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Motivation

State of the art neural networks operate in the overparameterized regime,
and are large enough to interpolate the training set, at the same time
showing remarkable generalization performance.

Despite the increased expressivity afforded by overparameterization, the
effective complexity of neural networks is constrained in practice.
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Figure: Berner et al. (2021). Double descent curve of the test error, for networks of increasing model size,
interpreted as model complexity.
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Definitions

For ReLU networks f of parameter 0, we quantify smoothness of
interpolation via the input Jacobian norm of the neural network model
function f, capturing local complexity around each training point.
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On the Lipschitz Constant of Deep Networks

Smooth interpolation and double descent
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(Top) Double descent curves for the test error (solid) and interpolation of training data (dashed). (Bottom) Input smoothness

mirrors double descent as model size increases.

Overparameterization accelerates interpolation
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(Top) Input smoothness over epochs for representative models. (Bottom) Train error for the same models. In the overparameterized
regime, large models achieve interpolation faster, thereby retaining low complexity.
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Implicit regularization

Theorem 2. Let 6™ be a critical point for the loss L£(0,X,y) on D. Let fg denote a neural
network with at least one hidden layer, with || 8 | > 0. Then,

2
=
HenilﬁzIED |VxLl3 < 2Lmax(6) A(L(6)) +0(L(8))
2
with A(L(0)) :=tr (H) denoting the Laplace operator, H :=Ep| agng] denoting the expected
parameter-space Hessian of L, and Lmax(0) := max L£(0,X,,y,).
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Globally constrained complexity
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The distance from initialization of each layer’s parameters mirrors double descent as model size increases, showing
globally bounded complexity beyond the training data for large models.

Conclusions

1. Overparameterized networks retain low complexity by smoothly
interpolating the training data.

2. Parameter-space gradients implicitly regularize interpolation
smoothness via the input Jacobian for generalizing networks.

3. Overparameterization accelerates interpolation, resulting in reduced
distance from initialization of each layer.

4. Taken together, the results show that overparameterization controls
complexity globally.
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