Recap of convex optimization and distributed machine learning

In last lecture, we study:

• Canonical opt. problem in DML: \(\min_w \frac{1}{N} \sum_{i \in [N]} f_i(w) \)

• Efficient distributed solvers (such as D-GD, ADMM)

• Network structure and parallel approaches for distributed machine learning (DML)
Outline

• Background
• Main Challenges
• Federated Learning (FL) Principles
• FL Structure
• FedAvg Algorithm
• Communication Efficiency
• System Heterogeneity
• Privacy
• Application Examples
• Recent Development
Background

• Data breaches may seriously threaten user data privacy. In 2019, millions of Facebook user records are exposed on Amazon cloud\(^1\)
• The security requirement on training data is increasingly high due to various policies and regulations such as GDPR in Europe.
• The distributed property of DML makes data vulnerable.
• We might want a network of nodes (e.g., sensors, users, cameras, medical devices) to provide updates for our model but not transmit their raw data over networks.
• The term Federated Learning was coined by Google AI in a paper\(^2\) (published in 2017)
• Since then, it has been an area of active research as evidenced by papers (500+) published on arXiv\(^3\)

3. https://arxiv.org/search/?searchtype=all&query=%22federated+learning%22&abstracts=show&size=200&order=-announced_date_first
Main Motivations of FL

1. Expensive communication costs (different from data center)
 • communication may be more expensive than computing (e.g., mobile nodes)
 • Communication links may be unstable/unreliable
2. Systems Heterogeneity
 • Heterogeneous hardware
 • Heterogenous links (straggler devices in the network)
3. Data Heterogeneity
 Non-I.I.D. Data: Data generated from personalized or device-specific users. May not follow popular distribution.
4. Strong privacy requirement
 • Raw data may be very sensitive. Better share model updates, e.g., gradient information.
 • Secure multiparty computation or differential privacy may reduce model performance or system efficiency.
Main Motivations of FL (cont’)

5. Synchronization problems
 • May be more difficult due to heterogeneous connection (than distributed ML with stable connection).

6. Users have control over their device and data
 Only limited information will be shared and thus limits the models. Server cannot control worker nodes, contrary to classic server-slave models.

7. The amount of data may be quite imbalanced:
 some nodes may have much more while others much smaller.

8. Massively distributed: May be very large amount of devices participation (large-scale machine learning)

Federated Learning Principles

What is FL?
FL is a privacy-preserving and communication-efficient model training in heterogeneous, distributed networks often in mobile networks (Collaborative Machine Learning without Centralized Training Data or Computing). Reference [1] first coins the term Federated Learning.

Problem formulation

The canonical federated learning problem involves learning a single, global statistical model from data stored on tens to potentially millions of remote devices. In particular, the objective is typically to minimize the following objective function:

$$
\min_w F(w), \text{ where } F(w) := \sum_{k=1}^{m} p_k F_k(w)
$$

Here m is the total number of devices, F_k is the local objective function for the kth device, and p_k specifies the relative impact of each device with $p_k \geq 0$ and $\sum_{k=1}^{m} p_k = 1$.

Federated Learning Principles (example in mobile)

Mobile phone personalizes the model locally, based on your usage (A) Many user updates are aggregated (B) to form a consensus change (C) to the shared model, after which the procedure is repeated.

FL Principle:
FL vs. Edge Computing vs. Centralized Learning

<table>
<thead>
<tr>
<th></th>
<th>Centralized Learning</th>
<th>Edge Computing</th>
<th>Federated Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Privacy</td>
<td>☒</td>
<td>☒</td>
<td>✓</td>
</tr>
<tr>
<td>Bandwidth/Comm. efficient</td>
<td>☒</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Latency</td>
<td>☒</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cost/Feasibility</td>
<td>☒</td>
<td>☒</td>
<td>✓</td>
</tr>
</tbody>
</table>

- User data do not leave the local device, only updates of the model are transmitted with security protection.
- The updates are smaller than the original user data. Consequently the overall workload needed is lower in FL than in cloud based architectures or in edge computing. This makes FL cheaper and more convenient.
- The model updates are computed close to the user device, allowing for real time inferences with no latency problems.
The encrypted model is sent to the individual data owners, which decrypt (?) and then train using the local data.

Only the model updates are shared with the central model aggregator server. This provides protection to both the model and the data.

The raw data do not leave data owners. This does not only add privacy but also prevent a large amount of data transmitted on the network.
One Classical algorithm - Federated Averaging (FedAvg) Algorithm

- K: total # clients
- k: index of clients
- n_k: # data samples available during training for client k
- w_t: model weight vector on client k, at the federated (comm.) round t
- $l(w; b)$: loss function for weight w and batch b
- E: # local epochs

Algorithm 1: FederatedAveraging. The K clients are indexed by k; B is the local minibatch size, E is the number of local epochs, and η is the learning rate.

Server executes:
initialize w_0

for each round $t = 1, 2, \ldots$ do

$m \leftarrow \max(C \cdot K, 1)$

$S_t \leftarrow$ (random set of m clients)

for each client $k \in S_t$ in parallel do

$w_{t+1}^k \leftarrow \text{ClientUpdate}(k, w_t)$

$w_{t+1} \leftarrow \sum_{k=1}^{K} \frac{n_k}{n} w_{t+1}^k$

ClientUpdate(k, w): // Run on client k

$B \leftarrow$ (split P_k into batches of size B)

for each local epoch i from 1 to E do

for batch $b \in B$ do

$w \leftarrow w - \eta \nabla \ell(w; b)$

return w to server

Convergence Rate for *FedAvg* algorithm

Convergence rate on Non-I.I.D data (w.r.t. Local Epochs): $O\left(\frac{1}{T}\right), T$ is total iterations [4]

Make following assumptions on the local loss function $F_1, ... F_N$:

Assumption 1: *L-Smooth* $F_k(v) \leq F_k(w) + (v - w)^T\nabla F_k(w) + \frac{L}{2} \|v - w\|_2^2$

Assumption 2: *μ-strongly convex* $F_k(v) \geq F_k(w) + (v - w)^T\nabla F_k(w) + \frac{μ}{2} \|v - w\|_2^2$

Assumption 3 & 4: *Bounded variance and gradient* $E\|\nabla F_k(w^k_t, ξ^k_t) - \nabla F_k(w^k_t)\|^2 \leq σ^2_k$ and $E\|\nabla F_k(w^k_t, ξ^k_t)\|^2 \leq G^2$

Theorem 1. Let Assumptions 1 to 4 hold and $L, μ, σ_k, G$ be defined therein. Choose $κ = \frac{L}{μ}, \gamma = \max\{8κ, E\}$ and the learning rate $η_t = \frac{2}{μ(γ + t)}$. Then *FedAvg* with full device participation satisfies

$$E[F(w_T)] - F^* \leq \frac{2κ}{γ + T} \left(\frac{B}{μ} + 2L\|w_0 - w^*\|^2\right),$$

where

$$B = \sum_{k=1}^{N} p_k^2σ_k^2 + 6LΓ + 8(E - 1)^2G^2.$$

Proof Outline

Main steps:

- **Step 1:** define $g_t = \sum_{k=1}^{N} p_k \nabla F_k(w_t^k), g = \sum_{k=1}^{N} p_k \nabla F_k(w_t^k, \xi_t^k)$, first bound the variance: $E\|g_t - \overline{g_t}\|^2 \leq \sum_{k=1}^{N} p_k^2 \sigma_k^2$

- **Step 2:** bound the divergence of $\{w_t^k\}$, we get

 $E\left[\sum_{k=1}^{N} p_k \|\overline{w_t} - w_t^k\|^2\right] \leq 4\eta_t^2 (E - 1)^2 G^2$

- **Step 3:** define $\overline{w_t} = \sum_{k=1}^{N} p_k w_t^k, \Delta_t = E \|w^* - \overline{w_t}\|^2$, it is easy to verify that $\Delta_{t+1} \leq (1 - \eta_t \mu)\Delta_t + \eta_t^2 B$

- **Step 4:** with L-smoothness of $F(\cdot)$, we derive $E[F(\overline{w_t})] - F^* \leq \frac{L}{2} \Delta_t \leq \frac{L}{2} \frac{v}{\gamma + \epsilon}$, where $v = \max\left\{\frac{\beta^2 B}{\beta \mu - 1}, (\gamma + 1)\Delta_1\right\} \leq \frac{\beta^2 B}{\beta \mu - 1} + (\gamma + 1)\Delta_1 \leq \frac{4B}{\mu^2} + (\gamma + 1)\Delta_1$. This complete the proof
Convergence Rate for *FedAvg* Algorithm

Communication round = T/E

$$
\frac{T\varepsilon}{E} \propto \left(1 + \frac{1}{K}\right) EG^2 + \sum_{k=1}^{N} \frac{p_k^2 \sigma_k^2}{E} + L\Gamma + \kappa G^2 + G^2
$$

Communication cost reduces with increasing E at first and then increase with overlap E. There is optimal E.

Performance

FedAvg
share updated parameters

FedSGD
share local gradients
baseline algorithm for FedAvg
special case of FedAvg:
 – Single local batch \(B = \infty\)
 – Single local epoch \(E = 1\)
Communication-efficiency

Several general directions:
1. More local updating
 - Reduce the total *number of communication rounds*

Left: FedSGD

Each device k computes gradients from a mini-batch of data points to approximate $\nabla F_k(w)$, and the aggregated mini-batch updates are applied on the server.

Right: Local updating schemes. FedAvg

Each device immediately applies local updates, e.g., gradients, after they are computed and a server performs a global aggregation after a variable number of local updates.
Numerical Results from Experiment

Convergence performance

Test accuracy vs. # communication rounds for the MNIST CNN (IID and Non-IID)

Numerical Results from Experiment

Learning rates (step size)

(a) Fixed learning rates

The left figure shows that the global objective value that FedAvg converges to is suboptimal unless $E = 1$. Once we decay the learning rate, FedAvg can converge to the optimal even if $E > 1$.

Numerical Results from Experiment

Balance vs unbalanced data

(a) Balanced MNIST
(b) Unbalanced MNIST

The impact of K on MNIST datasets.

Numerical Results from Experiment

Communication analysis [1]

Test accuracy vs. # communication for the CI-FAR10 experiments. *FedSGD* uses a learning-rate decay of 0.9934 per round; *FedAvg* uses $B = 50$, learning-rate decay of 0.99 per round, and $E = 5$.
Further improvement on communication-efficiency

1. Compression
 • Model compression schemes (such as *sparsification*, *subsampling* and *quantization*) can significantly reduce the *size of messages* communicated at each round

 Sparsification
 • The key idea of a sparsification is to sparsify a high-dimensional vector by randomly selecting some coordinates and setting the information of these coordinates to zero
 • E.g., Sparsification gradient: sends a sparse vector with a subset of important values from the full gradient

 Subsampling
 • The key idea is to analyze a fraction of samples (in terms of model parameters)

 Quantization
 • The key idea of quantizer aims to compress a high-dimensional vector by limiting the number of bits that represent floating point number (with low-precision vector)
 • E.g., signed gradient
Example: Lossy compression via federated dropout

1) Construct a sub-model via *Federated Dropout*
2) Lossily compress the resulting object
3) Decompress and train it using local data
4) Compress the final update
5) Decompress the update
6) Aggregate it into the global model

Federated Dropout applied to two fully-connected neural layers.

Further improvement on communication-efficiency (cont’d)

2. Decentralized Training
 • Devices only communicate with their neighbours, e.g., the right figure

Further improvement on communication-efficiency (cont’d)

3. Hierarchical communication patterns
 • e.g., Client-edge-cloud hierarchical FL system
 • Train faster and better communication-computation trade-offs

By first leveraging edge servers to aggregate the updates from edge devices and then relying on a cloud server to aggregate updates from edge servers.

System Heterogeneity

Important topics:
1. Asynchronous Communication
2. Fault Tolerance
Asynchronous Communication

Synchronous Schemes: Simple but more susceptible to stragglers in the face of device variation

Asynchronous Schemes: Mitigate stragglers in heterogeneous environments

Example: SSP: Stale Synchronous Parallel

Bounded Staleness under the SSP Model

Fault Tolerance

Some participating devices to drop out at some point before the completion of the given training iteration. One practical strategy to simply ignore such device failure, which may introduce bias into the device sampling scheme. *Coded computation* by introducing algorithmic redundancy.

Statistical Heterogeneity

Several general research topics in FL:

It is challenging to learn with non-I.I.D data.

Convergence Guarantees for non-I.I.D data
Convergence Guarantees for Non-I.I.D Data

- Statistical heterogeneity also presents novel challenges in terms of analysing the convergence behaviour in FL settings.
- Methods such as FedAvg can be divergent in practice.
- Also some heuristic approaches that aim to tackle statistical heterogeneity, either by sharing local device data or some server-side proxy data.
- However, these methods may be unrealistic: in addition to imposing burdens on network bandwidth, sending local data to the server violates the key privacy assumption of FL.
- Method FedProx was proposed to help improve convergence, both theoretically and practically.
FedProx Algorithm

Different from FedAvg:

Introduce proximal term: \[
\min_w h_k(w; w^t) = F_k(w) + \frac{\mu}{2} \|w - w^t\|^2
\]

Algorithm 2 FedProx (Proposed Framework)

\[
\text{Input: } K, T, \mu, \gamma, w^0, N, p_k, k = 1, \cdots, N \\
\text{for } t = 0, \cdots, T - 1 \text{ do} \\
\quad \text{Server selects a subset } S_t \text{ of } K \text{ devices at random (each} \\
\quad \text{device } k \text{ is chosen with probability } p_k \) \\
\quad \text{Server sends } w^t \text{ to all chosen devices} \\
\quad \text{Each chosen device } k \in S_t \text{ finds a } w_k^{t+1} \text{ which is a } \gamma_k^t \text{-inexact minimizer of:} \\
\quad \text{arg min}_w h_k(w; w^t) = F_k(w) + \frac{\mu}{2} \|w - w^t\|^2 \\
\quad \text{Each device } k \in S_t \text{ sends } w_k^{t+1} \text{ back to the server} \\
\quad \text{Server aggregates the } w \text{'s as } w^{t+1} = \frac{1}{K} \sum_{k \in S_t} w_k^{t+1} \\
\text{end for}
\]

Privacy

- Privacy concerns often motivate the need to keep raw data on each device local in FL settings
- However, sharing other information such as model updates as part of the training process can also leak sensitive user information since model parameters are functions (e.g., linear or poly.) of raw data.
- For instance, one can extract sensitive text patterns from a recurrent neural network trained on user language data.

Main strategies for improving privacy in FL:
- **Differential privacy** (DP) to communicate noisy data (weights)
- **Homomorphic encryption** (HE) to operate on encrypted data
- Secure multiparty computation (SMC)
Differential Privacy (DP)

- Differential privacy is the statistical approach of trying to learn **as much as possible about a group** while learning **as little as possible** about any individual in it.
- Maximize the accuracy and minimize the opportunity of recognizing the individual by adding artificial noise.
- There exists a **trade-off** between differential privacy and model accuracy, as adding more noise results in greater privacy, but may compromise accuracy significantly.
DP: Global privacy and local privacy

- Global privacy: the model updates are private to all untrusted third parties other than the central parameter-server.
- Local privacy: the model updates are also private to the server.

Local differential privacy

Global differential privacy
Example: Different Privacy-Preserving Mechanisms [6]

\[\Delta W = \text{aggregate}(\Delta W_1 + \Delta W_2 + \Delta W_3) \]

(a) FL without additional privacy protection mechanisms

(b) Global privacy, where a trusted server is assumed

(c) Local privacy, where the central server might be malicious

An illustration of different privacy-enhancing mechanisms in one round of FL.
\(M \) denotes a randomized mechanism used to privatize the data. (a), no privacy protection is added. (b), With global privacy, the model updates are private to all third parties other than a single trusted party (the central server). Training in worker node uses noisy version of aggregated weight: may lose accuracy. (c), With local privacy, the individual model updates are also private to the server. Each worker adds local noise and use noisy version of aggregated weights for training: will also lose accuracy.
Homomorphic Encryption (HE)

- Secure the learning process by computing/learning on encrypted data
- Without revealing the values of the decrypted data
- Differ from other forms of encryptions, use an algebraic system to allow a variety of computations (or operations) on the encrypted data
- Has currently been applied in some settings, e.g., training linear models

\[\text{Enc}(m_1) \circ \text{Enc}(m_2) = \text{Enc}(m_1 + m_2). \]
Secure multiparty computation (SMC)

- Sensitive datasets owned by different organizations
- This protocol enables **multiple parties to collaboratively compute an agreed-upon function** without leaking input information from any party except for what can be inferred from the output
- SMC can be **combined** with DP to achieve storing privacy guarantees
- SMC can also use secret sharing approach (multiple-server in FL, only sufficient number of servers leak, information can leak)
- Need to be carefully designed and implemented for large-scale system

\[P \] data owner
\[S_i \] party
\[\bar{\beta} \] model

Application Examples

Two canonical applications:
• Learning over smart phones
• Learning across organizations
Learning over smart phones [6]

Text prediction on mobile phones (e.g., Gboard)

An example of FL for the task of next-word prediction on mobile phones. Devices communicate with a central server periodically to learn a global model. FL preserves user privacy and reduces comm. on the network by keeping data localized.
Gboard

- The first large-scale deployment of federated learning in the real world was as part of Google keyboard application, Gboard.
- The technique to improve word suggestions without compromising user privacy.
- Under the previous machine learning approach, developing better keyboard predictions would have been tremendously invasive – everything we typed, all of our private messages and strange Google searches would have to have been sent to a central server for analysis.
- Currently, Google use their federated learning for typing prediction. Because learning is on user devices, it is able to learn from the words that users type in, summarize the key information and then send it back to the server. These summaries are then used to enhance Google’s predictive text feature, which is then tested and pushed out to users.
FL for next-word prediction

Top-1 recall (prediction accuracy) as a function of training round.

n-gram model is a type of probabilistic language model for predicting the next item in a sequence.

FL for personal healthcare

Use FL across multiple hospitals to develop robust AI models \textit{without} sharing personal data [6]

Another application of FL for personal healthcare via learning over heterogeneous electronic medical records distributed across multiple hospitals.
FL for personal healthcare (cont’d)

Data privacy and security are critical in healthcare. Many organizations store significant amounts of both sensitive and valuable patient data, which is also keenly sought by hackers. In 2018, Intel partnered with the University of Pennsylvania’s Center for Biomedical Image Computing and Analytics to demonstrate how federated learning could be applied to medical imaging as a proof of concept.

The collaboration revealed that under a federated learning approach, their particular deep learning model could be trained to be 99 percent as accurate as the same model trained through traditional methods (centralized one).

Table: Performance of centralized, original federated and Federated-autonomous learning

<table>
<thead>
<tr>
<th>Training method</th>
<th>AUCROC</th>
<th>AUCPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized learning</td>
<td>0.79</td>
<td>0.21</td>
</tr>
<tr>
<td>Original federated learning</td>
<td>0.75</td>
<td>0.16</td>
</tr>
<tr>
<td>Federated autonomous deep learning (FADL)</td>
<td>0.79</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Potential Research Direction on FL

• Most of the existing FL schemes consider exchanging the raw model parameters without any privacy guarantees
• Slave-worker model is the mainstream
 • Need a trusted server
 • may consider the decentralized architecture
• Main research directions are to improve the effectiveness, efficiency, and privacy (three key metrics)
 • Need to other research topics: e.g., fairness and incentive mechanisms
References

