∂xl
− Γj

klωk

)
.

Similarly,

(d∗α)i1..ip−1 = −gkl
(
∂αki1..ip−1

∂xl
− Γj

klαji1..ip−1

)
.

Then

< d∗α, d∗β > =< gkl
(
∂αki1..ip−1

∂xl
− Γj

klαji1..ip−1

)
dxi1 ∧ ... ∧ dxip ,

gmn

(
∂βmj1..jp−1

∂xn
− Γr

mnβrj1..jp−1

)
dxj1 ∧ ... ∧ dxjp >

=
∂αki1..ip−1

∂xl
∂βmj1..jp−1

∂xn
gklgmngi1j1 ...gip−1jp−1

−
∂αki1..ip−1

∂xl
Γr
mnβrj1..jp−1

gkl...gip−1jp−1

−
∂βmj1..jp−1

∂xn
Γj
klαji1..ip−1

gklgmngi1j1 ...gip−1jp−1

+ Γj
klΓ

r
mnαji1..ip−1

βrj1..jp−1
gkl...gip−1jp−1 .

(6)

Recall, that we actually considered the following L2-product as following

(α, β) =

∫
M

< α, β > ∗(1), α, β ∈ Ωp(U)

Then set
ω = ωi1..ipdx

i1 ∧ ... ∧ dxip
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and observe that

∥φ(ω)∥H1,2
eucl(V

′′) =

∫
V ′′

ωi1..ip · ωj1..jpdx
1...dxd +

∫
V ′′

∂ωi1..ip

∂xi
·
∂ωj1..jp

∂xi
dx1...dxd

=

∫
V ′′

ωi1..ip · ωj1..jpδ
i1j1 ...δipjpdx1...dxd

+

∫
V ′′

∂ωi1..ip

∂xi
·
∂ωi1..ip

∂xj
δijδi1j1 ...δipjpdx1...dxd

where V ′′ = π(φ(U ′′)). Now using the estimates (2), (3) and equalities (4), (5),
for some c > 0 we obtain

c ∥φ(ω)∥H1,2
eucl(V

′′) ≤
∫
V ′′

< ω,ω >
√
gdx1...dxd +

∫
V ′′

< dω, dω >
√
gdx1...dxd

= (ω, ω) + (dω, dω) ≤ (ω, ω) + (dω, dω) + (d∗ω, d∗ω) = ∥ω∥H1,2(U ′′)

To get the upper bound we proceed in the similar way, using the aforementioned
estimates and equalities plus equality (6). In particular, to bound (d∗ω, d∗ω)
with (dω, dω) and (ω, ω) we just use inequalities of the following type

∂αki1...ip−1

∂xl
βrj1...jp−1 ≤ 1

2

(∣∣∣∂αki1...ip−1

∂xl

∣∣∣2 + |βrj1...jp−1 |2
)

Then the claim holds for sufficiently small ε > 0, that is for a sufficiently
small neighborhood of x0. The claim follows by a covering argument

With the help of Lemma 1.7 the results for Sobolev spaces in the Euclidean
settings can be extended to a Riemannian manifold. In particular, the following
result holds.

Lemma 1.9 (Rellich’s theorem). Let (ωn)n∈N ⊂ H1,2
p (M) be bounded, i.e.

∥ωn∥H1,2(M) ≤ K.

Then a subsequence of (ωn) converges w.r.t. the L2-norm

∥ω∥L2(M) := (ω, ω)
1
2

to some ω ∈ H1,2
p (M).

Corollary 1.10. There exists a constant c, depending only on the Riemanian
metric of M , with the property that for all closed forms β that are orthogonal
to the kernel of d∗,

(β, β) ≤ c(d∗β, d∗β) (7)
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Proof. We prove by contradiction. Assume there exists a sequence of closed
forms βn orthogonal to the kernel of d∗ such that

(βn, βn) ≥ n(d∗βn, d
∗βn). (8)

Define
λn := (βn, βn)

− 1
2 .

Multiplying both sides of (8) by λn, we obtain

(d∗(λnβn), d
∗(λnβn)) ≤

1

n
(λnβn, λnβn) =

1

n
. (9)

Since dβn = 0, we have

∥λnβn∥H1,2 = (λnβn, λnβn) + λ2n(dβn, dβn) + (d∗(λnβn), d
∗(λnβn))

= 1 + (d∗(λnβn), d
∗(λnβn)) ≤ 1 +

1

n
.

By Lemma 1.9, up to selecting a susequence, λnβn converges in L2-norm to
some form ψ. By (9) d∗(λnβn) converges to 0 in L2, and so for any φ

(d∗ψ,φ) = (ψ, dφ) = lim
n→∞

(λnβn, dφ)

= lim
n→∞

(d∗(λnβn), φ) = 0

and hence d∗ψ = 0.
And again, since by assumption βn are closed, we have

(dψ, φ) = (ψ, d∗φ) = lim
n→∞

(λnβn, d
∗φ)

= lim
n→∞

(d(λnβn), φ) = 0
(10)

and dψ = 0.
Since d∗ψ = 0 (so it belongs to the kernel of d∗) and βn is orthogonal to the

kernel of d∗ by assumption
(ψ, λnβn) = 0.

Recall that (λnβn, λnβn) = 1, then

lim
n→∞

(ψ, λnβn) = 1,

which contradicts to (10).

Proof. Existence part of Theorem 1.4. We begin by roughly outlining the idea
of the proof. We minimize the functional D(ω) = (ω, ω) for ω in the cohomology
class we consider. Then we pick a ω that minimizes D(ω). Then, using (1) we
get that, (d∗ω, β) = 0, which together with the assumption dω = 0 implies that
ω is harmonic.

However, there are some important details being missed when doing this.
Firstly, we don’t know whether the ω that minimizes D(ω) is in the cohomology
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class. Indeed, we will construct ω as a weak limit point, and (1) will then
give us that (ω, dβ) = 0 for all β ∈ Ωp−1(M), which means that ω is weakly
harmonic. And due to the Laplacian being a uniformly elliptic operator we get
by regularity theory that ω is smooth and harmonic in the usual sense. But we
also need to assure that the ω we construct as a weak limit does not leave the
considered cohomology class. Also in order to use (1) we need to ensure that
ω + ddβ does not leave the set we are minimizing over, so we need to minimize
D over the set of weak limit points of the cohomology class we consider.

We now carry out the rigorous argument. Let Cω0
be the set of all weak

limit points of forms in the cohomology class of ω0 ∈ Ωp(M), i.e.

Cω0
= {ω ∈ L2| ∃(αn)

∞
n=1 ⊂ Ωp−1(M) : lim

n→∞
(ω0+dαn, φ) = (ω, φ) ∀φ ∈ Ωp(M)}.

We shall now classify Cω0
as all ω being weakly in the same cohomology class

as ω0, i.e. we shall show that for all ω ∈ Cω0
there exists α ∈ L2 such that

(α, d∗φ) = (ω − ω0, φ) ∀φ ∈ Ωp(M). (11)

First we note that for ω ∈ Cω0
we have

(ω − ω0, φ) = 0 (12)

for all φ such that d∗φ = 0, since we have (ω − ω0, φ) = limn→∞(dαn + ω0 −
ω0, φ) = limn→∞(αn, d

∗φ) = 0 if d∗φ = 0. Now, let η := ω−ω0, where ω ∈ Cω0 .
Define a linear functional l on d∗(Ωp(M)) by

l(d∗φ) := (η, φ).

Since d∗ and the scalar product is linear, l is linear. Also l is well-defined since
d∗φ1 = d∗φ2 implies d∗(φ1 − φ2) = 0 and so by (12) we have that l(d∗φ1) =
l(d∗φ2).

Not define π : Ωp(M) → ker d∗p as the projection onto the kernel of d∗,
and let φ ∈ Ωp(M) and consider ψ := φ − π(φ). By definition of π we have
d∗φ = d∗ψ. So we have

l(d∗φ) = l(d∗ψ) = (η, ψ). (13)

Because ψ is orthogonal to ker d∗ we have by Corollary 1.10 that

∥ψ∥L2 ≤ c ∥d∗ψ∥L2 = c ∥d∗φ∥L2 . (14)

Together, (13), (14) and Cauchy-Schwartz imply

|l(d∗φ)| ≤ c ∥η∥L2 ∥d∗φ∥L2 .

So l is bounded on d∗(Ωp(M)) and we can extend l continuously to the L2 closure
of d∗(Ωp(M), which then becomes a Hilbert space. Denote the extension of l
again by l. Since l is now a bounded linear funcitonal on a Hilbert space, we
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can use Riesz representation theorem, which gives us an α ∈ d∗(Ωp(M) such
that

(α, d∗φ) = (η, φ)

for all φ ∈ Ωp(M). This is exactly (11).
Now that we have (11) we are ready to wrap up the proof. Consider

κ := inf
ω∈Cω0

D(ω) (15)

for an arbitrary closed ω0 ∈ Ωp(M). Since D(ω) = ∥ω∥2L2 we can choose a
minimizing sequence of (15) (ωn)

∞
n=1 and may assume that ∥ωn∥L2 ≤ κ+ 1 for

all n. But a bounded sequence in a Hilbert space always has a subsequence that
converges weakly. Denote the weak limit by ω, hence we may assume that (ωn)
converges weakly to ω, i.e. (ωn, φ) = (ω, φ) for all φ ∈ Ωp(M). Also, since Cω0

is the closure with respect to weak limit points, ω is contained in Cω0
.

Now we use that D is weakly lower semicontinuous with respect to weak
convergence

κ ≤ D(ω) ≤ lim inf
n→∞

D(ωn) = 0,

which gives us that D(ω) = κ. Using this fact, we are ready to use (1) with ω
in place of η, since ω+ dβ ∈ Cω0 (this is easily seen from the classification (11))
and D(ω) = κ. Of course, we can not carry out the last equality in (1), since we
do not yet know that ω is equivalent to a smooth form. But we have (ω, dβ) = 0
for all β ∈ Ωp−1(M). Also, we have that (ω, d∗φ) = 0 for all φ ∈ Ωp+1(M),
since by (11) we have (ω, d∗φ) = (ω−ω0, d

∗φ)+(ω0, d
∗φ) = (α, d∗d∗φ)+0 = 0.

Together, (ω, dβ) = (ω, d∗φ) = 0 means that ω is weakly harmonic. Hence ω
is a weak solution to Laplace’s equation. And since the Laplace operator is
elliptic, we get by regularity theory that ω is smooth and harmonic in the usual
sense. For details, see [1, A.2].

Now we are almost done. We have shown that there exists a harmonic
ω ∈ Ωp(M) which is weakly in the same cohomology class as ω0, i.e. (11) holds.
But we still need to show that ω is in the same cohomology class as ω0, i.e. that
α in (11) is smooth.1 When we have proved this, we are done. We shall use
the Sobolev embedding theorem which reduces the problem of showing that α
is smooth, to showing that it is contained in Hk,2 for all k ∈ N. For details see
[1, A.1]. But this is not so difficult to see. We have (α, d∗φ) = (ω−ω0, φ). This
means that dα exists, weakly, and is smooth (it is equal to ω − ω0). Hence all
other derivatives (starting with d) will exist and be bounded. Also (α, dβ) = 0
for all β ∈ Ωp−1(M), since α ∈ d∗(Ωp(M), and derivation conserves weak
convergence. So weakly d∗α = 0. Hence all weak derivatives of α exists and are
continuous, and since we are on a compact manifold, they are contained in Hk,2

for arbitrary k and we are done.

Corollary 1.11. Let Bp be the L2-closure of {dα : α ∈ Ωp−1(M)}, and B∗
p be

the L2-closure of {d∗β : β ∈ Ωp+1(M)}, and Hp be the set of harmonic p-forms.
1This is equivalent to showing that Cω1 ∩ Cω2 = ∅ for ω1, ω2 in different cohomology

classes.

8



Then the Hilbert space L2
p consisting of square inteagrable p-forms admits the

orthogonal decomposition

L2
p(M) = Bp ⊕B∗

p ⊕Hp.

Moreover, we have Hp = B⊥
p ∩B∗

p
⊥.

Proof. First we note that {dα : α ∈ Ωp−1(M)} and {d∗β : β ∈ Ωp+1(M)}
are orthogonal to each other, since (dα, d∗β) = (d2α, β) = 0, and by a standard
continuity argument ((·, ω) is continuous), we get thatBp andB∗

p are orthogonal.
From this fact we have that

L2
p(M) = Bp ⊕B∗

p ⊕
(
B⊥

p ∩B∗
p
⊥
)
.

So all that is left is to prove that Hp = B⊥
p ∩B∗

p
⊥. But ω ∈ B⊥

p ∩B∗
p
⊥ implies

(ω, dα) = 0 and (ω, d∗β) = 0 for all α ∈ Ωp−1(M) and β ∈ Ωp+1(M). And the
last step of Theorem 1.4 was proving that this implies that ω is smooth and
harmonic, so we are done.

Corollary 1.12. Let M be a compact differentiable manifold. Then all coho-
mology groups Hp

dR(M,R) (0,≤ p ≤ d := dimm) are finite dimensional.

Proof. Firstly, since M is a differentiable manifold, we may equip it with a
Riemannian metric. And by Theorem 1.4 we know that each cohomology class
may be represented by a form which is harmonic with respect to the chosen
metric. Due to this fact, we may define a scalar product on Hp

dR(M,R) by
([u], [v])Hp := (u0, v0)L2 , where u0 and v0 are the unique harmonic representa-
tives of the equivalence class. If we assume Hp

dR(M,R) to be infinitely dimen-
sional there therefore must exist an orthonormal sequence of harmonic forms
(ηn)n∈N w.r.t. (·, ·)L2 . I.e. we have (ηn, ηm) = δnm. But since ηn are harmonic,
they satisfy dηn = d∗ηn = 0, so we have ∥ηn∥H1,2(M) = 1. So Rellich’s theo-
rem (Lemma 1.9) gives us a subsequence of (ηn) that converges in L2, which
contradicts the orthogonality assumption.
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