Cohomology classes and harmonic forms

Teodor Bucht, Rada Ziganshina

December 12, 2023

1 Introduction

This talk explores the representation of cohomology classes through harmonic forms. We begin by revisiting some essential definitions.

Definition 1.1. A differential form $\alpha \in \Omega^{p}(M)$ is called closed if $d \alpha=0$, and it is called exact if there exists $\eta \in \Omega^{p-1}(M)$ such that $d \eta=\alpha$.

Given the operator $d: \Omega^{p}(M) \rightarrow \Omega^{p+1}(M)$ and its property $d \circ d=0$ (see Lemma 7.2.11, the spring DG course), it follows that every exact forms is indeed closed.

Definition 1.2. Two closed forms $\alpha, \beta \in \Omega^{p}(M)$ are called cohomologous if $\alpha-\beta$ is exact, i.e. there exists a form $\eta \in \Omega^{p-1}(M)$ such that $\alpha-\beta=d \eta$.

This property establishes an equivalence relation on the space $\left\{\alpha \in \Omega^{p}(M) \mid d \alpha=\right.$ $0\}$.

Definition 1.3. The set of equivalence classes - closed forms in $\Omega^{p}(M)$ modulo the exact forms - forms a vector space over \mathbb{R}, that is known as the p-th de Rham cohomology group $H_{d R}^{p}(M, \mathbb{R})$.

The primary goal of this talk is to prove the following theorem.
Theorem 1.4 (Hodge). Let M be a compact Riemannian manifold. Then every cohomology class in $H_{d R}^{p}(M, \mathbb{R})(0 \leq p \leq d=\operatorname{dim} M)$ contains precisely one harmonic form.

The general strategy, illustrated by the Hodge theorem, is fundamental in geometric analysis. The main idea is to choose a particular representative from a class of geometric objects (here a cohomology class). The selection is achieved either by imposing a suitable differential equation or, alternatively, by minimizing a specific functional within the given class. In this case, the imposed differential equation is $d^{*} \eta=0$, which, alongside the standard cohomology class equation $d \eta=0$, results in the harmonic equation $\Delta \eta=0$. We will illustrate the Hodge theorem using a variational method. The central technical tool will be Rellich's embedding theorem, which will be restated below in the particular form required for our purposes in Lemma 1.9 .

Proof. Uniqueness. Assume we have two cohomologous harmonic differential forms $\omega_{1}, \omega_{2} \in \Omega^{p}(M)$. For the case where $p=0$, it follows that $\omega_{1}=\omega_{2}$, since every class of $H_{d R}^{0}(M)$ contains just one element.

If $p>0$ there exists a form $\eta \in \Omega^{p-1}(M)$ such that $\omega_{1}-\omega_{2}=d \eta$. Consequently,

$$
\left(\omega_{1}-\omega_{2}, \omega_{1}-\omega_{2}\right)=\left(\omega_{1}-\omega_{2}, d \eta\right)=\left(d^{*}\left(\omega_{1}-\omega_{2}\right), \eta\right)=0
$$

where, in the last step, we use the fact that ω_{1} and ω_{2} are harmonic, implying $d^{*} \omega_{1}=0$ and $d^{*} \omega_{2}=0$ (see Proposition 2.1, Talk 7).

Since the scalar product is positive definite, we conclude that $\omega_{1}=\omega_{2}$ which implies uniqueness.

To establish the existence, a more challenging task, we will use Dirichlet's principle. Let ω_{0} be a closed differential form, representing a given cohomology class in $H^{p}(M)$. Then any form cohomologous to ω_{0} can be written as

$$
\omega=\omega_{0}+d \alpha \quad \text { with } \alpha \in \Omega^{p-1}(M) .
$$

Now we minimise the L^{2}-norm $D(\omega)=(\omega, \omega)$ in the class of all forms cohomologous to ω_{0}. Assume that the infimum is achieved by a smooth form η, and let $\eta+t d \beta$ with $\beta \in \Omega^{p-1}(M)$ be a variation of that form. Then η has to satisfy the following Euler-Lagrange equations for D

$$
\begin{align*}
0 & =\frac{d}{d t}(\eta+t d \beta, \eta+t d \beta)_{\mid t=0} \\
& =2(\eta, d \beta) \tag{1}\\
& =2\left(d^{*} \eta, \beta\right)
\end{align*}
$$

which implies $d^{*} \eta=0$, and hence the harmonicity of η.
Since our objective is to minimize the L^{2}-norm, we need a space that is complete with respect to L^{2}-convergence. Thus, we have to work with the space of L^{2} forms, instead of the space of the smooth forms. For technical reasons, it is necessary to define the Sobolev space in the current context.

Definition 1.5. Let E be a vector bundle over M and $s: M \rightarrow E$ a section of E with compact support. A section s is contained in the Sobolev space $H^{k, r}(E)$, if for any bundle atlas with the property that on compact sets all coordinate changes and all their derivatives are bounded and for any bundle chart from such an atlas

$$
\varphi: E_{\mid U} \rightarrow U \times \mathbb{R}^{n}
$$

we have that $\varphi \circ s_{\mid U}$ is contained in $H^{k, r}(E)$
Remark 1.6. It is possible to obtain such an atlas by making coordinate neighborhood smaller if necessary

Consider a new scalar product on $\Omega^{p}(M)$

$$
((\omega, \omega)):=(d \omega, d \omega)+\left(d^{*} \omega, d^{*} \omega\right)+(\omega, \omega)
$$

and the norm

$$
\|\omega\|_{H^{1,2}(M)}:=((\omega, \omega))^{\frac{1}{2}} .
$$

We consider a completion of the space $\Omega^{p}(M)$ of smooth p-forms with respect to the $\|\cdot\|_{H^{1,2}(M)}$-norm. The resulting Hilbert space will be denoted as $H_{p}^{1,2}(M)$, or simply $H^{1,2}(M)$, when the index p is clear from the context.

Recall that for a given open set $V \subset \mathbb{R}^{d}$ and a smooth map $f: V \rightarrow \mathbb{R}^{n}$, the Euclidean Sobolev norm is given by

$$
\|f\|_{H_{\text {eucl. }}^{1,2}(V)}:=\left(\int_{V} f \cdot f+\int_{V} \frac{\partial f}{\partial x_{i}} \cdot \frac{\partial f}{\partial x_{i}}\right)^{\frac{1}{2}}
$$

For every $x_{0} \in M$ there exists an open neighborhood U and a diffeomorphism

$$
\varphi: \Lambda^{p}(M)_{\mid U} \rightarrow V \times \mathbb{R}^{n}
$$

where V is open in \mathbb{R}^{d} and n is the dimension of the fibers of $\Lambda^{p}(M)$ and it equals $\binom{d}{p}$. We also define the projection $\pi: V \times \mathbb{R}^{n} \rightarrow V$ which maps the fiber over $x \in U$ to a fiber $\{\pi(\varphi(x))\} \times \mathbb{R}^{n}$.

Lemma 1.7. On any subset U^{\prime} of U with $\overline{U^{\prime}} \subset U$ and $V^{\prime}=\pi\left(\varphi\left(U^{\prime}\right)\right)$, the norms

$$
\|\omega\|_{H^{1,2}\left(U^{\prime}\right)} \quad \text { and } \quad\|\varphi(\omega)\|_{H_{\text {eucl. }}^{1,2}\left(V^{\prime}\right)}
$$

are equivalent.
Proof. If we restrict ourselves to relatively compact subsets U^{\prime} of U, we know that all coordinate changes lead to equivalent norms. Then, it is enough to find for every x in $\overline{U^{\prime}}$ a neighborhood $U^{\prime \prime}$ on which the norms are equivalent, since the claim then follows by a covering argument.

Recall that the local coordinates defined by the chart $\left(\exp _{p}^{-1}, U\right)$ are called normal coordinates with center p. We also will need the following result.

Theorem 1.8. In normal coordinates, we have for the Riemannian metric $g_{i j}(0)=\delta_{i j}, \Gamma_{j k}^{i}(0)=0$ for all i, j, k.

We can assume that $\pi \circ \varphi$ is the map onto normal coordinates with center x_{0}, thus by continuity there exists $\varepsilon>0$ such that in the neighborhood $U^{\prime \prime}$ of x_{0} we have

$$
\begin{gather*}
\left|g_{i j}(x)-\delta_{i j}\right| \leq \varepsilon, \quad \text { for } i, j=1, . ., d \tag{2}\\
\left|\Gamma_{j k}^{i}(x)\right| \leq \varepsilon \quad \text { for } i, j, k=1, . ., d \tag{3}
\end{gather*}
$$

To continue we will need first to obtain some quantities.

Let $\alpha, \beta \in \Omega^{p}(M)$ and write them as

$$
\begin{aligned}
& \alpha=\alpha_{i_{1} . . i_{p}} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{p}} \\
& \beta=\beta_{j_{1} . . j_{p}} d x^{j_{1}} \wedge \ldots \wedge d x^{j_{p}}
\end{aligned}
$$

then

$$
\begin{equation*}
<\alpha, \beta>=\alpha_{i_{1} . . i_{p}} \beta_{j_{1} . . j_{p}} g^{i_{1} j_{1}} g^{i_{2} j_{2}} \ldots g^{i_{p} j_{p}} \tag{4}
\end{equation*}
$$

Recall that

$$
d \alpha=\sum_{k=1}^{d-p} \frac{\partial \alpha_{i_{1} . . i_{p}}}{\partial x^{j_{k}}} d x^{j_{k}} \wedge d x^{i_{1}} \wedge \ldots \wedge d x^{i_{p}}
$$

Then

$$
\begin{equation*}
<d \alpha, d \beta>=\frac{\partial \alpha_{i_{1} . . i_{p}}}{\partial x^{k}} \frac{\partial \beta_{j_{1} . . j_{p}}}{\partial x^{l}} g^{k l} g^{i_{1} j_{1}} g^{i_{2} j_{2}} \ldots g^{i_{p} j_{p}} \tag{5}
\end{equation*}
$$

Recall (from the talk 5) that if $\omega \in \Omega^{1}(M)$ we have that

$$
d^{*} \omega=-g^{k l}\left(\frac{\partial \omega_{k}}{\partial x_{l}}-\Gamma_{k l}^{j} \omega_{k}\right)
$$

Similarly,

$$
\left(d^{*} \alpha\right)_{i_{1} . . i_{p-1}}=-g^{k l}\left(\frac{\partial \alpha_{k i_{1} . . i_{p-1}}}{\partial x^{l}}-\Gamma_{k l}^{j} \alpha_{j i_{1} . . i_{p-1}}\right) .
$$

Then

$$
\begin{align*}
<d^{*} \alpha, d^{*} \beta>= & <g^{k l}\left(\frac{\partial \alpha_{k i_{1} . . i_{p-1}}}{\partial x^{l}}-\Gamma_{k l}^{j} \alpha_{j i_{1} . . i_{p-1}}\right) d x^{i_{1}} \wedge \ldots \wedge d x^{i_{p}} \\
& g^{m n}\left(\frac{\partial \beta_{m j_{1} . . j_{p-1}}}{\partial x^{n}}-\Gamma_{m n}^{r} \beta_{r j_{1} . . j_{p-1}}\right) d x^{j_{1}} \wedge \ldots \wedge d x^{j_{p}}> \\
= & \frac{\partial \alpha_{k i_{1} . . i_{p-1}}}{\partial x^{l}} \frac{\partial \beta_{m j_{1} . . j_{p-1}}}{\partial x^{n}} g^{k l} g^{m n} g^{i_{1} j_{1}} \ldots g^{i_{p-1} j_{p-1}} \tag{6}\\
& -\frac{\partial \alpha_{k i_{1} . . i_{p-1}}^{r}}{\partial x^{l}} \Gamma_{m n}^{r} \beta_{r j_{1} . . j_{p-1}} g^{k l} \ldots g^{i_{p-1} j_{p-1}} \\
& -\frac{\partial \beta_{m j_{1} . . j_{p-1}}}{\partial x^{n}} \Gamma_{k l}^{j} \alpha_{j i_{1} . . i_{p-1}} g^{k l} g^{m n} g^{i_{1} j_{1}} \ldots g^{i_{p-1} j_{p-1}} \\
& +\Gamma_{k l}^{j} \Gamma_{m n}^{r} \alpha_{j i_{1} . . i_{p-1}} \beta_{r j_{1} . . j_{p-1}} g^{k l} \ldots g^{i_{p-1} j_{p-1}} .
\end{align*}
$$

Recall, that we actually considered the following L^{2}-product as following

$$
(\alpha, \beta)=\int_{M}<\alpha, \beta>*(1), \quad \alpha, \beta \in \Omega^{p}(U)
$$

Then set

$$
\omega=\omega_{i_{1} . . i_{p}} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{p}}
$$

and observe that

$$
\begin{aligned}
\|\varphi(\omega)\|_{H_{e u c l}^{1,2}\left(V^{\prime \prime}\right)}= & \int_{V^{\prime \prime}} \omega_{i_{1} . . i_{p}} \cdot \omega_{j_{1} . . j_{p}} d x^{1} \ldots d x^{d}+\int_{V^{\prime \prime}} \frac{\partial \omega_{i_{1} . . i_{p}}}{\partial x_{i}} \cdot \frac{\partial \omega_{j_{1} . . j_{p}}}{\partial x_{i}} d x^{1} \ldots d x^{d} \\
= & \int_{V^{\prime \prime}} \omega_{i_{1} . . i_{p}} \cdot \omega_{j_{1} . . j_{p}} \delta^{i_{1} j_{1}} \ldots \delta^{i_{p} j_{p}} d x^{1} \ldots d x^{d} \\
& +\int_{V^{\prime \prime}} \frac{\partial \omega_{i_{1} . . i_{p}}}{\partial x_{i}} \cdot \frac{\partial \omega_{i_{1} . . i_{p}}}{\partial x_{j}} \delta^{i j} \delta^{i_{1} j_{1}} \ldots \delta^{i_{p} j_{p}} d x^{1} \ldots d x^{d}
\end{aligned}
$$

where $V^{\prime \prime}=\pi\left(\varphi\left(U^{\prime \prime}\right)\right)$. Now using the estimates (22), (3) and equalities (4), (5), for some $c>0$ we obtain

$$
\begin{array}{r}
c\|\varphi(\omega)\|_{H_{e u c l}^{1,2}\left(V^{\prime \prime}\right)} \leq \int_{V^{\prime \prime}}<\omega, \omega>\sqrt{g} d x^{1} \ldots d x^{d}+\int_{V^{\prime \prime}}<d \omega, d \omega>\sqrt{g} d x^{1} \ldots d x^{d} \\
=(\omega, \omega)+(d \omega, d \omega) \leq(\omega, \omega)+(d \omega, d \omega)+\left(d^{*} \omega, d^{*} \omega\right)=\|\omega\|_{H^{1,2}\left(U^{\prime \prime}\right)}
\end{array}
$$

To get the upper bound we proceed in the similar way, using the aforementioned estimates and equalities plus equality (6). In particular, to bound ($d^{*} \omega, d^{*} \omega$) with $(d \omega, d \omega)$ and (ω, ω) we just use inequalities of the following type

$$
\frac{\partial \alpha_{k i_{1} \ldots i_{p-1}}}{\partial x^{l}} \beta_{r j_{1} \ldots j_{p-1}} \leq \frac{1}{2}\left(\left|\frac{\partial \alpha_{k i_{1} \ldots i_{p-1}}}{\partial x^{l}}\right|^{2}+\left|\beta_{r j_{1} \ldots j_{p-1}}\right|^{2}\right)
$$

Then the claim holds for sufficiently small $\varepsilon>0$, that is for a sufficiently small neighborhood of x_{0}. The claim follows by a covering argument

With the help of Lemma 1.7 the results for Sobolev spaces in the Euclidean settings can be extended to a Riemannian manifold. In particular, the following result holds.

Lemma 1.9 (Rellich's theorem). Let $\left(\omega_{n}\right)_{n \in \mathbb{N}} \subset H_{p}^{1,2}(M)$ be bounded, i.e.

$$
\left\|\omega_{n}\right\|_{H^{1,2}(M)} \leq K
$$

Then a subsequence of $\left(\omega_{n}\right)$ converges w.r.t. the L^{2}-norm

$$
\|\omega\|_{L^{2}(M)}:=(\omega, \omega)^{\frac{1}{2}}
$$

to some $\omega \in H_{p}^{1,2}(M)$.
Corollary 1.10. There exists a constant c, depending only on the Riemanian metric of M, with the property that for all closed forms β that are orthogonal to the kernel of d^{*},

$$
\begin{equation*}
(\beta, \beta) \leq c\left(d^{*} \beta, d^{*} \beta\right) \tag{7}
\end{equation*}
$$

Proof. We prove by contradiction. Assume there exists a sequence of closed forms β_{n} orthogonal to the kernel of d^{*} such that

$$
\begin{equation*}
\left(\beta_{n}, \beta_{n}\right) \geq n\left(d^{*} \beta_{n}, d^{*} \beta_{n}\right) \tag{8}
\end{equation*}
$$

Define

$$
\lambda_{n}:=\left(\beta_{n}, \beta_{n}\right)^{-\frac{1}{2}}
$$

Multiplying both sides of (8) by λ_{n}, we obtain

$$
\begin{equation*}
\left(d^{*}\left(\lambda_{n} \beta_{n}\right), d^{*}\left(\lambda_{n} \beta_{n}\right)\right) \leq \frac{1}{n}\left(\lambda_{n} \beta_{n}, \lambda_{n} \beta_{n}\right)=\frac{1}{n} \tag{9}
\end{equation*}
$$

Since $d \beta_{n}=0$, we have

$$
\begin{aligned}
\left\|\lambda_{n} \beta_{n}\right\|_{H^{1,2}} & =\left(\lambda_{n} \beta_{n}, \lambda_{n} \beta_{n}\right)+\lambda_{n}^{2}\left(d \beta_{n}, d \beta_{n}\right)+\left(d^{*}\left(\lambda_{n} \beta_{n}\right), d^{*}\left(\lambda_{n} \beta_{n}\right)\right) \\
& =1+\left(d^{*}\left(\lambda_{n} \beta_{n}\right), d^{*}\left(\lambda_{n} \beta_{n}\right)\right) \leq 1+\frac{1}{n}
\end{aligned}
$$

By Lemma 1.9, up to selecting a susequence, $\lambda_{n} \beta_{n}$ converges in L^{2}-norm to some form ψ. By (9) $d^{*}\left(\lambda_{n} \beta_{n}\right)$ converges to 0 in L^{2}, and so for any φ

$$
\begin{aligned}
\left(d^{*} \psi, \varphi\right)=(\psi, d \varphi) & =\lim _{n \rightarrow \infty}\left(\lambda_{n} \beta_{n}, d \varphi\right) \\
& =\lim _{n \rightarrow \infty}\left(d^{*}\left(\lambda_{n} \beta_{n}\right), \varphi\right)=0
\end{aligned}
$$

and hence $d^{*} \psi=0$.
And again, since by assumption β_{n} are closed, we have

$$
\begin{align*}
(d \psi, \varphi)=\left(\psi, d^{*} \varphi\right) & =\lim _{n \rightarrow \infty}\left(\lambda_{n} \beta_{n}, d^{*} \varphi\right) \tag{10}\\
& =\lim _{n \rightarrow \infty}\left(d\left(\lambda_{n} \beta_{n}\right), \varphi\right)=0
\end{align*}
$$

and $d \psi=0$.
Since $d^{*} \psi=0$ (so it belongs to the kernel of d^{*}) and β_{n} is orthogonal to the kernel of d^{*} by assumption

$$
\left(\psi, \lambda_{n} \beta_{n}\right)=0
$$

Recall that $\left(\lambda_{n} \beta_{n}, \lambda_{n} \beta_{n}\right)=1$, then

$$
\lim _{n \rightarrow \infty}\left(\psi, \lambda_{n} \beta_{n}\right)=1
$$

which contradicts to 10 .
Proof. Existence part of Theorem 1.4. We begin by roughly outlining the idea of the proof. We minimize the functional $D(\omega)=(\omega, \omega)$ for ω in the cohomology class we consider. Then we pick a ω that minimizes $D(\omega)$. Then, using (1) we get that, $\left(d^{*} \omega, \beta\right)=0$, which together with the assumption $d \omega=0$ implies that ω is harmonic.

However, there are some important details being missed when doing this. Firstly, we don't know whether the ω that minimizes $D(\omega)$ is in the cohomology
class. Indeed, we will construct ω as a weak limit point, and (1) will then give us that $(\omega, d \beta)=0$ for all $\beta \in \Omega^{p-1}(M)$, which means that ω is weakly harmonic. And due to the Laplacian being a uniformly elliptic operator we get by regularity theory that ω is smooth and harmonic in the usual sense. But we also need to assure that the ω we construct as a weak limit does not leave the considered cohomology class. Also in order to use (1) we need to ensure that $\omega+d d \beta$ does not leave the set we are minimizing over, so we need to minimize D over the set of weak limit points of the cohomology class we consider.

We now carry out the rigorous argument. Let $C_{\omega_{0}}$ be the set of all weak limit points of forms in the cohomology class of $\omega_{0} \in \Omega^{p}(M)$, i.e.
$C_{\omega_{0}}=\left\{\omega \in L^{2} \mid \exists\left(\alpha_{n}\right)_{n=1}^{\infty} \subset \Omega^{p-1}(M): \lim _{n \rightarrow \infty}\left(\omega_{0}+d \alpha_{n}, \varphi\right)=(\omega, \varphi) \forall \varphi \in \Omega^{p}(M)\right\}$.
We shall now classify $C_{\omega_{0}}$ as all ω being weakly in the same cohomology class as ω_{0}, i.e. we shall show that for all $\omega \in C_{\omega_{0}}$ there exists $\alpha \in L^{2}$ such that

$$
\begin{equation*}
\left(\alpha, d^{*} \varphi\right)=\left(\omega-\omega_{0}, \varphi\right) \forall \varphi \in \Omega^{p}(M) \tag{11}
\end{equation*}
$$

First we note that for $\omega \in C_{\omega_{0}}$ we have

$$
\begin{equation*}
\left(\omega-\omega_{0}, \varphi\right)=0 \tag{12}
\end{equation*}
$$

for all φ such that $d^{*} \varphi=0$, since we have $\left(\omega-\omega_{0}, \varphi\right)=\lim _{n \rightarrow \infty}\left(d \alpha_{n}+\omega_{0}-\right.$ $\left.\omega_{0}, \varphi\right)=\lim _{n \rightarrow \infty}\left(\alpha_{n}, d^{*} \varphi\right)=0$ if $d^{*} \varphi=0$. Now, let $\eta:=\omega-\omega_{0}$, where $\omega \in C_{\omega_{0}}$. Define a linear functional l on $d^{*}\left(\Omega^{p}(M)\right)$ by

$$
l\left(d^{*} \varphi\right):=(\eta, \varphi)
$$

Since d^{*} and the scalar product is linear, l is linear. Also l is well-defined since $d^{*} \varphi_{1}=d^{*} \varphi_{2}$ implies $d^{*}\left(\varphi_{1}-\varphi_{2}\right)=0$ and so by 12 we have that $l\left(d^{*} \varphi_{1}\right)=$ $l\left(d^{*} \varphi_{2}\right)$.

Not define $\pi: \Omega^{p}(M) \rightarrow \operatorname{ker} d_{p}^{*}$ as the projection onto the kernel of d^{*}, and let $\varphi \in \Omega^{p}(M)$ and consider $\psi:=\varphi-\pi(\varphi)$. By definition of π we have $d^{*} \varphi=d^{*} \psi$. So we have

$$
\begin{equation*}
l\left(d^{*} \varphi\right)=l\left(d^{*} \psi\right)=(\eta, \psi) \tag{13}
\end{equation*}
$$

Because ψ is orthogonal to ker d^{*} we have by Corollary 1.10 that

$$
\begin{equation*}
\|\psi\|_{L^{2}} \leq c\left\|d^{*} \psi\right\|_{L^{2}}=c\left\|d^{*} \varphi\right\|_{L^{2}} \tag{14}
\end{equation*}
$$

Together, (13), (14) and Cauchy-Schwartz imply

$$
\left|l\left(d^{*} \varphi\right)\right| \leq c\|\eta\|_{L^{2}}\left\|d^{*} \varphi\right\|_{L^{2}}
$$

So l is bounded on $d^{*}\left(\Omega^{p}(M)\right)$ and we can extend l continuously to the L^{2} closure of $d^{*}\left(\Omega^{p}(M)\right.$, which then becomes a Hilbert space. Denote the extension of l again by l. Since l is now a bounded linear funcitonal on a Hilbert space, we
can use Riesz representation theorem, which gives us an $\alpha \in \overline{d^{*}\left(\Omega^{p}(M)\right.}$ such that

$$
\left(\alpha, d^{*} \varphi\right)=(\eta, \varphi)
$$

for all $\varphi \in \Omega^{p}(M)$. This is exactly (11).
Now that we have 11 we are ready to wrap up the proof. Consider

$$
\begin{equation*}
\kappa:=\inf _{\omega \in C_{\omega_{0}}} D(\omega) \tag{15}
\end{equation*}
$$

for an arbitrary closed $\omega_{0} \in \Omega^{p}(M)$. Since $D(\omega)=\|\omega\|_{L^{2}}^{2}$ we can choose a minimizing sequence of $15\left(\omega_{n}\right)_{n=1}^{\infty}$ and may assume that $\left\|\omega_{n}\right\|_{L^{2}} \leq \kappa+1$ for all n. But a bounded sequence in a Hilbert space always has a subsequence that converges weakly. Denote the weak limit by ω, hence we may assume that $\left(\omega_{n}\right)$ converges weakly to ω, i.e. $\left(\omega_{n}, \varphi\right)=(\omega, \varphi)$ for all $\varphi \in \Omega^{p}(M)$. Also, since $C_{\omega_{0}}$ is the closure with respect to weak limit points, ω is contained in $C_{\omega_{0}}$.

Now we use that D is weakly lower semicontinuous with respect to weak convergence

$$
\kappa \leq D(\omega) \leq \liminf _{n \rightarrow \infty} D\left(\omega_{n}\right)=0
$$

which gives us that $D(\omega)=\kappa$. Using this fact, we are ready to use (1) with ω in place of η, since $\omega+d \beta \in C_{\omega_{0}}$ (this is easily seen from the classification 111) and $D(\omega)=\kappa$. Of course, we can not carry out the last equality in (1), since we do not yet know that ω is equivalent to a smooth form. But we have $(\omega, d \beta)=0$ for all $\beta \in \Omega^{p-1}(M)$. Also, we have that $\left(\omega, d^{*} \varphi\right)=0$ for all $\varphi \in \Omega^{p+1}(M)$, since by 11) we have $\left(\omega, d^{*} \varphi\right)=\left(\omega-\omega_{0}, d^{*} \varphi\right)+\left(\omega_{0}, d^{*} \varphi\right)=\left(\alpha, d^{*} d^{*} \varphi\right)+0=0$. Together, $(\omega, d \beta)=\left(\omega, d^{*} \varphi\right)=0$ means that ω is weakly harmonic. Hence ω is a weak solution to Laplace's equation. And since the Laplace operator is elliptic, we get by regularity theory that ω is smooth and harmonic in the usual sense. For details, see [1, A.2].

Now we are almost done. We have shown that there exists a harmonic $\omega \in \Omega^{p}(M)$ which is weakly in the same cohomology class as ω_{0}, i.e. 11 holds. But we still need to show that ω is in the same cohomology class as ω_{0}, i.e. that α in 11) is smooth ${ }^{1}$ When we have proved this, we are done. We shall use the Sobolev embedding theorem which reduces the problem of showing that α is smooth, to showing that it is contained in $H^{k, 2}$ for all $k \in \mathbb{N}$. For details see [1. A.1]. But this is not so difficult to see. We have $\left(\alpha, d^{*} \varphi\right)=\left(\omega-\omega_{0}, \varphi\right)$. This means that $d \alpha$ exists, weakly, and is smooth (it is equal to $\omega-\omega_{0}$). Hence all other derivatives (starting with d) will exist and be bounded. Also $(\alpha, d \beta)=0$ for all $\beta \in \Omega^{p-1}(M)$, since $\alpha \in \overline{d^{*}\left(\Omega^{p}(M)\right.}$, and derivation conserves weak convergence. So weakly $d^{*} \alpha=0$. Hence all weak derivatives of α exists and are continuous, and since we are on a compact manifold, they are contained in $H^{k, 2}$ for arbitrary k and we are done.

Corollary 1.11. Let B_{p} be the L^{2}-closure of $\left\{d \alpha: \alpha \in \Omega^{p-1}(M)\right\}$, and B_{p}^{*} be the L^{2}-closure of $\left\{d^{*} \beta: \beta \in \Omega^{p+1}(M)\right\}$, and \mathcal{H}_{p} be the set of harmonic p-forms.

[^0]Then the Hilbert space L_{p}^{2} consisting of square inteagrable p-forms admits the orthogonal decomposition

$$
L_{p}^{2}(M)=B_{p} \oplus B_{p}^{*} \oplus \mathcal{H}_{p}
$$

Moreover, we have $\mathcal{H}_{p}=B_{p}^{\perp} \cap B_{p}^{* \perp}$.
Proof. First we note that $\left\{d \alpha: \alpha \in \Omega^{p-1}(M)\right\}$ and $\left\{d^{*} \beta: \beta \in \Omega^{p+1}(M)\right\}$ are orthogonal to each other, since $\left(d \alpha, d^{*} \beta\right)=\left(d^{2} \alpha, \beta\right)=0$, and by a standard continuity argument $((\cdot, \omega)$ is continuous $)$, we get that B_{p} and B_{p}^{*} are orthogonal. From this fact we have that

$$
L_{p}^{2}(M)=B_{p} \oplus B_{p}^{*} \oplus\left(B_{p}^{\perp} \cap B_{p}^{* \perp}\right)
$$

So all that is left is to prove that $\mathcal{H}_{p}=B_{p}^{\perp} \cap B_{p}^{* \perp}$. But $\omega \in B_{p}^{\perp} \cap B_{p}^{* \perp}$ implies $(\omega, d \alpha)=0$ and $\left(\omega, d^{*} \beta\right)=0$ for all $\alpha \in \Omega^{p-1}(M)$ and $\beta \in \Omega^{p+1}(M)$. And the last step of Theorem 1.4 was proving that this implies that ω is smooth and harmonic, so we are done.

Corollary 1.12. Let M be a compact differentiable manifold. Then all cohomology groups $H_{d R}^{p}(M, \mathbb{R}) \quad(0, \leq p \leq d:=\operatorname{dim} m)$ are finite dimensional.

Proof. Firstly, since M is a differentiable manifold, we may equip it with a Riemannian metric. And by Theorem 1.4 we know that each cohomology class may be represented by a form which is harmonic with respect to the chosen metric. Due to this fact, we may define a scalar product on $H_{d R}^{p}(M, \mathbb{R})$ by $([u],[v])_{H^{p}}:=\left(u_{0}, v_{0}\right)_{L^{2}}$, where u_{0} and v_{0} are the unique harmonic representatives of the equivalence class. If we assume $H_{d R}^{p}(M, \mathbb{R})$ to be infinitely dimensional there therefore must exist an orthonormal sequence of harmonic forms $\left(\eta_{n}\right)_{n \in \mathbb{N}}$ w.r.t. $(\cdot, \cdot)_{L^{2}}$. I.e. we have $\left(\eta_{n}, \eta_{m}\right)=\delta_{n m}$. But since η_{n} are harmonic, they satisfy $d \eta_{n}=d^{*} \eta_{n}=0$, so we have $\left\|\eta_{n}\right\|_{H^{1,2}(M)}=1$. So Rellich's theorem (Lemma 1.9 gives us a subsequence of $\left(\eta_{n}\right)$ that converges in L^{2}, which contradicts the orthogonality assumption.

References

[1] Jost, Jürgen. Riemannian geometry and geometric analysis. Springer, 2017.

[^0]: ${ }^{1}$ This is equivalent to showing that $C_{\omega_{1}} \cap C_{\omega_{2}}=\emptyset$ for ω_{1}, ω_{2} in different cohomology classes.

