General Problem

- What is the **inductive bias** of state of the art Convolutional Neural Networks (CNNs)?
- For a fixed convolutional architecture, what family of functions are **attained in practice** when training the model on natural data?
- What is the relevant notion of "**complexity**"?

Motivation

- Each convolutional layer defines **hyperplane arrangements** in its preactivation space, which in turn induce **classification regions** in the input space.
- Studying the **preimage of convolutional layers** might reveal the inductive bias of SGD on *natural data*.

Research Question

How to describe and characterize hyperplane ar**rangements** for pairs of stacked convolutional layers?

Convolutional Layers

Cross-correlation between an input tensor $\mathcal{X} \in \mathbb{R}^{C \times H \times W}$ and a tensor $\mathcal{W} \in \mathbb{R}^{n_{\text{out}} \times n_{\text{in}} \times k \times k}$:

$$\tilde{\mathcal{O}}(o, i, j) = b_o + \sum_{\substack{c=0 \ m=0 \ n=0}}^{n_{\text{in}}-1} \sum_{\substack{k=1 \ m=0}}^{k-1} \mathcal{X}(c, i+m, j+n) \cdot \mathcal{W}_o(c, m, n)$$
$$i = 0, \dots, r-1 \quad \text{and} \quad j = 0, \dots, r-1 \quad (1)$$
for each $\mathcal{W}_o := \mathcal{W}[o, :, :, :], o = 1, \dots, n_{\text{out}}.$

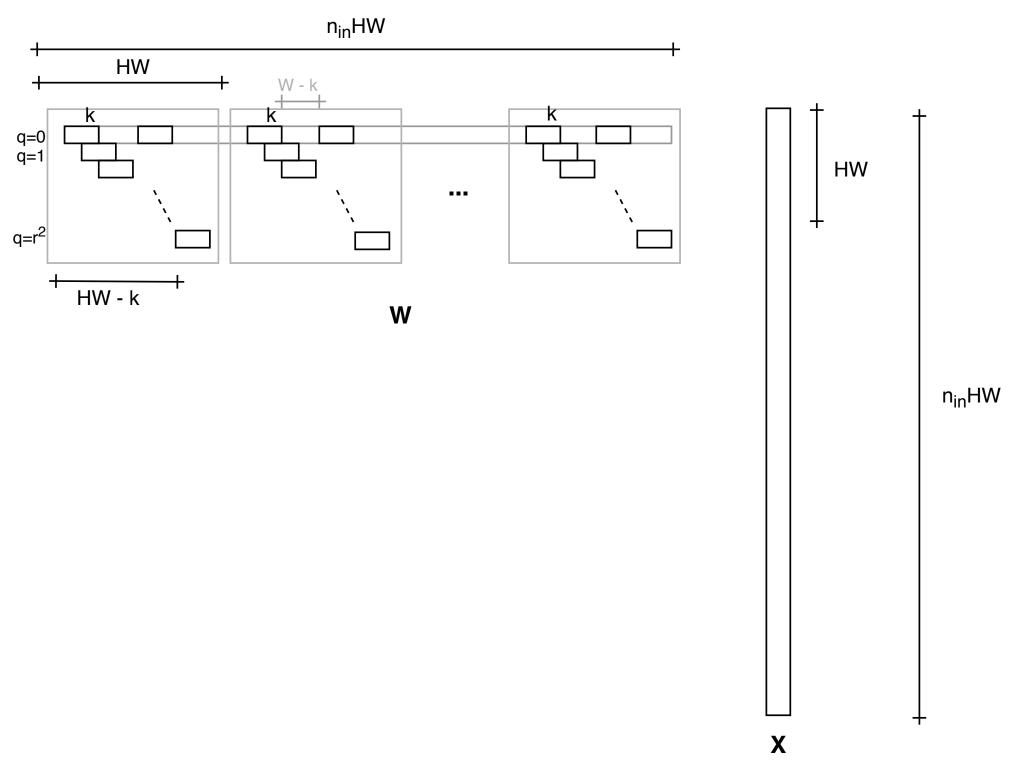


Figure: Tensor vectorization for a convolutional filter.

On the Geometry of Rectifier Convolutional Neural Networks

Matteo Gamba, Stefan Carlsson, Hossein Azizpour, Mårten Björkman

KTH Royal Institute of Technology

Hyperplane Arrangements

For each node in the network, a forward pass computes:	∎ F
$\varphi(\mathbf{W}_q^T \mathbf{x} + b) =: O_q \in \mathbb{R} $ (2)	• F
ReLU induces two affine halfspaces in the preactivation	C

space of the layer: $X_q^+ = \{ \mathbf{x} \in \mathbb{R}^{n_{\text{in}}HW} \mid \mathbf{W}_q^T \mathbf{x} + b \ge 0 \}$ $X_q^- = \{ \mathbf{x} \in \mathbb{R}^{n_{\text{in}}HW} \mid \mathbf{W}_q^T \mathbf{x} + b < 0 \}$ (3)

For stride s = 1, W is a **Toepliz matrix** identifying r^2 hyperplanes in \mathbb{R}^D , with $D = n_{\rm in} H W$:

$$\begin{cases} w_0 x_0 + w_1 x_1 + \ldots + w_{D-1} x_{D-1} + b \ge 0 \\ w_{D-1} x_0 + w_0 x_1 + \ldots + w_{D-2} x_{D-1} + b \ge 0 \\ \vdots & \vdots \\ w_{D-r^2+1} x_0 + \ldots + w_{D-r^2} x_{D-1} + b \ge 0 \end{cases}$$
(4)

Each convolutional filter defines a **polytope** in its preactivation space.

Polyhedral Cones

- Each channel of each filter defines a **polyhedral cone** with apex on the identity line.
- Data is mapped to a **subspace of lower or equal** dimension.

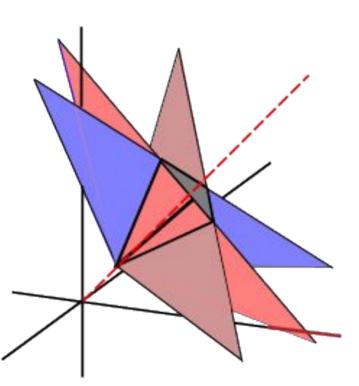
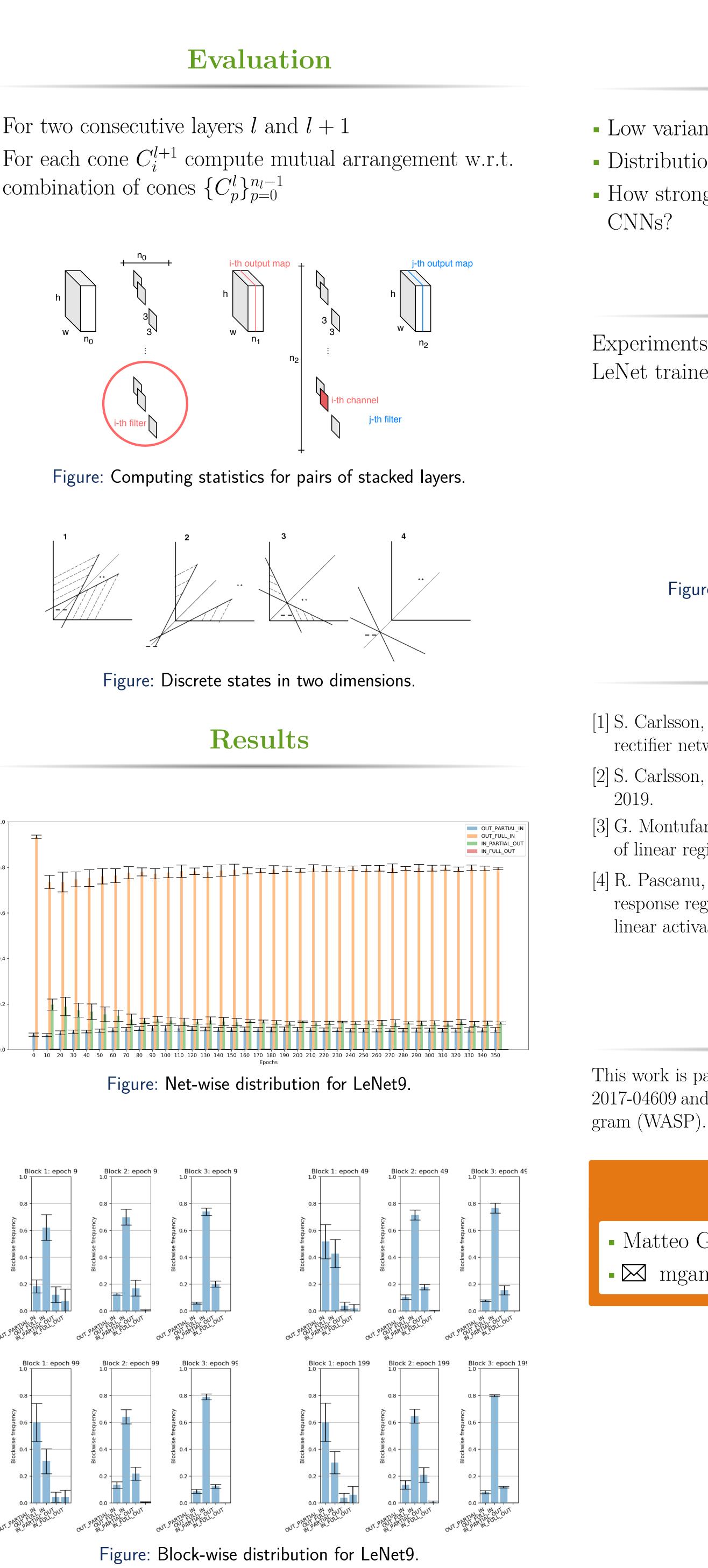



Figure: Polyhedral cone in three dimensions.

Summary Statistics

Pairwise offsets between **apex position**, **opening angle** and **rotation angles** are used to define four discrete states:

- **1OUT_FULL_IN**: second cone *fully included* in first.
- **2OUT_PARTIAL_IN**: second cone *partially included* in first.
- **3** IN_FULL_OUT: first cone *fully included* in second.
- **4** IN_PARTIAL_OUT: first cone *partially included* in second.

Conclusion

• Low variance for higher blocks.

• Distribution "stabilizes" during training.

• How strongly does this reflect the behaviour of large

Models and Datasets

Experiments performed on 9-layer versions of VGG and LeNet trained on CIFAR-10.

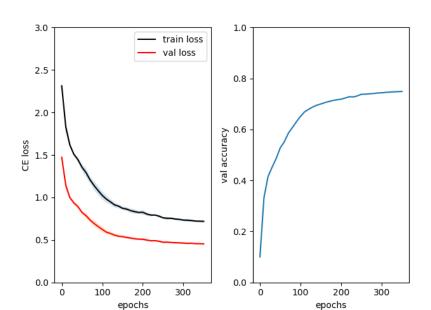


Figure: Train and test loss and accuracy for LeNet9.

References

[1] S. Carlsson, H. Azizpour, and A. Razavian, "The preimage of rectifier network activities," 2016.

[2] S. Carlsson, "Geometry of deep convolutional networks," CoRR,

[3] G. Montufar, R. Pascanu, K. Cho, and Y. Bengio, "On the number of linear regions of deep neural networks," in Adv. in NIPS, 2014. [4] R. Pascanu, G. Montufar, and Y. Bengio, "On the number of response regions of deep feed forward networks with piece-wise

linear activations," 2013.

Acknowledgements

This work is partially funded by the Swedish Research Council project 2017-04609 and Wallenberg AI, Autonomous Systems and Software Pro-

Contact Information

 Matteo Gamba \blacksquare mgamba@kth.se

