

Integration of High Penetration of Solar and Wind Power in Power Systems: Experiences and Challenges Lecture 6-7 + Tutorial 3

Lennart Söder Professor in Electric Power Systems KTH, Royal Institute of Technology, Stockholm, Sweden





#### Set-up of Lectures L6-L7 + T3

**Lecture L6**: Power system general balancing challenges at high share of variable renewable power production.

Lecture L7: Swedish/Nordic balancing challenges

**Tutorial T3**: Power System expansion planning, impact from assumptions



### Aim of a power system

- 1. The consumers should get the required power (e.g. a 60 W bulb), when the push the on-button. This should work no matter there is an outage in a plant, wind is changing etc. = keep a balance between total production and total consumption.
- 2. The consumers must have a realistic voltage, e.g. around 230 V, in the outlet.
- 3. Point 1-2 should be obtained at a **realistic reliability.** This is **never** 100,000... percent,
- 4. Point 1-3 should be obtained in an economic and sustainable way.



#### Wind power and transmission capacity





#### Sweden 2014: 11,5 TWh (of 151) → 8 %



# Aim of a power grid

- Use distant resources to balance a local load= keep a balance between production and local consumption.
- The consumers must have a realistic voltage, e.g. around 230 V, in the outlet.
- 3. Use distant resources when there is a outage in local resource, i.e. keep a realistic reliability.
- Point 1-3 should be obtained in an<sup>1</sup> economic and sustainable way.





# **Questions for amounts of grids**

Is it **economical** to have more grids for

- 1. <u>more efficient balancing</u>? Germany: local batteries or Swedish hydro to balance their wind and solar ?
- 2. <u>a higher reliability</u>? More grids to use neighbours cheaper plants in high peak or keep own peak units? Can you rely on a neighbour?
- 3. <u>reduction in spillage</u>? More grids to use wind, hydro or solar "surplus"?





# Renewable energy systems

- Energy is "produced" where the resource is
- The energy has to be transported to consumption center
- The energy inflow varies, which requires storage and/or flexible system solutions
- This is valid for hydro power, **wind power**, solar power







# Example

- Nordic hydro power (inflow) can vary 86 TWh between different years ( $\Delta$ 2001 to 1996)
- Transport from NV to SE + continent
- Energy balancing with thermal power in i Dk+F+Ge+PI+NL+Ee
- Sweden and our neighbors have had a need for cooperation since decades



#### KTH VETENSKAP

# Three challenges in a power system with large amounts of solar and wind power

### C1: Keep the continuous balance

**C2:** Handle situations with **small** amounts of variable production.

**C3:** Handle situations with **large** amounts of variable production.







Three challenges at large amount of variable renewables (solar/wind)

C1: Handling of the continuous balance.

- There must be a ramping capacity which is high enough
- Forecasts are uncertain so there must be enough online units to follow the net-load
- Larger interconnected areas reduces the overall variation, but requires enough grids.



# Three challenges at large amount of variable renewables (solar/wind)

**C2**: Low wind and solar power production and high power consumption. This issue is called "capacity adequacy issue".

- There must be enough capacity (production, flexible demand and/or import) during these situations
- This may happen very rarely which is a challenge for the economy of these resources.
- More transmission reduces the need.



# Three challenges at large amount of variable renewables (solar/wind)

**C3**: High wind and solar power production + HVDC infeed and low power consumption.

- There must be enough inertia in the system in order to keep the frequency
- "100 %" wind and solar instant power supply, means really high challenges concerning keeping voltage and frequency!
- There must be enough primary and secondary reserves in these situations.





# Swedish power production year 201 UNIVERSITET





# Identified wind power projects in Sweden:



# Identified wind power projects:

 45000 MW (≈ 100 TWh/year) today cons. ≈ 140 TWh/year :

### **Today capacities:**

- Hydro Power: 16000 MW (≈ 65 TWh)
- Nuclear power: 9000 MW (≈ 65 TWh)
- → total of 25000 MW



#### Swedish Power production: Total 145,6 TWh (same as 2011)

Swedish Electric Supply 20XX





#### **Report: Published 22 juni 2014**



OF TECHNOLOGY

På väg mot en elförsörjning baserad på enbart förnybar el i

Sverige

En studie om behov av reglerkraft och överföringskapacitet

Version 4.0

Lennart Söder

Professor i Elektriska Energisystem, KTH, lennart.soder@ee.kth.se

2014-06-22

1

#### Studies:

- Balancing from hour to hour in "isolated" Sweden!
- High wind+solar / low consumption
- Low wind+solar / high consumption
- Transmission constraints
- Can be downloaded from KTH:s home page
- EXCEL-file for calculations



#### Current (2011) Swedish Power System

| Source     | TWh -<br>2011 | Energy % -<br>2011 | MW-capacity -<br>2011 |
|------------|---------------|--------------------|-----------------------|
| Hydro      | 66,0          | 44,9               | 16197                 |
| Nuclear    | 58,0          | 39,5               | 9363                  |
| Wind       | 6,1           | 4,2                | 2899                  |
| Solar      | 0             | 0                  | 0                     |
| CHP-Ind    | 6,4           | 4,4                | 1240                  |
| CHP-distr. | 9,4           | 6,4                | 3551                  |
| Condens    | 1,01          | 0,7                | 3197                  |
| Total      | 146,9         | 100                | 36447                 |



#### **Studied Swedish Power System**

| Source     | TWh   | Energy % | MW-max |
|------------|-------|----------|--------|
| Hydro      | 64,9  | 44,5     | 12951  |
| Nuclear    | 0     | 0        | 0      |
| Wind       | 46,7  | 32,1     | 15633  |
| Solar      | 12,6  | 8,6      | 9849   |
| CHP-Ind    | 6,4   | 4,4      | 1240   |
| CHP-distr. | 13,9  | 9,5      | 4126   |
| Other      | 1,3   | 0,9      | 5081   |
| Total      | 139,9 | 100      | 48180  |





#### Deficit situation (yearly basis) Assumed need of OCGT



Cost for this: 2 öre/kWh = 0,2 Eurocent/kWh



#### Surplus situation (August)



Not OK: 83% limit, min-hydro, min-CHP



#### Surplus situation (August)



Now OK: 83% limit, min-hydro, min-CHP



#### Surplus during a year





#### Variable renewable impact on transmission

#### **Need of extra capacity (import ?)**

#### Surplus may be exported ?





#### Hydro power: Duration curves (test + 2008 + 2011)



Max level: 12951 MW: Needed during 765 hours



## General internal transmission challenge

- A. Voltage stability limits between areas
- B. Q-control important
- C. More transmission required, but low utilization time
- D. Challenge to identify future transmission capacity with less nuclear
- E. Detailed hydro simulation takes 10 minutes per week.



#### Surplus situation (August 1-10)



#### Surplus situation (August 1-10)



#### **Transmission situation (Jan 21 – Feb 1)**







- A. Increase production in receiving end (= thermal, currently OCGT)
- B. Capacity is available, small energy increase for first GW.
- C. Since limit is voltage stability, SVC may be enough
- D. Discussion on exchange of AC to DC
- E. Optimization approach may be interesting



#### KTH VETENSKAP

# Three challenges in a power system with large amounts of solar and wind power

### C1: Keep the continuous balance

**C2:** Handle situations with **small** amounts of variable production.

**C3:** Handle situations with **large** amounts of variable production.









# A synchronous power system

- A synchronous power system is a power system where all producers and consumers are connected to each other through transformers and AC transmission and distribution lines.
- Anything from a diesel generator set supplying a single load to a multi-national grid as the Nordel system (which connect Norway, Sweden, Finland and the eastern part of Denmark) can constitute a synchronous grid.
- An AC line has to have the same electric frequency at both ends of the line. If there were different frequencies at the ends then the voltage angle shift would increase until it reaches 180°, resulting in unacceptable large currents on the line. The same is valid for transformers. The conclusion is that in a synchronous grid the average electric frequency must be the same.





## Keep the balance:

- Production = consumption
- Electricity cannot be stored!
- Exactly when a bulb is lightned some generator will deliver the power
- Exactly when a power plant is stopped, the corresponding power will be delivered from another plant instead.





#### Keep the balance in a power system




#### The power system = a long bike





# Keep active power balance

#### Bike

- Pedal forces = breaking forces
- Otherwise changed speed
- Break bike =>



#### **Power System**

- Total generation
   = total load
- Otherwise changed electric frequency





## **Speed control**

#### Bike

- Keep a constant speed
- Measure the speed (same on the whole bike)
- Reduced speed=> increase the force on the pedals.





# Frequency control

#### Bike

- Keep constant speed
- Measure speed (same on whole bike)
- Decreased speed

#### **Power System**

- Keep constant frequency
- Measure frequency (same in whole system)





#### Keep the balance in a power system





#### Real initial phase of a power system outage



#### Time steps:

- A. Disconnection of Swedish 1050 MW nuclear station
- B. Primary control starts
- C. Primary control has increased with 1050 MW

# Frequency drop after 3 real outages in Sweden









- 1. Inertia:
- In other power plants
- Technically possible in wind power plants



#### **Contribution:**

• E.g. hydro power stations (larger) use synchronous machines which are directly connected to the grid. This means an important contribution to the needed inertia.

#### **Challenges:**

- More slimmed constructions may reduce the inertia contribution.
- A challenge in power systems with, e.g. large amounts of solar power, wind power or HVDC infeed, which do not contribute with inertia.



# Three challenges at large amount of variable renewables (solar/wind)

- C1: Handling of the continuous balance.
- **C2**: Low wind and solar power production and high power consumption. This issue is called "capacity adequacy issue".
- C3: High wind and solar power production and low power consumption.

Lennarts view: Solve C2 and C3  $\rightarrow$  needed resources. Then probably there is enough resources to handle C1



## Synchronous machine





#### Wind power and primary control

1) Wind power plants do not (normally) contribute to keep reserves. But they can!

2) Wind speed changes between V-cut-in and V-rated

3) Wind speed changes around V-cut-out





### Wind power and primary control

- Wind speed changes between V-cut-in and V-rated. In this region the changes in different wind power plants are nearly independent concerning fast changes. The result is low total variation.
- 2) Wind speed changes around V-cut-out. If a lot of wind turbines are hit at the same time with a storm front, then there could be a large outage. The probability for this is though low.
- 3) Conclusion: Primary control is not a dominant problem for wind power.



**"True" value**: Balancing of second to minute variations. A slightly negative value. Result from a Swedish study: 3530 MW wind power => 10 MW of extra reserves.

**Market value**: In Sweden this is included in the "balance responsibility", where the system operator manage the variations within each hour. The cost for this is paid by the market actors.



#### Keep the balance in a power system





### Secondary control, general function

- Adjust the frequency
- The power system should be ready for a new load or wind change
- The power system should be ready for a new disturbance.
- AGC (Automatic Generation Control) implies an economical reoptimization depending on new net load
- Adjust the time deviation.



#### 3. Secondary control:

#### **Function details in Nordic system:**

- Secondary control implies that one at larger frequency deviations changes the production in order to correct the frequency. This is in the Nordic system called "LFC-Load Frequency Control". Decision from January 1 2013 to distribute at least 100 MW automatic LFC between the Nordic countries including 39 MW for Sweden.
- An automatic system.

#### **Challenges:**

• A new system (in the Nordic system), but needed.



### Secondary control, wind power

- Wind power does not (normally) contribute to keep secondary control margins. But possible!
- Wind power causes extra needs of secondary control margins depending on not perfect wind speed forecasts.
- Secondary control is, as primary control, a part of the "system responsibility".



#### Secondary control value of wind power

"True" value: Balancing of minute to hour variations. A negative value. Result from a Swedish study: 3530 MW wind power => 230 MW of extra reserves (*≠* "new plants").

**Market value**: In Sweden this is included in the "balance responsibility", where the system operator manage the variations within each hour. The cost for this is paid by the market actors.



Tutorial T3 on power production expansion for high share renewables.

#### • Impact from solar and wind power:

- o Selection of power factor
- Impact on local voltage
- o Hosting capacity
- Impact on losses (where to produce reactive power?)
- $\circ$  Possibility to supply feeding grid with reactive power (from where?)
- o Use of OLTC (On Load Tap Changers) in transformer
- o Impact from grid strength.
- Impact from R/X quota of grid. Can be different in different lines.



#### **Tutorial T2 on voltage control and wind power**

• Tool: Excel Load Flow program



#### Power-system-2017.xlsm

Power grid simulation by Lennart Soder, KTH-Stockholm-Sweden, Isod@kth.se

#### Grid calculations in Excel

This instruction is for the Excel sheet "Power-system-2017.xlsm". Data for different base-cases can be obtained with a clic on the corresponding button. The button "flat start", results in that all voltages are 1 p.u. and all voltage angles = 0 degrees. Data is shown in Figure 1.

- Consumption/Production: It is possible to introduce consumption (or production with negative sign), active [MW] and reactive [MVAr]) in node 2, 3, 4 and z.
- Grid: One can have data for the 6 different lines. For line 3, 4, 5 and 6 it is also possible to disconnect the lines by selecting "On" or "Off" in a menu which results in green or red color.
- Feeding grid: The feeding grid is represented with a short circuit power and a feeding volga. One can also select to use a short circuit impedance in percent. One can select an angle for this one, where o' refers to a resistive feeding grid withie go' refers to a purely inducivit feeding grid. One can also see it as a fixed voltage behind a feeding transformer. If one considers the feeding grid as a fixed voltage behind a transformer, then the impedance refers to be impedance of the substance of the second second second second second second second second (afrong) from a menu which implies that U<sub>1</sub> becomes constant no matter the consumption/production in the grid.
- Voltages: These can be calculated by die on "Solve problem with current data". This means that the corresponding non-linear system of equation is solved. The program calculates, except for voltage magnitudes and angles, also the grid losses and some currents and power transfers. The solver start is is solution from current voltages in the Excel sheet and adjusts these. Sometimes it is necessary to re-start these calculation and select all voltages are nomina and all angles ac-90. This is obtained a clic on the buttom "Flat start". The voltages are also shown as percent another feeding voltage in english which means that no uses voltage in dept changers in the feeding transformer. At, e.g., high consumption one can increase this voltage in order to keep an acceptable voltage out in the grid. The opposite is valid in a situation with large amounts of distributed generation when the voltages otherwise may be to high.
- Voltage reference: In the sheet also the voltages are written as percent. These
  are the voltage in percent of the base voltage in cell D4.

The Excel sheet uses "Macros" which the buttons are linked to

Numerical examples, November 2017, by Lennart Soder, KTH, Isod@kth.se

#### Tests A: Radial 11 kV grid

Based on EXCEL program "Power-system=2017." has e-use 1. Here we assume that here are over-basedines with R-X- $\infty$  A d/km. These are vipical values for around 1 kV. The R depends on the area of the conductors. The 11 kV system is field from a comparatively system grid with hind returned nearby of  $g_{\rm exp} = 0.00$  kV. The feeding the provided of the system is a system of the dependence of the system is the system. Total line length from sub-statuto to Allahaba is 6 km.

We here assume that voltage should be within  $\pm$  10% of nominal value

#### Assignments

Start with Base-case 1. A1. How much can the active demand in Allahabad increase to keep voltage limits?

A2.How much can the demand increase if we allow local control of reactive power? What is the impact on system losses?

Ag.Start with Base-case 1. How much can the demand increase if we assume a controllable transformer in the feeding point (this implies assign "Strong grid" and change the feeding voltage)? What is the impact on system losses?

#### Excel-instructions-171031.pdf

REACTIVE POWER MANAGEMENT WORKSHOP KTH 30TH OCTOBER 2017

#### Examples-171110.pdf

57



# EG2220: Power Generation, Environment and Markets

# **Design of the future power system - 1**

#### Lennart Söder Professor in Electric Power Systems, KTH





Current (2017) challenges in Sweden and many other countries

- 1. Low Power Prices
- 2. Depends to high extent on low costs on fossil fuels
- **3**. Difficulties to fund existing power plants, e.g., nuclear and other
- 4. How to get rid of something cheap (current coal power etc)?



# Aim of future power system:

- Competitive prices
- Sustainable
- Reliable
  - Efficient regulation
  - Efficient operation
  - Efficient planning



# "Competitive prices":

• = ?



- Competitive for consumers (not too high)
- Competitive for producers (not too low)
- Prices set on "competitive" markets, and/or regulation.
- State might be involved concerning subsidies and/or taxes etc



## "Sustainable power system":

• = ?



# "Sustainable power system":

- Sustainable from <u>environmental</u> point of view →
  - Low CO2 emissions
  - High share of renewable power
  - Low NOX, SOX etc.
- Sustainable from <u>economic</u> point of view
- Sustainable from **social** point of view



# What is "sustainable"?

World Commission on Environment and Development (UN 1987), the Brundtland Commission, defined in "Our common future" sustainable development as

"Development that meets the needs of the present generation without compromising the needs of future generation"



# "Reliable power system":

• =?



- Defined as the "adequacy challenge"
- Conciders "capacity value"
- Low Loss of load probability LOLP
- Enough margins for operation
- High "security" (low risk of black-out) = stable power system.



# Important factors in studies for future power systems:





# Important factors in studies for future power systems:

| Set-up:                  | <b>Objective:</b>        |
|--------------------------|--------------------------|
| - Green field study      | - Minimum cost           |
| - Additional investments | - Market driven          |
| <b>Requirements:</b>     | Variables:               |
| - Reliability            | - MW in each power plant |
| - Share of renewables    | - taxes or subsidies     |
| - Maximum CO2 emissions  | - CO2 prices             |



Important factors in studies for future power systems: 1) Set-up

| Set-up:                  | Objective:               |
|--------------------------|--------------------------|
| - Green field study      | - Minimum cost           |
| - Additional investments | - Market driven          |
| Requirements:            | Variables:               |
| - Reliability            | - MW in each power plant |
| - Share of renewables    | - taxes or subsidies     |
| - Maximum CO2 emissions  | - CO2 prices             |

#### Common set-ups:

- <u>Green field studies</u> where it is assumed that the future system is built up from the beginning. It may also refer to a future situation which is so far in the future so all power plants can be assumed to be new.
- An alternative set-up is <u>Additional investments</u> where it is assumed that a certain amounts of today investments still exists.
- The difference between these two types is whether all (in Green field) or not all (in Additional investments) investment costs are included in the analysis.



Important factors in studies for future power systems: 2) Objective

| Set-up:                  | <b>Objective:</b><br>- Minimum cost |
|--------------------------|-------------------------------------|
| - Additional investments | - Market driven                     |
| Requirements:            | Variables:                          |
| - Reliability            | - MW in each power plant            |
| - Share of renewables    | - taxes or subsidies                |
| - Maximum CO2 emissions  | - CO2 prices                        |

#### Common set-ups:

- Minimum cost where the aim of the study is to select the combination of future sources which provides the lowest total cost for the society. One can hear, e.g., include CO2 costs or not, reliability target etc
- Another possible objective is market driven. This is then based on the assumption that a power plant is NOT built if the costs for it is not covered by the income. There can then be different set-ups of markets including, e.g., energy-only market (only income from produced energy) or different kinds of capacity payments.



Important factors in studies for future power systems: 3) Requirements

| Set-up:                  | Objective:               |
|--------------------------|--------------------------|
| - Green field study      | - Minimum cost           |
| - Additional investments | - Market driven          |
| Requirements:            | Variables:               |
| - Reliability            | - MW in each power plant |
| - Share of renewables    | - taxes or subsidies     |
| - Maximum CO2 emissions  | - CO2 prices             |

#### Common set-ups:

- There can also be different combinations of system requirements:
- These can be, e.g., **Reliability**, where there is a restriction concerning how many hours of the year when the capacity is not enough to cover the demand, i.e., causing curtailments.
- Common requirements also include Share of renewables
- or Maximum CO<sub>2</sub> emissions where, e.g., EU or different countries have goals to be considered.


# Important factors in studies for future power systems: 4) Variables

| Set-up:                  | Objective:               |
|--------------------------|--------------------------|
| - Green field study      | - Minimum cost           |
| - Additional investments | - Market driven          |
| Requirements:            | Variables:               |
| - Reliability            | - MW in each power plant |
| - Share of renewables    | - taxes or subsidies     |
| - Maximum CO2 emissions  | - CO2 prices             |

#### Common set-ups:

- A question is then what <u>the aim of the study</u> is. The aim then controls what is classified as <u>variables</u>, i.e., what kind of results is the output of the results.
- Some common results, i.e., classified as variables before the study, are, e.g., a) MW in each power plant, b) taxes or subsidies or c) CO2 prices.
- **MW in each power** plant is the result in most studies,
- Reliability as a requirement, → use some kind of extra payment or market design, i.e., subsidies as a variable.
- Share of renewables or maximum CO\_2\$emissions}, and at the same time has an assumption on {\it market driven}, then there must be a possibility to achive this. A possibility is then to, e.g., study the possibility of using {\it subsidies} or {\it CO2 prices}, to make this possible. I.e., to use {\it subsidies} or {\it CO2 prices} as {\it variables}.



Important factors in studies for future power systems: 4) Variables

| Set-up:                  | Objective:               |
|--------------------------|--------------------------|
| - Green field study      | - Minimum cost           |
| - Additional investments | - Market driven          |
| Requirements:            | Variables:               |
| - Reliability            | - MW in each power plant |
| - Share of renewables    | - taxes or subsidies     |
| - Maximum CO2 emissions  | - CO2 prices             |

#### **Common set-ups**:

| Requirement                   | Variable                                                                            |
|-------------------------------|-------------------------------------------------------------------------------------|
| Meet the demand               | MW in each plant                                                                    |
| Profitable plants             | Add extra income to last unit in<br>merit order = a margin on the<br>marginal cost. |
| Reliability                   | Subsidize level of some plants                                                      |
| Share of renewables           | Subsidize level of these                                                            |
| Max CO <sub>2</sub> emissions | Needed CO <sub>2</sub> tax                                                          |



# Case studies of new power systems







#### Base case - 1

Time curve, additional production







| Mean price:  | 123,4 | €/MWh   |         | Total cost | Profit    | CO2     | Utilization time |
|--------------|-------|---------|---------|------------|-----------|---------|------------------|
| Source:      | MW    | MWh     | MWh [%] | kEuro      | kEuro/MWh | tons    | hours            |
| Wind-land    | 8000  | 504498  | 16,8%   | 28255      | -0,2      | 0       | 200              |
| Nuclear-1    | 3000  | 600000  | 19,9%   | 31728      | 70,5      | 0       | 200              |
| Gas-OCGT     | 2000  | 24684   | 0,8%    | 3983       | 1231,0    | 12485   | 14               |
| Gas-CC       | 5000  | 183473  | 6,1%    | 18360      | 407,0     | 64000   | 76               |
| Coal-cond.   | 10000 | 1691135 | 56,2%   | 90733      | 86,6      | 1200412 | 200              |
| Curtailments | 956   | 4631    | 0,2%    | 9750       | 0,0       | 0       | 8                |
| Total:       | 28956 | 3008421 | 100,0%  | 182808     | 1794,8    | 1276898 |                  |



# Excel program: Set-up - 1

| Futur    | e system d         | lesign      |                |          |           |            |                            |                      |                |                      |                            |                             |               |                          |                         |                   |                         |            |           |          |           |                |                |               |                |                |             |
|----------|--------------------|-------------|----------------|----------|-----------|------------|----------------------------|----------------------|----------------|----------------------|----------------------------|-----------------------------|---------------|--------------------------|-------------------------|-------------------|-------------------------|------------|-----------|----------|-----------|----------------|----------------|---------------|----------------|----------------|-------------|
|          |                    | From Sou    | irce data - Sw | eden     | Param     | eter       | Calc                       | ulated               |                | cc                   | 02: Euro/ton:              | 10                          |               |                          |                         |                   |                         |            |           |          |           |                |                |               |                |                |             |
| Produc   | tion system        | data        |                |          | Base cost |            |                            | Base cost            |                |                      | c                          | peration cos                | sts           |                          | Producti                | ion syste         | em result               |            |           |          |           |                |                |               |                |                |             |
|          |                    |             |                | Interest | Euro/MW   |            | Euro/MW                    | Op. Cost             |                | Margin               | Subs./tax                  | CO2                         | Total         | Op. Cost                 | Capa                    | city              | Ene                     | ergy       | Cap. Cost | En. Cost | Tot. Cost | Revenue        | I              | Profit        | Mean cost      | CO2            | Util. Time  |
| Nr       | Source             | Old MW      | Max MW         | rate     | /year     | Factor     | /period                    | Euro/MWh             | Factor         | Euro/MWh             | Euro/MWh                   | Euro/MWh                    | Euro/MWh      | order                    | MW-new                  | MW-tot            | MWh                     | %          | kEuro     | kEuro    | kEuro     | kEuro          | kEuro          | €/MWh         | Euro/MWh       | tons           | hours       |
| 1        | Wind-land          | 0           | 15000          | 6%       | 129982    | 1          | 2967,6                     | 8,9                  | 1              | 0                    | 0                          | 0,00                        | 8,9           | 1                        | 8000                    | 8000              | 504498                  | 16,8%      | 23741     | 4514     | 28255     | 28148          | -107           | -0,2          | 56,0           | 0              | 200         |
| 4        | Nuclear-1          | 0           | 15000          | 6%       | 322141    | 1          | 7354,8                     | 16,1                 | 1              | 0                    | 0                          | 0,00                        | 16,1          | 2                        | 3000                    | 3000              | 600000                  | 19,9%      | 22064     | 9663     | 31728     | 74010          | 42283          | 70,5          | 52,9           | 0              | 200         |
| 6        | Gas-OCGT           | 0           | 15000          | 6%       | 44656     | 1          | 1019,6                     | 73,7                 | 1              | 0                    | 0                          | 5,06                        | 78,7          | 5                        | 2000                    | 2000              | 24684                   | 0,8%       | 2039      | 1944     | 3983      | 34368          | 30385          | 1231,0        | 161,4          | 12485          | 14          |
| /        | Gas-CC             | 0           | 15000          | 6%       | 69324     | 1          | 1582,7                     | 53,4                 | 1              | 0                    | 0                          | 3,49                        | 56,9          | 4                        | 5000                    | 5000              | 1834/3                  | 6,1%       | 7914      | 10446    | 18360     | 93034          | 74674          | 407,0         | 100,1          | 64000          | 76          |
| 9        | Curtailmonts       | 0           | 20000          | 6%       | 108890    | 1          | 3855,9                     | 23,8                 | 1              | 0                    | 0                          | 7,10                        | 30,9          | 5                        | 10000                   | 10000             | 4621                    | 0.2%       | 38559     | 9750     | 90733     | 23/1/3         | 146440         | 80,0          | 2105.2         | 1200412        | 200         |
| 12       | Curtaiments        | 0           | 20000          | 0%       | 0         | 1          | 0,0                        | 2105,5<br>kr/MMb-ol  | 1              | 0                    | U                          | 0,00                        | 2105,5        | 0                        | 28056                   | 28056             | 4051<br>2008/121        | 100.0%     | 0         | 9750     | 19750     | 9750           | U              | 1795          | 2105,5         | 1276898        | 0           |
|          |                    |             |                |          | Page car  |            |                            | KI/IVIVVII-EI        |                |                      |                            |                             |               |                          | 20530                   | 20550             | 3008421                 | 100,078    |           |          | 102000    |                |                | 1/35          |                | 1270030        |             |
|          |                    | 1           |                |          | Dase cas  | Se. C-0    |                            |                      | -              |                      |                            |                             |               |                          |                         |                   |                         |            |           |          |           |                |                |               |                |                |             |
| Load     | 1                  | 1=origina   | l, 2=simplifie | d        |           |            |                            |                      |                | Tin                  | ne curv                    | e, addi                     | tional p      | produc                   | tion                    |                   |                         |            |           |          |           |                |                |               |                |                |             |
| Source   | Factor             | row         | Cap. Fact      | CF-org   | 25.000    |            |                            |                      |                |                      |                            |                             |               |                          |                         |                   |                         |            |           |          |           |                |                |               |                |                |             |
| W-land   | 1,507              | 1           | 0,315311194    | 0,315    | 25000     |            |                            |                      |                |                      |                            |                             |               |                          |                         |                   |                         |            |           |          |           |                |                |               |                |                |             |
| W-sea    | 0,000              | -           | -              | 0,315    | _         |            |                            |                      |                |                      |                            |                             |               |                          |                         |                   |                         |            |           |          |           | Data a         | analysis o     | of thermal po | wer plants     |                |             |
| Solar    | 0,000              | -           | -              | 0,012    |           |            |                            |                      |                |                      |                            |                             |               |                          |                         |                   |                         |            |           |          |           | Op. Cost       | Unit           | Source        | Next           | Min hours      | Result [h]  |
| Period   | lenght [h]:        | 200         | 2,4            | 2,5      | _         |            |                            |                      |                |                      |                            |                             |               |                          |                         |                   |                         |            |           |          |           | 1              | 1              | Wind-land     | -              | Not thermal    | 200,0       |
| _        |                    |             |                | 0,012    | 20000 -   |            |                            |                      |                |                      |                            |                             |               |                          |                         |                   | 2                       | 2          | Nuclear-1 | 5        | 237,3     | 200,0          |                |               |                |                |             |
| LOLP:    | 4,0%               |             |                | 0,012    | _         |            | H                          |                      |                |                      |                            |                             |               |                          |                         |                   |                         |            |           |          |           | 3              | 5              | Coal-cond.    | 4              | 87,1           | 200,0       |
| Mean     | orice €/MWh        | 123,4       |                |          | _         | . /        |                            | 6                    | 1              | Λ                    |                            |                             |               |                          | ~                       |                   |                         |            | 1.00      | d        |           | 4              | 4              | Gas-CC        | 3              | 25,8           | 76,0        |
| Diet.    | 2                  | 1           |                |          | _         | $\nabla  $ |                            | $\mathcal{I}$        |                | $\Lambda$            |                            | ſ                           | ~~            | $\wedge$ .               |                         |                   |                         |            | L0a       | Loau     |           | 5              | 3              | Gas-OCG1      | 6              | 0,5            | 14,0        |
| 1        | Z<br>Time curve in | roduction   | Ituno          |          | 15000     |            | HV                         |                      | $\leftarrow$   | 4                    |                            | -h                          | $\mathcal{I}$ | $\sim$                   | -                       | $\sim$            |                         |            | —Gas      | 5-OCGT   | -         | 0<br>Not therr | o<br>nal or mo | curtaiment    | than some of   | hor units      | 8,0         |
| 2        | Time curve a       | dditional   | production     |          | -         |            |                            |                      | -              | N.                   | $\mathbf{\Lambda}$         | 1                           |               | /                        | V.                      |                   | $\sim$                  | 2          | —Gas      | S-CC     |           | Northeri       |                | ore expensive | . than some of | ier units      |             |
| 3        | Duration curv      | /e          | production     |          | _         |            |                            |                      |                |                      |                            |                             |               |                          |                         |                   |                         |            | <b>C</b>  |          |           |                |                |               |                |                |             |
|          |                    |             |                |          |           |            |                            |                      |                |                      |                            | $\sum$                      |               |                          |                         |                   |                         |            |           | al-cond. |           |                |                | Hour step:    | 1              | 1, 2 or 3 is p | ossible     |
| Wind     | 1                  | 1=origina   | l, 2=simplifie | d        | 10000     | _          |                            |                      |                |                      | $\bigvee$                  | $\rightarrow$               |               |                          |                         |                   |                         |            | -Nuc      | clear-1  |           |                | Per.           | Load day      | Wind day       | Solar day      | Nr of hours |
| 2: Assur | nes that 'Win      | nd-land' is | included       |          |           |            |                            |                      |                |                      |                            | N                           |               |                          |                         |                   |                         |            | — Wir     | nd-land  |           |                | 1              | 22            | 22             | 15             | 60          |
| and has  | the lowest o       | peration o  | ost.           |          |           |            |                            |                      |                |                      |                            |                             |               |                          |                         |                   |                         |            | -         | /        | ***       |                | 2              | 180           | 180            | 23             | 40          |
| "Simpli  | fied" load or      | wind =>     |                |          | _         |            |                            | $\frown$             |                |                      |                            |                             |               | $\sim c$                 | $\sim$                  |                   | ~                       | $\sim$     | —Eur      | o/wwn    | *10       |                | 3              | 100           | 100            | 48             | 100         |
| Straigth | lines for dur      | ation curv  | es.            |          | 5000 -    |            |                            |                      |                |                      |                            | $\sim $                     |               |                          |                         | $\sim$            | $\rightarrow \frown$    |            |           |          |           |                | 1              | 2015-01-22    | 2015-01-22     | 2015-01-15     |             |
|          |                    |             |                |          | _         |            |                            | $\sim$               | $\sim$         |                      |                            |                             |               | $\sim$                   | $\sim$                  |                   |                         | ~          |           |          |           |                | 2              | 2015-06-29    | 2015-06-29     | 2015-01-23     |             |
|          | Simplified da      | ta          |                |          | _         |            |                            | /                    |                |                      | $\sim$                     | $\sim \wedge$               |               |                          |                         | ~~                | くう                      | $\int$     |           |          |           |                | 3              | 2015-04-10    | 2015-04-10     | 2015-02-17     |             |
|          |                    |             |                |          | _         |            |                            |                      | $\sim$         | $\sim$               |                            | $\mathcal{I} = \mathcal{I}$ |               |                          |                         | · ·               |                         | <b>~</b>   |           |          | -         |                |                |               |                |                |             |
|          |                    | <u> </u>    |                |          | 0         |            | <u> </u>                   |                      |                |                      |                            |                             |               |                          |                         |                   |                         |            |           |          |           |                |                |               |                |                |             |
|          |                    | ·           |                |          |           | ا م م ا    | 13<br>17<br>21<br>25<br>25 | 29<br>33<br>37<br>41 | 45<br>49<br>53 | 57<br>61<br>65<br>69 | 73<br>77<br>81<br>85<br>85 | 93<br>97<br>101<br>05       | 113           | 133<br>133<br>137<br>137 | 145<br>149<br>153<br>57 | L61<br>L65<br>L69 | 173<br>177<br>181<br>85 | 189<br>193 |           |          |           |                |                |               |                |                |             |
|          |                    |             |                |          |           | 1          | 1                          | 1                    | 1              |                      | 1                          |                             |               |                          |                         |                   |                         |            | 1         | 1        |           |                |                |               | ]              |                |             |



# Excel program: Set-up – 2 Input (details in other sheet)

CO2 cost

| Future system design |                |                |                 |          |                |        |         |                     |                   |          |                           |               |          |          |
|----------------------|----------------|----------------|-----------------|----------|----------------|--------|---------|---------------------|-------------------|----------|---------------------------|---------------|----------|----------|
|                      |                | From Sou       | rce data - Swed | len      | Param          | eter   | Calc    | ulated              |                   | C        | O2: Euro/ton:             | 10            |          | _        |
| Produ                | ction system d | ata            |                 |          | Base cost      |        |         | Base cost           |                   |          | (                         | Operation cos | sts      |          |
|                      |                |                |                 | Interest | Euro/MW        | 1      | Euro/MW | Op. Cost            | 1                 | Margin   | Subs./ tax                | CO2           | Total    | Op. Cost |
| Nr                   | Source         | Old MW         | Max MW          | rate     | /year          | Factor | /period | Euro/MWh            | Factor            | Euro/MWh | Euro/MWh                  | Euro/MWh      | Euro/MWh | order    |
| 7                    | Gas-CC         | 0              | 15000           | 6%       | 69324          | 1      | 1582,7  | 53,4                | 1                 | 0        | 0                         | 3,49          | 56,9     | 4        |
| 1                    | Wind-land      | 0              | 15000           | 6%       | 116824         | 0,9    | 2400,5  | 14,7                | 0,5               | 0        | 0                         | 0,00          | 7,4      | 1        |
| 4                    | Nuclear-1      | 0              | 15000           | 6%       | 322141         | 1      | 7354,8  | 16,1                | 1                 | 0        | 0                         | 0,00          | 16,1     | 2        |
| 6                    | Gas-OCGT       | 0              | 15000           | 6%       | 44656          | 1      | 1019,6  | 73,7                | 1                 | 0        | 0                         | 5,06          | 78,7     | 5        |
| 9                    | Coal-cond.     | 0              | 20000           | 6%       | 168890         | 1      | 3855,9  | 23,8                | 1                 | 0        | 0                         | 7,10          | 30,9     | 3        |
| 12                   | Curtailments   | 0              | 20000           | 6%       | 0              |        | 0,0     | 2105,3              |                   | 0        |                           | 0,00          | 2105,3   | 6        |
| $\bot$               |                |                |                 | <u> </u> |                |        |         |                     | T                 | 1        | <u> </u>                  |               |          |          |
| C٢                   | nange          |                | Max             |          | $\setminus$    | Ch     | ange    | ed                  |                   |          |                           | oper          | ation    |          |
| SO                   | urces          |                | Capac           | ity      | $\setminus l$  | fixe   | ed co   | st                  |                   |          | S                         | ubsic         | ly or t  | ax       |
|                      | E              | Existi<br>plat | ing<br>s        | l        | ntere:<br>rate | st     |         | Chan<br>opera<br>co | geo<br>tior<br>st |          | Extra<br>peratio<br>margi | i<br>on<br>n  |          |          |



#### Excel program: Set-up – 3 Some results + Print options





# Excel program: Set-up – 4 Output

#### **Production system result**

| Сар      | acity  | Ene     | ergy   | Cap. Cost | En. Cost | Tot. Cost | Revenue |        | Profit    | Mean cost | CO2     | Util. Time |
|----------|--------|---------|--------|-----------|----------|-----------|---------|--------|-----------|-----------|---------|------------|
| MW-new   | MW-tot | MWh     | %      | kEuro     | kEuro    | kEuro     | kEuro   | kEuro  | €/MWh     | Euro/MWh  | tons    | hours      |
| 5000     | 5000   | 371428  | 12,1%  | 7914      | 21148    | 29062     | 157233  | 128171 | 345,1     | 78,2      | 129564  | 108        |
| 8000     | 8000   | 338700  | 11,1%  | 19204     | 2496     | 21700     | 25420   | 3720   | 11,0      | 64,1      | 0       | 178        |
| 3000     | 3000   | 600000  | 19,6%  | 22064     | 9663     | 31728     | 108613  | 76886  | 128,1     | 52,9      | 0       | 200        |
| 2000     | 2000   | 53972   | 1,8%   | 2039      | 4250     | 6289      | 56939   | 50650  | 938,5     | 116,5     | 27299   | 40         |
| 10000    | 10000  | 1687292 | 55,2%  | 38559     | 52055    | 90614     | 352397  | 261783 | 155,1     | 53,7      | 1197684 | 200        |
| 960,0    | 960    | 6708    | 0,2%   | 0         | 14122    | 14122     | 14122   | 0      | 0,0       | 2105,3    | 0       | 13         |
| 28960    | 28960  | 3058100 | 100,0% |           |          | 193514    |         |        | 1578      |           | 1354547 |            |
|          |        |         |        | -         |          |           |         |        | 1         |           | 1       |            |
|          | Ne     | ew      |        |           | -        | Total     |         |        | Total     |           | CO2     |            |
| Capacity |        | Cost    |        |           |          | Profit    |         |        | emissions |           |         |            |



# Excel program: Set-up – 5 Output summary Excel sheet: Table for Compendium

| Mean price:  | 123,4 | €/MWh   |         | Total cost | Profit    | CO2     | Utilization time |
|--------------|-------|---------|---------|------------|-----------|---------|------------------|
| Source:      | MW    | MWh     | MWh [%] | kEuro      | kEuro/MWh | tons    | hours            |
| Wind-land    | 8000  | 504498  | 16,8%   | 28255      | -0,2      | 0       | 200              |
| Nuclear-1    | 3000  | 600000  | 19,9%   | 31728      | 70,5      | 0       | 200              |
| Gas-OCGT     | 2000  | 24684   | 0,8%    | 3983       | 1231,0    | 12485   | 14               |
| Gas-CC       | 5000  | 183473  | 6,1%    | 18360      | 407,0     | 64000   | 76               |
| Coal-cond.   | 10000 | 1691135 | 56,2%   | 90733      | 86,6      | 1200412 | 200              |
| Curtailments | 956   | 4631    | 0,2%    | 9750       | 0,0       | 0       | 8                |
| Total:       | 28956 | 3008421 | 100,0%  | 182808     | 1794,8    | 1276898 |                  |



# Excel program: Set-up – 6 Apply optimization: "Data" => "Solver"

| Minimize<br>objective               | Ange målsättning:     \$W\$12       Till:     Max       Min     Värdet av:                                                                                                                                                                                                                                        | Objective<br>e.g. cost                               |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Variables<br>MW/source              | SQ\$6:\$Q\$10       Image: Celler :         SQ\$6:\$Q\$10       Image: Celler :         SQ\$6:\$Q\$10 <= \$D\$6:\$D\$10                                                                                                                                                                                           | Solvers:                                             |
| Constraints<br>e.g. max<br>capacity | Ändra         Ta bgrt         Återställ allt         Läs in/spara                                                                                                                                                                                                                                                 | <ul> <li>non-linear</li> <li>Evolutionary</li> </ul> |
| per source                          | Välj en lösningsmetod:       Evolutionary       Alternative         Lösningsmetod       Välj motorn Icke-linjär GRG för problem i Problemlösaren som är jämnt icke-linjära. Välj motorn LP Simplex för linjära problem i Problemlösaren, och välj motorn Evolutionary för problem i Problemlösaren som är ojämna. | Solvers:<br>Change<br>parameters                     |
|                                     | Hjälp Lög Stjäng                                                                                                                                                                                                                                                                                                  |                                                      |



#### Case: Min cost - 1







#### Case: Min cost - 2

| Mean price:  | 46,5  | €/MWh   |         | Total cost | Profit              | CO2     | Utilization time |
|--------------|-------|---------|---------|------------|---------------------|---------|------------------|
| Source:      | MW    | MWh     | MWh [%] | kEuro      | kEuro/MWh           | tons    | hours            |
| Wind-land    | 0     | 0       | 0,0%    | 0          | -                   | 0       | 0                |
| Nuclear-1    | 0     | 0       | 0,0%    | 0          | -                   | 0       | 0                |
| Gas-OCGT     | 3023  | 39848   | 1,3%    | 6220       | -77,3               | 20155   | 26               |
| Gas-CC       | 3002  | 150073  | 5,0%    | 13296      | -20,3               | 52350   | 98               |
| Coal-cond.   | 15339 | 2818500 | 93,7%   | 146101     | -4 <mark>,</mark> 0 | 2000645 | 200              |
| Curtailments | 0     | 0       | 0,0%    | 0          | -                   | 0       | 0                |
| Total:       | 21364 | 3008422 | 100,0%  | 165617     | -101,7              | 2073150 |                  |



# Comparison





### Case: Min cost + No CO2 increase + LOLP=0 Insert this as constraints in optimization →





# Case: Min cost + No CO2 increase + LOLP=0 Insert this as constraints in optimization →

| Mean price:  | 46,5  | €/MWh   |         | Total cost | Profit    | CO2     | Utilization time |
|--------------|-------|---------|---------|------------|-----------|---------|------------------|
| Source:      | MW    | MWh     | MWh [%] | kEuro      | kEuro/MWh | tons    | hours            |
| Wind-land    | 87    | 5458    | 0,2%    | 306        | -11,3     | 0       | 200              |
| Nuclear-1    | 5805  | 1160978 | 38,6%   | 61392      | -6,4      | 0       | 200              |
| Gas-OCGT     | 2893  | 36444   | 1,2%    | 5819       | -80,9     | 18433   | 25               |
| Gas-CC       | 3229  | 161654  | 5,4%    | 14315      | -20,7     | 56389   | 99               |
| Coal-cond.   | 9426  | 1643887 | 54,6%   | 87062      | -4,2      | 1166874 | 200              |
| Curtailments | 0     | 0       | 0,0%    | 0          | -         | 0       | 0                |
| Total:       | 21439 | 3008421 | 100,0%  | 168892     | -123,5    | 1241697 |                  |



### **Comparison:** Base Case - New





# Min cost + No CO2 increase + LOLP=0, Wind>30%

#### Insert this as constraints in optimization $\rightarrow$





### Min cost + No CO2 increase + LOLP=0, Wind>30%

Insert this as constraints in optimization  $\rightarrow$ 

| Mean price:  | 46,1  | €/MWh   |         | Total cost | Profit    | CO2    | Utilization time |
|--------------|-------|---------|---------|------------|-----------|--------|------------------|
| Source:      | MW    | MWh     | MWh [%] | kEuro      | kEuro/MWh | tons   | hours            |
| Wind-land    | 14355 | 905275  | 30,1%   | 50701      | -14,3     | 0      | 200              |
| Nuclear-1    | 3268  | 653635  | 21,7%   | 34564      | -6,8      | 0      | 200              |
| Gas-OCGT     | 4015  | 40386   | 1,3%    | 7273       | -101,4    | 20427  | 14               |
| Gas-CC       | 6730  | 313579  | 10,4%   | 28505      | -27,4     | 109385 | 105              |
| Coal-cond.   | 6681  | 1095547 | 36,4%   | 59559      | -4,9      | 777648 | 200              |
| Curtailments | 0     | 0       | 0,0%    | 0          | -         | 0      | 0                |
| Total:       | 35048 | 3008422 | 100,0%  | 180602     | -154,8    | 907460 |                  |





### Min cost + No CO2 increase + LOLP=0, Wind>30%, a margin on OCGT (102 Euro/MWh) Only increase this margin, until there is a profit in OCGT: → All power plants profitable, except wind power.

| Mean price:  | 53,2  | €/MWh   |         | Total cost | Profit    | CO2    | Utilization time |
|--------------|-------|---------|---------|------------|-----------|--------|------------------|
| Source:      | MW    | MWh     | MWh [%] | kEuro      | kEuro/MWh | tons   | hours            |
| Wind-land    | 14355 | 905275  | 30,1%   | 50701      | -12,4     | 0      | 200              |
| Nuclear-1    | 3268  | 653635  | 21,7%   | 34564      | 0,3       | 0      | 200              |
| Gas-OCGT     | 4015  | 40386   | 1,3%    | 7273       | 0,6       | 20427  | 14               |
| Gas-CC       | 6730  | 313579  | 10,4%   | 28505      | 3,2       | 109385 | 105              |
| Coal-cond.   | 6681  | 1095547 | 36,4%   | 59559      | 3,8       | 777648 | 200              |
| Curtailments | 0     | 0       | 0,0%    | 0          | -         | 0      | 0                |
| Total:       | 35048 | 3008422 | 100,0%  | 180602     | -4,4      | 907460 |                  |



# **Comparison:** With and without OCGT margin

