
Towards Decentralized GNNs

Lodovico Giaretta

lodovico@kth.se

Sarunas Girdzijauskas

sarunasg@kth.se

Work funded by EU’s Horizon 2020
program under Marie Curie grant
agreement ITN – RAIS No 813162

https://rais-itn.eu

A

C

B

D
E

Scenario: a decentralized network of

interconnected nodes (e.g. IoT devices)

Objective: use Graph Neural Networks (GNNs) to

build node embeddings to perform one

or more tasks (e.g. device classification)

Setting: Decentralized GNNs for Device Embedding

The Problem: Decentralizing GNN Gradients

Layer-wise Training: each layer treats its inputs as constants

• Do not send gradients to previous layers

• Do not receive gradients from next layers

• Each node learns the best output locally, in an isolated way

• Input embeddings are stored locally until a new version is

received, enabling asynchronous training

Self-Supervised Learning (SSL): employ loss functions based on

implicit input information, without any labels

• Extract all relevant phenomena in the input

• Learn high-quality, task-agnostic embeddings

The Solution: Layer-Wise Self-Supervision

Problem: Self-supervised learning requires negative samples in one of two ways:

• Explicitly in contrastive SSL (e.g. edge reconstruction loss)

• Implicitly in non-contrastive SSL (e.g. batch-wise orthogonality constraints)

Solution: Push-based, asynchronous random sampling of embeddings

• Each node periodically shares its embedding with a few randomly-picked nodes

Negative Sampling

Problem: need to train a global GNN model

• Each node is training the model parameters independently

• These parameters need to be shared and merged to reach convergence

Solution: Gossip Learning

• Each node periodically sends its trainable

parameters to a randomly-picked node

• The receiver merges the received

parameters and its local ones, then

performs additional local training

Gossip Learning

GNN

Graph adjacency 𝐴
Node features 𝑋

Node embeddings 𝐻

ML

Task-specific
output

AGG

A

A

A

A

A B

C

AGG

AGG

AGG

D

E

C

B

B

E

C

𝐻0 = 𝑋

𝐻1

𝐻2

GNN Layer 1

GNN Layer 2

ML

Task-Specific
Output Layer

1. Deep GNNs build
deep computational trees
rooted at each node

2. In a decentralized setting,
embeddings of each layer
need to be broadcast to all
neighbours

3. With a naive decentralization, gradients must flow
backwards from the root of each tree to its leaves
• Large volumes of synchronous traffic
• Hard to scale and manage

Legend

trainable operator

backprop. flow

local embedding

embedding flow

AGG

…

…

…

…

…

𝐻𝑡

𝐻𝑡+1

GNN Layer 𝑡 + 1

SSL
loss

Gradient stops: no
gradients between layers

Self-supervised loss:
each node performs
local weight updates

AGG…

SSL
loss

from self and
neighbours

from distant
nodes

𝐻𝑡+1

𝐻𝑡+1

𝐻𝑡

A

C

B

D
E

