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Constants and Units of Physical Quantities

Constant Value Remark

Speed of light (free space) c ∼ 3× 108 m/s Universal constant

Permeability (free space) µ0 4π × 10−7 H/m Universal constant

Permittivity (free space) ǫ0 ∼ 1
36π
× 10−9 F/m Derived from c =

√

1/ǫ0µ0

Impedance (free space) Z0 ∼ 120π or 377 Ω Zo =
√

µ0/ǫ0

Electron charge −e −1.602 × 10−19 C

Electron mass (rest) me 9.107 × 10−31 kg

Quantity Unit Remark [Svenska]

Length m (meter) SI base unit [Längd]

Mass kg (kilogram) SI base unit [Vikt]

Time s (second) SI base unit [Tid]

Current A (ampere) SI base unit [Ström]

Admittance Y S (siemens) [Admittans]

Angular frequency ω rad/s [Vinkelfrekvens]

Capacitance F F (farad) C/V [Kapacitans]

Charge Q or q C (coulomb) A·s [Laddning]
Conductance G S (siemens, ≡ 1/Ω) [Konduktans]

Conductivity σ S/m [Konduktivitet]

Current density (volume) J A/m2 [Strömdensitet]

Electric field intensity E V/m [Elektriskt fält(styrka)]

Electric potential V V (volt) [Elektrisk spänning]

Electric susceptibility χe – [Elektrisk susceptibilitet]

Electromotiv force E V [Elektromotorisk spänning]

Energy (work) W J (joule) [Arbete]

Electric flux density D C/m2 aka “Displacement” [E. flödstäthet]

Force F N (newton) [Kraft]

Frequency f Hz (hertz) [Frekvens]

Impedance Z Ω (ohm) [Impedans]

Inductance L H (henry) [Induktans]

Magnetic dipole moment m A·m2 [M. dipolmoment]

Magnetic field intensity H A/m [Magnetfält]

Magnetic flux Φ Wb (weber) [Magnetiskt flöde]

Magnetic flux density B T (tesla) [Magnetiskt flödestäthet]

Magnetic susceptibility χm – [Magnetisk susceptibilitet]

Magnetization M A/m [Magnetisering]

Permeability µ H/m [Permeabilitet]

Permittivity ǫ F/m [Permittivitet]

Phase φ rad (radian) [Fas]

Polarization P C/m2 [Elektrisk polarisation]

Power P W (watt) [Effekt]

Poynting vector P W/m2 [Poyntings vector]

Resistance R Ω [Resistans]

Voltage V V [Spänning]

Wavelength λ m [V̊aglängd]

Wave vector k rad/m [V̊agvektor]

Wave number k = |k| rad/m [V̊agtal]
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Chapter 1

Vectors Analysis and Other

Fundamentals

1.1 What is vector?

A vector is a value carrying both magnitude and direction, like fluid velocity. In compari-
son, a scalar has only magnitude, like temperature. A scalar field is distribution of a scalar
quantity over space and time, like temperature in a room. A vector field is distribution of
a vector quantity over space and time, like fluid velocity in a pipe. Graphically, a vector
is represented as an arrow placed in 3D space, which is mathematically denoted as a bold
alphabet, e.g. A, to differetiate from a scalar A. In handwriting, it is more often to write
as ~A or sometimes Ā. Besides representing a physical quantity, a vector can also merely
represent how one point is positioned with respect to another posint in 3D space. If the
reference point is the origin, we call such a vector position vector of a point.

A vector is expressed generally as

A = Aâ, (1.1)

where A is the magnitude of A and â is a unit vector (vector with magnitude 1) repre-
senting the direction of A. Magnitude A is also written as |A|.

In a more concrete form, a vector can be written in three scalar numbers, plus coordi-
nate information. For example in Cartesian coordinate system, one writes

A = Axx̂+Ayŷ +Azẑ (1.2)

where x̂, ŷ, and ẑ are unit vectors along three coordinates. Ax, Ay and Az are lengthes
of projections of the vector along three axial directions. The magnitude and direction of
the vector can be calculated based on the three scalars.

Example: Position vector

Calculate position vector of a point P1 with Cartesian coordinate (2, 4, 5).

Solution: P1 = 2x̂+ 4ŷ + 5ẑ.

If one knows position vectors of spatial points P1 (as P1) and P2 (as P2), the vector
pointing from P1 to P2, commonly referred to as displacement vector, is

P12 = P2 −P1. (1.3)

1
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Example: Displacement vector

In Cartesian coordinate, calculate vector pointing from point P1 at (2, 4, 5) to point
P2 at (3, 3, 1) .

Solution: Position vector of P1: P1 = 2x̂+ 4ŷ + 5ẑ.
Position vector of P2: P2 = 3x̂+ 3ŷ + 1ẑ.
Vector from P1 to P2: P12 = P2−P1 = (3− 2)x̂+(3− 4)ŷ+(1− 5)ẑ = x̂− ŷ− 4ẑ.

Note that coordinate is really what we impose on a physical space. One can trans-
late, rotate, and shrink a coordinate system, or even transform one coordinate system
(e.g. Cartesian) to another coordinate system (e.g. cylindrical). Upon such a coordinate
transformation, the three scalar numbers and the unit vectors denoting a vector shall be
changed correspondingly.

Why vector analysis? Electromagnetism is about finding vector electric and magnetic
fields in space and time. The underlying laws governing the physics of electromagnetism
(i.e. Maxwell’s equations) are summarized very compactly using vector operations, with-
out dependence on a specific coordinate system. In fact, in year 1861, Maxwell’s equations
were written in 20 equations with variables expressed in Cartesian coordinate system. The
equations would change forms when another coordinate system is used. The current vector
Maxwell’s equations were formulated by Oliver Heaviside in year 1884. The formulation
is based on vector operations. Knowledge on such operations is vital for understanding of
this subject.

1.2 Vector operations

Vector addition:
C = A+B (1.4)

Vector addition is commutative. Geometrically, C can be obtained from A and B through
the parallelogram rule. Arithmetically, addition is done by adding corresponding scalar
coefficients. In Cartesian coordinate, one has

C = (Ax +Bx)x̂+ (Ay +By)ŷ + (Az +Bz)ẑ. (1.5)

Vector subtraction:
C = A−B = A+ (−B) (1.6)

This can be related to the example on “Displacement vector” above: treating A and B
respectively as position vectors of points A and B, C is the vector pointing from B to A.
Subtraction can be treated as addition (through vector inversion).
Dot product:

A ·B ≡ AB cos θ (1.7)

where θ is the angle between vectors A and B. Dot product is commutative. Geomet-
rically, dot product calculates scalar product of A and projection of B on the direction
of A. Besides geometrical interpretation, one can also use arithmetic operation based on
scalar coefficients of the vectors to calculate dot product. In Cartesian coordinate, it takes
the form

A ·B = AxBx +AyBy +AzBz. (1.8)

Sometimes, “dot product” is also referred to as “scalar product”.
Cross product:

A×B ≡ AB sin θ n̂ (1.9)
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where θ is the angle between vectors A and B, and n̂ is unit vector perpendicular to the
plane defined by A and B. The specific direction of n̂ is decided by the right-hand rule1.
Geometrically, cross product calculates area of a parallelogram formed by A and B, with
result presented as a vector in the third direction.

Instead of calculating area, cross product of two vectors can be calculated through
arithmetic operation based on their scalar coefficients. In Cartesian coordinate, it takes
the form

A×B = (AyBz −AzBy)x̂+ (AzBx −AxBz)ŷ + (AxBy −AyBx)ẑ, (1.10)

or in a more compact form

A×B =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

Ax Ay Az

Bx By Bz

∣

∣

∣

∣

∣

∣

. (1.11)

Cross product is non-commutative. A×B = −B×A, following the right-hand rule.

1.3 Coordinate systems

In Eq. 1.2 we expressed a vector in Cartesian coordinate system. As mentioned, an
identical vector takes a different form in some other coordinate system. The most common
coordinate systems, apart from Cartesian, are cylindrical and spherical coordinate systems.
These three belong to orthogonal coordinate systems, whose base vectors (or basis vectors)
form an orthogonal triplet. Choice of a coordinate system depends on problem under
consideration, and is often connected to symmetry of the problem. A formal procedure
called coordinate transformation can be used to transform a vector from one coordinate
to another.

One important aspect of a coordinate system is its metric coefficients — how much
length changes are incurred by one unit coordinate increment in three axial directions.
Cartesian coordinates are based on lengths, with metric coefficient for each coordinate
being 1. If we use h1, h2, and h3 to denote metric coefficients in each coordinate direction,
we simply have h1 = h2 = h3 = 1. For this reason, metric coefficients do not appear
in the formulas for Cartesian coordinate. This is not true for cylindrical and spherical
coordinates.

1.3.1 Cartesian coordinate

In Cartesian coordinate system, the three base vectors are x̂, ŷ, and ẑ. Usually one
chooses a right-handed system, which has the following cyclic properties

x̂× ŷ = ẑ, ŷ × ẑ = x̂, ẑ × x̂ = ŷ. (1.12)

A vector differential length is expressed in terms of the base vectors as

dl = dxx̂+ dyŷ + dzẑ. (1.13)

A differential volume is expressed as

dv = dxdydz. (1.14)

1Right-hand rule: one extends right-hand fingers out from A and close in against B; the thumb then
points to n̂.
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Figure 1.1: Differential volume element in cylindrical and spherical coordinate systems.

1.3.2 Cylindrical coordinate

Cylindrical coordinate system has base vectors r̂ (along radial direction), φ̂ (azimuthal
direction), and ẑ. The their relations are

r̂ × φ̂ = ẑ, φ̂× ẑ = r̂, ẑ × r̂ = φ̂. (1.15)

A vector in cylindrical coordinate system is expressed as

A = Arr̂ +Aφφ̂+Azẑ. (1.16)

r takes value ranging from 0 to ∞, φ from 0 to 2π, and z from −∞ to +∞.
In cylindrical coordinate, the azimuthal coordinate φ is an angle. One obtains a dif-

ferential length in that direction by multiplying the angle with an appropriate metric
coefficient, in this case r. The corresponding metric coefficients are

h1 = 1, h2 = r, h3 = 1. (1.17)

A differential length is
dl = drr̂ + rdφφ̂+ dzẑ. (1.18)

A differential volume is (refer to Fig. 1.1, left panel)

dv = rdrdφdz. (1.19)

Notice how h2 is used in the above two expressions.

1.3.3 Spherical coordinate

Cylindrical coordinate system has base vectors r̂ (along radial direction), θ̂ (angular di-
rection with respect to polar axis), and φ̂ (azimuthal direction). Their relations are

r̂ × θ̂ = φ̂, θ̂ × φ̂ = r̂, φ̂× r̂ = θ̂. (1.20)

A vector in sphereical coordinate system is expressed as

A = Arr̂ +Aθθ̂ +Aφφ̂. (1.21)
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r takes value ranging from 0 to ∞, θ from 0 to π with zero pointing at north pole, and φ
from 0 to 2π.

Two of the coordinates are now angles. The metric coefficients in r, θ, and φ directions
are respectively

h1 = 1, h2 = r, h3 = r sin θ. (1.22)

A differential length is

dl = drr̂ + rdθθ̂ + r sin θdφφ̂. (1.23)

A differential volume is (refer to Fig. 1.1, right panel)

dv = r2 sin θdrdθdφ. (1.24)

1.4 Integration of vector field

Line integral (through dot product):

∫

C

A · dl, or

∮

C

A · dl (if line is closed). (1.25)

Subscript C stands for “contour”. Note bold “l” in vector “dl”. Line integral of a vector
field computes integration of the vector field’s magnitude projected along the line direction.
Integration results in a scalar value.

Line integral of vector field, through dot product

In cylindrical coordinate, calculate line integral through dot product of vector field
F = 1r̂ along a circle with radius 1 in rφ plane centered at origin.

Solution:
∮

C
F · dl =

∮

C
1r̂ · 1dφφ̂ = 0. (since r̂ and φ̂ perpendicular to each other)

A vector field can also be integrated along a line without considering line direction, as
∫

C
Adl. Since A can be decomposed into three axial components, the line integral can be

interpreted as three scalar line integrals. Final result is a vector. In Cartesian coordinate,
it is calculated as

∫

C

Adl =

∫

C

Axdlx̂+

∫

C

Aydlŷ +

∫

C

Azdlẑ. (1.26)

Example: Line integral of vector field, without dot product

In cylindrical coordinate, calculate line integral of vector field F = 1r̂ along a circle
with radius 1 in rφ plane centered at origin.

Solution:
∮

C
Fdl =

∮

C
1r̂ 1dφ =

∮

C
(1 cos φx̂ + 1 sin φŷ) 1dφ =

∮

C
cosφdφx̂ +

∮

C
sinφdφŷ = [sinφ]2πφ=0x̂ + [− cosφ]2πφ=0ŷ = 0. (Result should be a vector, but

now with zero magnitude.)

Surface integral:
∫

S

A · ds, or

∮

S

A · ds (if surface is closed). (1.27)

Subscript S stands for “surface”. Surface integral of a vector field computes the total field
flux passing through an area. Direction of differential surface element ds is decided by the
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right-hand rule, by curving fingers around four sides of the area in a counter-clockwise
direction. When performing the right-hand rule, one shall first choose a fixed viewing
perspective to the surface. If the surface is a closed surface, one usually views the surface
from outside, hence n̂ pointing outwards from the surface.

Example: Flux through an area

In cylindrical coordinate, calculate flux of a vector field F = 1r̂ passing through a
circular area with radius 1 in rφ plane centered at origin.

Solution:
∫

S
F · ds = 0 (field direction r̂ is everywhere perpendicular to surface

normal ẑ).

A vector field can also be integrated with respect to a surface without considering the
surface direction/orientation, as

∫

S

Ads. (1.28)

It again can be interpreted as three scalar surface integrals. Final result is a vector.

Example: Surface integral of vector field, without dot product

In cylindrical coordinate, calculate surface integral of vector field F = 1ẑ over a
circular area with radius 1 in rφ plane centered at origin.

Solution:
∫

S
Fds =

∫

r

∫

φ
1ẑ rdφdr =

∫

r
rdr

∫

φ
dφ ẑ =

[

1
2
r2
]1

0
[φ]2π0 = πẑ.

Extension: How about field is F = 1r̂?

Volume integral:
∫

V

Adv. (1.29)

Subscript V stands for “volume”. Note that a differential volume element dv is a scalar.
Volume integral of a vector field effectively corresponds to three volume integrals of scalar
fields. The final result is a vector.

1.5 The del operator, and its operation on fields

In physical problems, one often needs to manipulate a field to get some derived knowledge
of the field. There are three primary operations - gradient, divergence, and curl. In electro-
magnetism, these operations establish relationships among sources (charge, current), fields
(electric and magnetic), and potentials (electric potential or voltage, magnetic potential).
It would be cumbersome to express field operations using three coordinate components
of a vector field. We introduce an operator – the del operator denoted by ∇ (nabla),
which simplifies expressions of vector analyses. The operator appears in different forms in
different coordinate systems. In Cartesian coordinate, ∇ is defined as

∇ ≡ ∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ. (1.30)

The operator takes the form of a vector. Its physical meaning is best conveyed when it
operates on a field.
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1.5.1 Gradient

Gradient of a scalar field (∇ operation on a scalar field) is expressed as

∇A ≡ ∂A

∂x
x̂+

∂A

∂y
ŷ +

∂A

∂z
ẑ. (1.31)

The operation on a scalar field F (a map of scalar values) results in a vector field that
describes how fast the field varies at any coordinate position (a map of arrows). See
Fig. 1.2 for illustration (two-dimensional).
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Figure 1.2: Left: A 2D scalar field F (x, y) (e.g. height map of a mountain). Right:
gradient of the scalar field ∇F , which is a vector field (map of slope).

1.5.2 Divergence

Divergence of a vector field (∇ operation on a vector field through dot product) is

∇ ·A ≡
(

∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ

)

· (Axx̂+Ayŷ +Azẑ) (1.32)

=
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
. (1.33)

By definition, divergence of a vector field derives net outward flux of the vector field
per unit volume at each spatial point. One can correlate outward field flux at a certain
location to presence of some sources creating the field (e.g. electric field owing to presence
of electrical charges).

Once one has the above understanding, divergence theorem comes naturally, which is

∫

V

∇ ·Adv =

∮

S

A · ds. (1.34)

It describes that the volume integral of the divergence of a vector field is equivalent to
integral of outward surface-normal flux over the surface enclosing the volume. Divergence
theorem converts a volume integral to a surface integral or vice versa.
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Figure 1.3: Divergence theorem - volume integral (exploded view) becomes surface integral.

1.5.3 Curl

Curl of a vector field (∇ operation on a vector field through cross product) is

∇×A ≡
(

∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ

)

× (Axx̂+Ayŷ +Azẑ) (1.35)

=

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣

∣

∣

∣

∣

∣

(1.36)

=

(

∂Az

∂y
− ∂Ay

∂z

)

x̂+

(

∂Ax

∂z
− ∂Az

∂x

)

ŷ +

(

∂Ay

∂x
− ∂Ax

∂y

)

ẑ. (1.37)

By definition, curl of a vector field finds the maximum degree of circulation per unit
area of the field, and at the same time orientation of the maximum circulation field. The
orientation is denoted by the normal direction of the surface containing the circulation.
We usually choose the positive surface-normal direction through the right-hand rule —
right-hand fingers curl around a surface element’s boundary in anti-clockwise direction,
and the thumb will be pointing to the positive surface-normal direction. One can correlate
circulating field to (vortex) sources that generate such a field. One concrete example is
that a steady line current can generate circulating magnetic field around the line.

Stoke’s theorem follows naturally from definition of curl. It reads

∫

S

(∇×A) · dS =

∮

C

A · dl. (1.38)

The theorem states that surface integral of curl of a vector field over any continuous open
surface is equal to integral of the field along the outer contour of the surface. Stoke’s
theorem converts a surface integral to a line integral or vice versa. Figure 1.4 illustrates
principle of Stoke’s theorem.

Figure 1.4: Stoke’s theorem - Surface integral becomes line integral.
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1.5.4 del operations in other coordinates

The del operator takes different forms in different coordinate systems. The expressions
are all relatively simple for orthogonal coordinate systems. What the del operator does
is to get spatial differentiations along three coordinate directions. One just needs to
update the differential length unit when taking differentiations through considering the
metric coefficients (h1, h2, h3). If one expresses a general orthogonal coordinate system
as (u1, u2, u3) with unit vectors along coordinate axes â1, â2, and â3, respectively, the
general expression for ∇ is

∇ ≡ ∂

h1∂u1
â1 +

∂

h2∂u2
â2 +

∂

h3∂u3
â3. (1.39)

Divergence operation is generally defined as

∇ ·A =
1

h1h2h3

[

∂(h2h3A1)

∂u1
+

∂(h1h3A2)

∂u2
+

∂(h1h2A3)

∂u3

]

. (1.40)

Curl operation is generally

∇×A =
1

h1h2h3

∣

∣

∣

∣

∣

∣

h1â1 h2â2 h3â3
∂

∂u1

∂
∂u2

∂
∂u3

h1A1 h2A2 h3A3

∣

∣

∣

∣

∣

∣

. (1.41)

Therefore, for a cylindrical coordinate system, we have the following for the del oper-
ations

∇V =
∂V

∂r
r̂ +

∂V

r∂φ
φ̂+

∂V

∂z
ẑ, (1.42)

∇ ·A =
1

r

∂(rAr)

∂r
+

∂Aφ

r∂φ
+

∂Az

∂z
, (1.43)

∇×A =
1

r

∣

∣

∣

∣

∣

∣

r̂ rφ̂ ẑ
∂
∂r

∂
∂φ

∂
∂z

Ar rAφ Az

∣

∣

∣

∣

∣

∣

(1.44)

=

(

∂Az

r∂φ
− ∂Aφ

∂z

)

r̂ +

(

∂Ar

∂z
− ∂Az

∂r

)

φ̂+
1

r

[

∂(rAφ)

∂r
− ∂Ar

∂φ

]

ẑ.

In a spherical coordinate system (r, θ, φ), one has

∇V =
∂V

∂r
r̂ +

∂V

r∂θ
θ̂ +

1

r sin θ

∂V

∂φ
φ̂, (1.45)

∇ ·A =
1

r2
∂(r2Ar)

∂r
+

1

r sin θ

∂(Aθ sin θ)

∂θ
+

1

r sin θ

∂Aφ

∂φ
, (1.46)

∇×A =
1

r2 sin θ

∣

∣

∣

∣

∣

∣

r̂ rθ̂ r sin θφ̂
∂
∂r

∂
∂θ

∂
∂φ

Ar rAθ r sin θAφ

∣

∣

∣

∣

∣

∣

(1.47)

=
1

r sin θ

[

∂ (Aφ sin θ)

∂θ
− ∂Aθ

∂φ

]

r̂

+
1

r

[

1

sin θ

∂Ar

∂φ
− ∂(rAφ)

∂r

]

θ̂

+
1

r

[

∂(rAθ)

∂r
− ∂Ar

∂θ

]

φ̂.
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1.6 Vector identities

There are several proven formulas which one can readily use in vector analysis. Two most
used ones are related to double del operations.

The first identity says curl of gradient of any scalar field is zero. That is,

∇× (∇V ) ≡ 0. (1.48)

This formula can be proven through Stoke’s theorem. The relation leads to two somewhat
connected comments: (1) gradient of a scalar field is a curl-free vector field; (2) if a vector
field is curl-free, it can be written as a gradient of a scalar field.

The second identity says that divergence of curl of any vector field is zero. That is

∇ · (∇×A) ≡ 0. (1.49)

This identity can be proven by utilizing both divergence and Stoke’s theorems. It implies:
a divergenceless vector field can always be treated as curl of another vector field.

∗ ∗ ∗

1.7 Wave

Waves are often associated with period motions, not only in space but also in time. Here we
take one-dimensional mechanical wave as an example to illustrate how to mathematically
express a wave and also to introduce a few most important wave properties. The concepts
to be developed here are very similar to those associated with electromagnetic wave in
Chapter 6. Interference of mechanical waves will also be discussed here, which is helpful
for understanding similar phenomena for electromagnetic waves in Chapter 7.

1.7.1 Wave equation and general solution

x

y

Figure 1.5: A string is excited by periodic motion at its left end to sustain a rightward-
propagating wave. “SHM” stands for simple harmonic motion. [Picture taken from Uni-
versity Physics with Modern Physics, Global Edition, Pearson Education Limited, 2016].

One mechanical wave example is shown in Fig. 1.5. While the wave is moving in x
direction, each particle on the string is moving in the transverse y direction. Such wave
is called transverse wave. Longitudinal wave, such as sound wave, has particle-oscillation
direction along wave-propagation direction. Importantly, one should take note that a wave
does not really transport matter, but rather disturbance. Disturbance carries energy.
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Let’s say the string has mass per unit length µ and sustains a tension F . By setting
up an equation of motion for an infinitely small section of the string, one can derive the
following equation governing displacement y of the string (coordinate as shown in Fig. 1.5)

∂2y

∂t2
= v2

∂2y

∂x2
. (1.50)

Displacement y has dependence on both coordinate x and time t. v is a system-dependent
value as v =

√

F/µ, where F is tension in string and µ is string’s mass per unit length.
For a short while we will know physical meaning of v. Equation 1.50 is the classic wave
equation, whose general solution2 is

y(x, t) = F (−x+ vt) +G(x+ vt). (1.51)

F (−x + vt) and G(x + vt) are functions with arbitrary profiles, traveling respectively in
+x and −x directions with velocity v. Why is v wave velocity? One can easily verify
in this way: at t = 0, one has F (−x + vt) = F (−x); at a later time t = ∆t, one has
F (−x+ vt) = F (−x+ v∆t) = F [−(x− v∆t)]. The wave profile F hence has shifted along
positive x direction by ∆x = v∆t, therefore the velocity ∆x/∆t = v.

Most often, one is interested in only time-harmonic wave solutions with cos(ωt) de-
pendence, i.e. wave forms go back to their original after every period of T = 2π/ω. ω is
a positive number decided by excitation (Fig.1.5). Then, the general solution becomes

y(x, t) = A cos
[ω

v
(−x+ vt)

]

+B cos
[ω

v
(x+ vt)

]

. (1.52)

Coefficients A and B are amplitudes of the cosine waves traveling in +x and −x directions,
respectively. Depending on particular problem, A or B may be zero (like in Fig. 1.5,
B = 0).

Some definitions associated with such a harmonic wave are summarized as follows:

• Angular frequency: ω (unit radian/second)

• Frequency: f = 1/T (unit hertz)

• Phase: φ = ω
v
(−x+ vt) for +x-travelling term (unit radian)

• Amplitude: A (unit meter in this example)

• Phase velocity: v

• Period: T = 2π/ω (unit second)

• Wavelength: λ = vT (unit meter)

• Wavenumber: k = ω/v = 2π/λ (unit radian/meter)

The wavenumber k characterizes how much phase variation occurs within a unit prop-
agation length. It is also sometimes referred to as spatial frequency. Comparatively, ω,
denoting how many periods occur in a unit time, can be considered as temporal frequency.
As k is so often used, the general harmonic solution is usually expressed as

y(x, t) = A cos(−kx+ ωt) +B cos(kx+ ωt). (1.53)

2In some references, the general solution is expressed as y(x, t) = F (x− vt) +G(x+ vt). This is just a
matter of convention. Further elaboration will be found in the following ”Phasor” section.
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Example: Mechanical wave

A mechanical wave sustained on a x-directed string is expressed in terms of y dis-
placement as y(x, t) = 0.01 cos(−4.833x + 2070t) m, where x is position along the
string in meter and t is time in second. Find out wave amplitude, frequency, wave-
length, phase velocity, phase difference between x = 0 m and x = 325 cm at any
moment, phase difference between t = 1 ms and t = 5 ms at position x = 1 m.

Solution: Amplitude 0.01 m; frequency 330 Hz (E note); wavelength 1.3 m; phase
velocity 428 m/s; spatial phase difference π

2
rad; temporal phase difference 8.28 rad.

1.7.2 Interference

Two waves can be added together, creating locally stronger or weaker oscillation ampli-
tudes. This phenomenon is called interference. We continue to use 1D mechanical wave
as in Fig. 1.5 for an example. One can send in another −x-traveling wave by exciting the
right end point. For a fixed point on a string (i.e. fixed coordinate x), if oscillations of two
waves at that point are always in phase, we end up with a stronger oscillation there. This
is called constructive interference. If completely out of phase, we have weakened oscillation
at that point, which is called destructive interference. Interference effect is most drastic
when two waves have the same frequency (or the same wavelength).

Mathematically, two counter-traveling waves (with the same frequency and amplitude)
can be summed as

y(x, t) = A0 cos(−kx+ ωt) +A0 cos(kx+ ωt)

= 2A0 cos(kx) cos(ωt) (1.54)

The superimposed wave can be considered as a wave with space-dependent amplitude
2A0 cos(kx), oscillating in time with the same angular frequency ω. At certain x coor-
dinates, oscillation amplitude reaches 2A0, and at some other x coordinates, it can be
zero. The wave is no longer traveling: the strongly oscillating sections will always oscillate
strongly (high local power), and standing-still sections will never move (zero local power).
Such a wave is referred to as a standing wave.

One doesn’t always need two excitations to get interference and standing wave. When
a wave is reflected from an “obstacle”, the reflected wave naturally interfere with the
incoming wave, thereby forming a standing wave. For example, a guitar string is fixed
on both ends. Wave excited on a string is reflected by end points. Standing waves can
therefore form after interference (only at certain frequencies or tones). Figure 1.6 shows
precisely shapes of such standing-wave oscillations.

Figure 1.6: Long-time exposure of an oscillating string, with two end points almost fixed.
[Picture taken from University Physics with Modern Physics, Global Edition, 2016].

The above discussion was limited to 1D wave. One can extend the discussion to waves
in 2D or 3D space, which will be more mathematically involved. Physics however is the
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same - constructive and destructive interferences give rise to high and low energy-density
locations. Figure 1.7 shows water wave interference pattern excited by two oscillating
point sources, taken from one Youtube video.

Figure 1.7: Water wave interference pattern excited by two point sources (from Youtube).
For more elaborate demonstration, one may watch this particular video.

∗ ∗ ∗

1.8 Phasor

Use of “phasor” can greatly simplify calculation of physical problems involving time-
harmonic functions. The phasor expression for cosφ is a complex-valued function

exp(iφ) ≡ eiφ = cosφ+ i sinφ. (1.55)

One uses phasor form for mathematical operations and takes real part of the final result
as the physical solution. It can be easily verified that complex conjugate of a phasor
A = exp(iφ) is A∗ = exp(−iφ).

The corresponding phasor expression of the general solution in Eq. 1.53 is

y(x, t) = A exp[i(−kx+ ωt)] +B exp[i(kx+ ωt)]. (1.56)

It is actually more straightforward to obtain this phasor-form solution from the wave
equation 1.50, as compared to directly deriving the solution in Eq. 1.53. The reason is
that arithmetics with phasors (exponential functions) is rather simple: differentiation and
multiplication of phasors lead to also phasors. We show the process as follows.

Since we are interested in time-harmonic solutions, we know the phasor solutions will
have the form

y(x, t) = y(x) exp(iωt). (1.57)

Note here we use the convention of positive time dependence exp(iωt) instead of negative
time dependence exp(−iωt). By substituting Eq. 1.57 into Eq. 1.50 one has

− ω2y = v2
d2y

dx2
, → d2y

dx2
+ k2y = 0. (1.58)

Here y has only dependence on x. The general solution of this second-order differential
equation is

y(x) = A exp(−ikx) +B exp(ikx). (1.59)

Appending the time-harmonic dependence, one has

y(x, t) = [A exp(−ikx) +B exp(ikx)] exp(iωt)

= A exp(−ikx+ iωt) +B exp(ikx+ iωt)

= A exp[i(−kx+ ωt)] +B exp[i(kx+ ωt)]. (1.60)

Use of negative time dependence exp(−iωt) will lead to what is concerned in footnote 2.

https://www.youtube.com/watch?v=Iuv6hY6zsd0
https://www.youtube.com/watch?v=J_xd9hUZ2AY
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∗ ∗ ∗

1.9 Torque

Torque is a vector quantity that, when applied to an object, quantifies the object’s ten-
dency to rotate around a certain axis. Refer to Fig. 1.8. Torque is calculated as

τ = r× F. (1.61)

r is vector from the rotation axis to the point of force application, and F is the applied
force.

r F

Figure 1.8: Torque due to a force on an object.



Chapter 2

Electrostatics

The key elements in electrostatics are: charge, electric field, and electrostatic force. Charge
(scalar) produces electric field (vector); electric field exerts force, without physical contact,
on other charges. It is only through existence of electrostatic force we came to know there
is electric field. Electric potential (scalar), which is more widely known as voltage, is a
derived property based on electric field. Electric potential can facilitate easier calculation
of work done by an electric field on a moving charge. Existence of an electric field is
owing to aggregation of charges of the same polarity; close packing of the same type of
charges needs work input. Equivalently speaking, an electric field has an energy. Electric
field in a conducting medium induces charge flow, or current density (vector). In a metal
wire, charge flow has well-defined direction and a conserved amplitude. One therefore
cares about just the integrated amplitude on wire cross-section, which is current. For a
conducting object, given an applied voltage across two contacts, the ratio between voltage
and current has a fixed value, which we name as resistance. Circuit theory is rather a
subset of electrostatic theory applied to connected metal blocks, mostly wires. For non-
conducting medium, an electric field displaces charges in the medium, causing material
polarization (polarization field). The strength of the polarization field is related to a
material constant called permittivity, which is tabulated through experiments. In such
medium, one can sum up the applied electric field and the polarization field, and refer
to the sum as displacement field. Displacement field is auxiliary, but can simplify many
derivations. Two governing principles in electrostatics are: Gauss’s law and conservative
nature of electric field.

2.1 Electric charges

An electric charge can be positive or negative. The basic charges are that carried by an
electron (negative) and that by a proton (positive). Electric charges exist ubiquitously
but they can be hard to notice owing to perfect mixing of charges of two polarities. An
object becomes charged once there is an imbalance between positive and negative charges.
Two charged bodies exert to each other a pulling or pushing force, sometimes leading to a
bit more scary phenomena such as sparks and lightning. Historically, the attractive force
exhibited by amber for example was discovered 2000 years ago. Systematic studies came
during 1600s. In early days, people thought electric charges are “fluids” inside materials.
In year 1733, Frenchman “Charles François de Cisternay du Fay” concluded that a glass
rod rubbed with silk is left with one type of “fluid” (positive charge, as recognized later),
and amber rubbed with fur is left with “amber-type” fluid (negative charge).

The unit for charge is Coulomb (C). One electron (discovered in 1897) carries charge
−e, where e = 1.602176634× 10−19 C. One proton has charge e. Charges can’t be created
from nowhere, nor can they be annihilated — they are conserved.

15
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?

Charges of two polarities are naturally in perfect balance, i.e. neutralized. Therefore,
we don’t usually feel charges. What are typical methods to separate charges?

2.2 Coulomb’s law - field by point charge

It was known that an electric charge experiences a force when placed close to another
charge. “Action at a distance” is unexplainable without introduction of a new physical
quantity called “field” — it is not a substance but can carry and transfer power. The force
experienced by a test charge qt in such a field can be expressed as

F = qtE, (2.1)

where E is the invisible electric field (unit per definition: newton per coulomb or N/C;
SI unit: volt per meter or V/m). The linear dependence on qt is easily verifiable in
experiment. Around year 1785 Frenchman Charles-Augustin de Coulomb (1736-1806)
measured the force as a function of the test-charge position for a field created by a point
charge q. It turns out that, in a free-space (vacuum or air), electric field generated by a
point charge at origin O has the following form

E =
q

4πǫ0r2
r̂ or E =

qr

4πǫ0r3
, (unit: volt/meter, V/m) (2.2)

where q is charge amount, ǫ0 (8.854 × 10−12 F/m, or C
V·m) is permittivity of free space, r

is distance between observation point (or sometimes called field point, or probing point),
say P , to source at origin O, and r̂ is a unit vector of O → P vector r. Figure 2.1 shows
graphically vector electric field around a point charge. Note that field amplitude decays
radially at a rate of 1/r2. It is also common that one shows only field direction with
streamlines, as in Fig. 2.2. Field by a single point charge is the basis for calculating field
induced by many charges.

Figure 2.1: Electric field by a point charge. Left: positive charge. Right: negative charge.

Coulomb’s law (Eq. 2.1 in full) says that force on a test point charge q2 in field created
by point charge q1 is

F12 = q2E12 =
q1q2

4πǫ0r
2
12

r̂12. (2.3)

Here, E12 is electric field due to q1 examined at q2 position, r12 and r̂12 are length and
direction of the q1 → q2 vector. Two charges with the same polarity repel each other,
while two charges with opposite polarities attract each other.
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Figure 2.2: Electric field lines by a point charge.

2.3 Field by charge distribution

If there exist more than one point charge, the overall electric field is summation of fields
generated by individual point charges. This is basically called superposition principle.
Mathematically it is

E =
1

4πǫ0

n
∑

k=1

qk(r− rk)

|r− rk|3
. (2.4)

Here r and rk correspond to position vectors of the observation point and the kth point
charge, respectively.

If the source is a continuous distribution of charges, one resorts to integration instead
of summation. Charge density ρ should then be used rather than discrete charge values.
In the most general case, charge density is described as charge per unit volume (ρv). In
certain cases, charge is carried by a thin sheet or a wire, ρ can then be described as charge
per unit area (ρs) or length (ρl), respectively. Electric field is calculated as

E =
1

4πǫ0

∫

V

ρvrSP
r3SP

dv, or
1

4πǫ0

∫

S

ρsrSP
r3SP

ds, or
1

4πǫ0

∫

C

ρlrSP
r3SP

dl, (2.5)

where rSP is a vector pointing from source position to observation point.

2.4 Common field profiles

A single point charge is also referred to as electric monopole, whose electric field was
presented in Section 2.2. Another basic field profile is that induced by two charges of the
same quantity but with opposite polarities, i.e. an electric dipole. According Eq. 2.4 (i.e.
adding two monopole fields), one obtains dipole field as shown in Fig. 2.3. Notice that
the electric field lines originate from the positive charge and terminate at the negative
charge. This is a general property of electric field lines. Positive charges serve as sources
for electric field, whilst negative ones serve as sinks. “Sink” can in fact be interpreted as
source, except generating field lines with reversed directions.

An electric dipole possesses an electric dipole moment (vector), defined as

p = qd, (unit: C·m) (2.6)

where q is charge quantity carried by each point charge, and d is vector pointing from the
negative charge to the positive charge. Under an external E field, an electric dipole tends
to rotate with torque

τ = p×E. (2.7)

The stable position after rotation is that the dipole moment aligns with E.
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Figure 2.3: Electric field lines by an electric dipole.
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Figure 2.4: Left: geometric parameters for calculating electric field by a line charge. Right:
geometric parameters for calculating electric field by a plane charge.

Electric field by a line charge

Derive E field by an infinite line charge with charge density ρl (Fig. 2.4, left panel).

Solution: One can first argue from symmetry perspective to simply calculation. Refer
to the figure. First, cylindrical symmetry suggests that field vector at any point
should lie on rz plane defined by the point and the charged line. Second, at any
probing point, electric-field contributions from two semi-infinite line charges at two
sides will cancel out in their z components. Conclusion: electric field has only r
component. Contribution by an infinitesimal line section is

dE =
ρldz

4πǫ0r2SP
r̂SP.

From the symmetry argument, we count only the r-component

dEr = |dE| sin θ =
ρldz

4πǫ0r2SP
sin θ.

Take integration. One has

Er =

∫

C

dEr =

∫

C

ρldz

4πǫ0r2SP
sin θ =

ρl
4πǫ0

∫

C

1

r2SP
sin θdz

=
ρl

4πǫ0

∫ π

θ=0

sin2 θ

r2
sin θ

r

sin2 θ
dθ ←

[−z
r

= cot θ → dz =
r

sin2 θ
dθ

]

=
ρl

4πrǫ0

∫ π

θ=0

sin θdθ =
ρl

4πrǫ0
[− cos θ]π0 =

ρl
2πrǫ0

.
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For an infinite line charge, electric field amplitude decays radially at a rate of 1/r.

Electric field by a plane charge

Derive E field by an infinite plane charge with uniform surface charge density ρs
(Fig. 2.4, right panel).

Solution: The plane can be viewed of circular shape with infinite radius. A simple
symmetry consideration leads to that, at any probing point, electric field will be
along the direction normal to the charge plane. The plane-parallel field component
is canceled out owing to rotational symmetry. Refer to the figure. For space above
the charge plane, contribution by an infinitesimal area section at S is

dE =
ρsds

4πǫ0r
2
SP

r̂SP.

The z-component is

dEz = |dE| sin θ =
ρsds

4πǫ0r2SP
sin θ.

Integrating over the charge area (equivalently over angles θ and φ), one has

Ez =

∫

S

dEz =

∫

S

ρsds

4πǫ0r2SP
sin θ =

ρs
4πǫ0

∫

S

1

r2SP
sin θds

=
ρs

4πǫ0

∫

S

1

r2SP
sin θ(rdφdr) ←

[

r = h
cos θ

sin θ
; dr = −h dθ

sin2 θ

]

=
ρs

4πǫ0

∫ 0

θ=π

2

∫ 2π

φ=0

sin2 θ

h2
sin θ

[

−h2 cos θ
sin3 θ

dθdφ

]

=
ρs

4πǫ0

∫ 0

θ=π

2

∫ 2π

φ=0

(− cos θ)dφdθ =
ρs

4πǫ0

∫ 0

θ=π

2

(− cos θ)dθ

∫ 2π

φ=0

dφ

=
ρs

4πǫ0
[− sin θ]0π

2

[φ]2π0 =
ρs

4πǫ0
· 1 · 2π =

ρs
2ǫ0

.

Electric field is uniform in space! For space below the charge plane, one has the
same field amplitude but with direction reversed.

Alternative method:
One starts with alternative expression for field by a differential area element as

dE =
ρsds rSP
4πǫ0r3SP

=
ρsds(hẑ − rr̂)

4πǫ0(h2 + r2)
3

2

. ← [rSP = hẑ − rr̂]

From symmetry, one can just integrate z-component. Note also ds = rdrdφ Hence

Ez =

∫

S

dEz =

∫

S

ρshr

4πǫ0(h2 + r2)
3

2

dφ dr

=
ρsh

4πǫ0

∫ 2π

φ=0

dφ

∫ ∞

r=0

r

(h2 + r2)
3

2

dr

=
ρsh

4πǫ0
2π

∫ ∞

u=h2

1

u
3

2

du ←
[

let u = h2 + r2, hence rdr =
1

2
du

]

= −ρsh

2ǫ0

1

u
1

2

∣

∣

∣

∣

∞

u=h2

=
ρs
2ǫ0

.
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Electric field by two parallel plane charges

Derive E field by two infinite parallel planes, one with a positive surface charge
density ρs and the other −ρs (an ideal two-plate capacitor).

Solution: With result in the previous example in mind, the positively charged plane
has uniform E lines directed outwards, and the negatively charged plane has uniform
E lines directed inwards. Superposition of the two fields results in cancellation of
fields at spaces outside the two parallel plates and doubling of fields in space enclosed
by the two plates. If the bottom plate is positively charged, one has field between
two plates: E = ρs

ǫ0
ẑ.

2.5 Gauss’s law

Carl Friedrich Gauss (1777-1855), a German mathematician, formulated Gauss’s law in
1813. It states that the total electric flux out of a volume is proportional to total charge
Q contained in the volume. It is straightforwardly expressed in integral form as

∮

S

E · ds = Q

ǫ0
. (Gauss’s law, electric, free space) (2.8)

Here the integral takes place on surface enclosing the volume. Note that the integration
surface is a fictitious surface, not necessarily a physical one. The integration surface is
referred to as Gaussian surface.

The LHS of Eq. 2.8 can be converted into a volume integral by using divergence
theorem, as

∮

S
E · ds =

∫

V
∇ · Edv. The RHS of Eq. 2.8 can also be written in volume

integral as Q
ǫ0

=
∫

V
ρv
ǫ0
dv. By equating the kernels, we have Gauss’s law in differential form

∇ · E =
ρv
ǫ0

. (2.9)

Gauss’s law connects electric field and charges seamlessly through very compact for-
mulation. It serves as one fundamental equation in the later on Maxwell’s equations. The
integral form, Eq. 2.8 can be used to gain knowledge of electric field around a charge dis-
tribution; the differential form, Eq. 2.9 can be used to derive charge distribution through
a given electric field. In the previous section, Coulomb’s law (Eq. 2.5) are used for cal-
culating fields based on an electric charge distribution, which is often laborious. When
symmetry exists for a charge distribution, one can utilize the integral form of Guass’s law
Eq. 2.8 to quickly obtain corresponding electric field distributions.

Electric field by point charge, through Gauss’s law

Derive electric field around a point charge q.

Solution: One can use a spherical Gaussian surface whose center coincides with the
charge point. Through symmetry argument, one knows electric field on any such
spherical surface should have the same amplitude, and directs along r direction. For
a spherical Gaussian surface with a radius R, from Gauss’s law, one has

∮

S

E · ds =
∮

S

Erds = Er · (4πr2) =
q

ǫ0
.
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It follows that Er =
q

4πǫ0r2
, i.e. Eq. 2.2 re-derived.

Electric field by line charge, through Guass’s law

Derive E field of an infinitely long wire with line charge density ρl.

Solution: See lecture slides.

Electric field by plane charge, through Guass’s law

Derive E field of an infinitely plane charge with surface charge density ρs.

Solution: See lecture slides.

2.6 Electric potential

In gravitation, an object upheld in air tends to drop — the object has a gravitational
potential energy. Likewise, a charge placed in an electric field tends to move — the charge
has an electric potential energy. We define electric potential energy U of a charge q as
U = qV , where V is called electric potential (unit: volt, with symbol V ).

When a test charge q moves without acceleration from P1 to P2 in field E, work done
by an external force against electric force shall be equal to change of potential energy, i.e.

−
∫ P2

P1

qE · dl = U2 − U1 = (V2 − V1)q. (2.10)

This leads to

V2 − V1 = −
∫ P2

P1

E · dl. (unit: volt, V) (2.11)

This difference in electric potential between two points is what we commonly know as
voltage. Usually, we use a point at infinite away as a common reference (V∞ = 0 V ) such
that one can calculate absolute potential value at a point. Setting P1 = ∞ in Eq. 2.11,
one has potential at P2 (now referred to as a general point P ) as

V = −
∫ P

∞
E · dl. (2.12)

It follows that electric potential at distance R from a point charge is

V = −
∫ R

∞
E · (drr̂) = −

∫ R

∞

q

4πǫ0r2
r̂ · (drr̂) = q

4πǫ0R
. (2.13)

By superposition principle, one can calculate electric potential owing to many point charges
as

V =
1

4πǫ0

n
∑

k=1

qk
|r− rk|

. (2.14)

Here r and rk correspond to position vectors of the observation point and the kth point
charge, respectively. If the charges are a continuous volume distribution, then one has

V =
1

4πǫ0

∫

C

ρl
rSP

dl, or
1

4πǫ0

∫

S

ρs
rSP

ds, or
1

4πǫ0

∫

V

ρv
rSP

dv. (2.15)
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rSP is length from source element to observation point.
Static electric field is conservative. It means if a test charge moves in an electric field

along a closed loop, the work done by the field on the charge is zero. This “conservative”
property is mathematically written as

∮

C

E · dl = 0. (static E is conservative) (2.16)

By applying Stoke’s theorem, one can convert Eq. 2.16 into a differential form

∇×E = 0. (2.17)

A conservative field has a direct implication on work done on a test charge q: when the
charge moves from point P1 to another point P2, the work done by the field is constant
regarless of the path undertaken by the charge. We have experienced the same for a mass
body in gravitational field. By recalling the vector identity Eq. 1.48, Eq. 2.17 suggests
that E can be expressed as gradient of a scalar field, which is actually electric potential
V discussed above. We therefore have

E = −∇V. (2.18)

A negative sign is added for conforming sign convention – electric field points from high
to low potential. A direct consequence is that equipotential surfaces are always normal to
electric field lines. Equipotential surfaces together with electric field lines associated with
a point charge as well as those for a two-parallel-plate system are shown in Fig. 2.5.

+

- s

s

Figure 2.5: Left: Equipotential surfaces (red dashed lines) of a point charge. Right:
Equipotential surfaces of parallel planes with opposite charges. Black arrows: E field.

In general, knowledge about potential can greatly simplify calculation of work done by
electric field for a charge moving in an electric field. Once V field is defined, a charge q
placed in an electric field has a potential energy U = qV . When the charge slowly moves
from point P1 to P2. Change of potential energy is ∆U = U2 − U1 = q(V2 − V1) = q∆V .
The work done by the field on the charge, and that by the external force on the charge,
are respectively

WE = −∆U = −q∆V, and WF = ∆U = q∆V. (2.19)

Furthermore, potential difference or voltage, which is readily measurable, becomes an
important parameter in electric-circuit theory.
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?

In electrostatics, a conducting body is always at the same potential. Why?

2.7 Behavior of materials in electric field, D field

So far, our primary focus has been on electric field in free space. When an external
electric field is imposed on materials, charges within the materials will react and settle
into appropriate states, inducing a secondary field. This process will induce change of field
both inside and outside material bodies.

2.7.1 Conductors

A special class of materials are electric conductors that have charges freely running in their
bodies. Let’s focus on an important category of such materials called metals, where free
electrons are charge carriers. In normal situation, free electrons in a metal are running
around randomly, but in average they appear evenly distributed in the body and balance
out the positive charges (nuclei). That is, charge density everywhere is ρ = 0. If a metal
is placed in an electric field, free electrons (need not to be all of them) will be dragged
towards one side and leave the other side positively charged. The excess surface charges
(ρs) on two sides build up an internal electric field that is opposite to the external field.
This process continues until the two fields cancel each other. Therefore, under electrostatic
scenario, one has zero net electric field and zero charge density inside a metal body, i.e.

E = 0, ρ = 0. (inside metal) (2.20)

If electric field is zero everywhere within metal, a metal body is at the same electric
potential.

Let’s further focus on the excessive charges on metal surface. The excessive surface
charges will not be stable if electric field at the surface (inside metal) has a tangential
component. Therefore, in a static scenario, there is no tangential electric field just inside
a metal surface. How about just outside? This can be found out by carrying out a line
integral of electric field along a fictitious rectangular loop of negligible height h sitting
on a metal surface. The schematic is shown in Fig. 2.6 (left panel). The fictitious loop
can always be chosen to have a small enough width w to ensure that field will not vary
much over the integration path. Static E is conservative; therefore

∮

C
E · dl = 0. Line

integral over vertical line sectors has no net contribution; line integral over the horizontal
line sector inside metal is zero owing to absence of field there; hence, we conclude that
just outside a metal surface

Et = 0. (outside metal) (2.21)

This is true even when there exist induced charges at metal surface.
The surface-normal component can be obtained by setting up a fictitious closed cylin-

drical surface with an infinitesimal height across the metal boundary. See Fig. 2.6 (right
panel). According to Gauss’s law (Eq. 2.8), surface integral over the closed surface shall
be equal to the total charge enclosed by the cylinder. Contribution from the side and
the bottom (in metal) can be neglected. One is left with only surface integral on the top
surface (in free space). The fictitious cylinder can be chosen small enough such that both
field and surface charge do not vary much over the cylinder’s cross-section. Therefore, one
has

∫

S

Ends =
1

ǫ0

∫

S

ρsds. (2.22)
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Figure 2.6: Left: Line integral of E along a fictitious loop on a material interface, to find
Et. Right: Area integral of E on a fictitious closed cylindrical surface, to find En.

Hence, the surface-normal component of electric field just outside a metal surface is

En =
ρs
ǫ0
. (outside metal) (2.23)

We began our discussion with a neutral metal body placed in an external E field. The
above analyses in fact are still valid for metals loaded with excessive charges. Therefore,
the above conclusions can help to understand the electric field of a charged metal object.

Electric field by charged metal sphere

A solid metal sphere with radius Ro carries a charge Q. Derive E.

Solution: The excessive charge carriers tend to push themselves furthest apart, finally
settling evenly on the sphere’s surface. From Eqs. 2.21 and 2.23, we know there exists
only radially directed E field. As a matter of fact, E outside the sphere is identical
to that generated by a point source Q placed at the sphere’s center. Therefore in
the sphere’s coordinate, E = Q

4πǫ0R2 r̂ for R > Ro and E = 0 inside the sphere.

Electric field by charged hollow metal sphere

A hollow metal sphere with inner and outer radii Ri and Ro carries a charge Q.
Derive E.

Solution: In the sphere’s coordinate, E = Q
4πǫ0R2 r̂ for R > Ro, and E = 0 for

Ri < R < Ro as well as R < Ri.

Neutral hollow metal sphere in electric field

A hollow metal sphere with inner and outer radii Ri and Ro carrying no excessive
charge is placed in a uniform field E = E0ẑ. Derive E inside the hollow region.

Solution: Zero.

Charge balance between two metal spheres

A solid metal sphere of radius 4 cm is loaded with 1 nC charge. Another solid
metal sphere of radius 1 cm is placed 1 m away. Two spheres are connected with
a straight, fine metal wire of negligible radius (which holds no charge). Notice that
the distance between two spheres is relatively large compared to the sphere sizes.
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One can assume that charges on each sphere is uniformly distributed. Calculate
amount of charge on each sphere at equilibrium.

Solution: Refer to Problem 1 in exam 2019.

2.7.2 Dielectrics

Dielectric materials, such as oxides and polymers etc., have no freely moving charges.
However, under an external electric field, their bound charges can be displaced slightly,
creating dipoles with dipole moments more or less aligned with the applied field direction.
One simple example is that electron cloud of an atom can be pulled aside against its
immobile nuclei, resulting in a dipole. In addition, many dielectrics have polar molecules
(e.g. H2O) due to asymmetric placement of constituent atoms. Each molecule is in fact
a dipole, but no net electric field is generated owing to random orientation of molecules.
Under excitation by an external field, the dipoles will undergo rotation and therefore
become aligned with the field. A dielectric material becomes polarized by an external
electric field.

Polarized atoms or molecules have their own electric field (Fig. 2.3), leading to a change
of total electric field in dielectric media. The polarization-induced field is due to a spatial
distribution of dipoles, referred to as polarization field P. P at certain position is defined
as vector sum of dipole moments in a unit volume at that position. Instead of calculating
electric field, one introduces an auxiliary (not physical) quantity called displacement field
D which lumps both the external electric field and the polarization field, as

D = ǫ0E+P. (unit: coulomb per square meter, C/m2) (2.24)

In this way one manages (two critical steps skipped) to keep the form of Gauss’s law intact
as

∇ ·D = ρ. (2.25)

This above can be considered as Gauss’s law in a more general form, valid for both dielectric
media and free space (by setting P = 0). Displacement field is auxiliary in the sense that
it is, unlike electric field, not a measurable quantity. In integral form, the generalized
Gauss’s law reads

∮

S

D · ds = Q. (Gauss’s law, electric) (2.26)

Instead of mentioning P for describing a material’s response, one can go a step further
by noting that P for most dielectrics is spatially uniform and proportional to external field
E, as

P = ǫ0χeE. (2.27)

Here χe is called electric susceptibility. Therefore, instead of Eq. 2.24, one has

D = ǫ0(1 + χe)E = ǫ0ǫrE = ǫE. (2.28)

Here, a new material parameter called relative permittivity ǫr = 1+χe is defined to describe
material response. Sometimes, one describes a material’s response by just permittivity
ǫ = ǫ0ǫr. Relative permittivty (like electric susceptibility) has no unit, but ǫ0 and total
permittivity ǫ have (F/m).
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2.7.3 Dielectric strength

A dielectric material can not stand for any value of electric field. When external field is
high enough, a dielectric medium can be damaged (bound charges are completely torn
apart). This process is usually called dielectric breakdown or ionization. The critical
electric field that a dielectric can withstand is called dielectric strength of the medium.
For air, it is 3 kV/mm, which decreases somewhat when humidity arises.

2.8 Boundary conditions

In many situation, one needs to know boundary conditions regarding how electric field
crosses a material interface in order to solve field over a large domain. This can be achieved
through utilizing conservative property of E field as well as the generalized Gauss’s law.

Refer to the left panel in Fig. 2.6. The upper half plane can be replaced with one
dielectric medium with permittivity ǫ1 while the medium below has ǫ2. We similarly make
an integral of electric field around the line loop across the interface, which should be zero
according to conservative nature of E field. Integrations over the vertical line sections are
trivial and canceling each other. The remaining integration over the horizontal sections
are: Et1w −Et2w = 0. Hence, boundary condition for tangential field component is

Et1 = Et2. (2.29)

Refer to the right panel in Fig. 2.6; the upper free space can be treated as a dielectric
medium with permittivity ǫ1 while the medium below has ǫ2. Gauss’s law says that surface
integral of D field over the cylindrical surface should be equal to free charges bounded by
the surface. Surface integral over the vertical surface is trivial and tends to cancel itself.
The remaining integration over the top and bottom surfaces are: Dn1S − Dn2S = ρsS.
Hence, boundary condition for normal component of displacement field is

Dn1 −Dn2 = ρs. (2.30)

In case that a surface charge is absent, one has

Dn1 −Dn2 = 0, or ǫ1En1 = ǫ2En2. (2.31)

2.9 Capacitor

We know that a single conductor body is at the same potential. From Eq. 2.13, electric
potential is proportional to the amount of charges on the body. We use capacitance to
denote the ratio between the amount of charges on a conductor body and its electric
potential. That is

C =
Q

V
. (2.32)

For capacitance of a single object, V is object’s potential with respect to potential at
infinity. Capacitance has unit coulomb per volt (C/V), or equivalently farad (F).

The term “capacitor” is used specially for designating an important device consisting
two charged planar metal plates placed relatively close to each other. The classic config-
uration is two parallel metal plates: one charged with Q and the other −Q. Capacitance
of the double-plate structure is defined similarly with Eq. 2.32, except that V is potential
difference between the two plates, and Q is magnitude of charge on one plate.

For a parallel-plate capacitor with plate area S, separation d, and dielectric filling ǫ,
one can further deduce the relation between Q and V through calculating electric field
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between two plates. Assume the charges are uniformly distributed with surface density
ρs. Within the plates, the electric field is uniform, everywhere-normal to the plates, with
value (Section 2.4, third example)

E =
ρs
ǫ

=
Q

ǫS
. (2.33)

The potential difference, or voltage, between the two plates is

V = Ed =
Qd

ǫS
. (2.34)

Therefore, capacitance of a two-plate capacitor according to Eq. 2.32 is

C =
ǫS

d
. (parallel-plate) (2.35)

2.10 Electrostatic energy

A static electric field is generated by an aggregate of charges of the same polarity. The
field contains energy. One way to understand it is by imagining that each charge in the
aggregate has to be moved from infinity to its place against electric force due to other
charges in the aggregate. The total energy contained by the system is the total external
work done in moving charges to their respective places. It turns out that the energy can
be directly related to electric field intensity, as

We =
1

2

∫

V

E ·Ddv =
1

2

∫

V

ǫE2dv, (2.36)

which is valid for linear dielectric materials.
A parallel-plate capacitor has approximately uniform electric field, and its stored elec-

trostatic energy is then

We =
1

2

∫

V

ǫ

(

V

d

)2

dv =
1

2
ǫ

(

V

d

)2

(Sd) =
1

2
CV 2. (2.37)

Summary of equations

Two fundamental equations governing electrostatics are

∮

S

D · ds = Q, or ∇ ·D = ρ; (Gauss′s law, electric)

∮

C

E · dl = 0, or ∇×E = 0. (static E is conservative)

Exercises

1. A point charge q = 1 nC is placed at origin in free space. Calculate its electric
field at point with Cartesian coordinates x = 10 cm, y = 10 cm, and z = 0 cm, or
(10, 10, 0) cm in short. Give both magnitude and direction.
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2. A point charge q = −1 nC is located at Cartesian coordinates (0, 2, 0) cm in free
space. Calculate its electric field at (10, 10,−1) cm. Give both magnitude and
direction.

3. A planar line loop of square shape with side length a = 10 cm is placed on xy plane
in free space, centered at origin. The line loop carries a total charge of Q = 1 nC,
which is uniformly distributed along the loop. Calculate electric field by the charged
line loop at the point with Cartesian coordinates (0, 0, 10) cm.

4. A point charge q1 = 1 nC is placed at origin in free space. Another point charge
q2 = 0.1 nC is at a point with Cartesian coordinates (10, 10, 0) cm. Calculate electric
force experienced by q2 due to electric field of q1. Calculate also work done by electric
field of q1 on q2 when q2 moves from (10, 10, 0) to (20, 20, 0) cm in a straight line.

5. A hollow spherical conductor is centered at origin in free space. It has inner and
outer radii at r1 = 10 cm and r2 = 20 cm, respectively, and carries an excessive
charge of Q = 1 nC. Use Gauss’s law to calculate electric field at the point with
Cartesian coordinates (40, 40, 0) cm. How about electric field at (5, 5, 0) cm (and by
which principle)?

6. Same as the previous problem. Calculate electric potential at (40, 40, 0), (15, 15, 0),
and (5, 5, 0) cm, respectively.

7. A static electric field has the following spatial dependence in Cartesian coordinates:
E = 2yx̂ + 2xŷ + 0ẑ V/m. SI units are assumed. Calculate the electric poten-
tial difference between the point at (4, 6, 0) m and origin. (Try to solve with two
approaches.)

8. A uniformly distributed circular line charge with a radius R = 10 cm is placed on
xy plane in free space, centered at origin. Line charge density is ρl = 0.1 µC/cm.
Another point charge q = −2 nC moves slowly by an external force from point P1

with Cartesian coordinates (0, 0, 10) cm to point P2 at (0, 0, 5) cm. Calculate work
done by the external force on q.

9. A hollow dielectric sphere is centered at origin in free space. It has inner and outer
radii at r1 = 10 cm and r2 = 20 cm, respectively. The dielectric material has a
relative permittivity of ǫr = 10. If a point charge of Q = 1 nC is placed at the center
of the hollow sphere, calculate electric fields at points with Cartesian coordinates
(40, 40, 0) cm, (15, 15, 0) cm, and (5, 5, 0) cm, respectively.

10. Consider a charge-free interface between air (approximated by vacuum) and a dielec-
tric medium with relative permittivity ǫr = 2.5. The interface plane can be treated
as a planar surface in xy plane placed at z = 0. The electric field in air at a point
just outside, or with Cartesian coordinates (0, 0, 0+), is E1 = 10x̂ − 8ŷ + 6ẑ V/m.
Calculate electric field just inside the dielectric medium, at (0, 0, 0−).

11. A coaxial cable has a center metal wire with radius r1 = 0.5 mm and a thin cylindrical
metallic shell with radius r = 4 mm. Space in between the two metal layers is filled
with a dielectric material with relative permittivity ǫr = 8. Calculate capacitance
per meter length of the coaxial cable.



Chapter 3

Electric Circuit

We have so far dealt with static electric charges and their fields. One of the greatest
achievements in electrical engineering is creation of electric circuits, through which elec-
tric charges are set into a stable motion by an applied voltage (electric field). In the
simplest but not trivial case, the work done by an electric field on charges becomes kinetic
energy of charge carriers (i.e. electrons), which through collision with lattice is then con-
verted to heat and in turn thermal radiation. This was how we had incandescent electric
lighting for the whole twentieth century. Although in an electric circuit, charges are no
longer static, the formulas obtained in “electrostatics” are still valid as long as physical
quantities involved do not vary sharply in time. We show that the basic concepts and for-
mulas encountered in circuit theory can be derived from our knowledge on electrostatics
in combination with classical dynamics.

The most primitive parameters in an electric circuit are voltage V and current I. V
is due to existence of electric field. To understand current I, one has first to know what
is current density J. It follows that, resistence R, which is merely ratio V/I, can be
quantified for well-defined conductor geometries. Circuit laws, including Joule’s law and
Kirchhoff’s laws for both current and voltage, can be clarified from basic principles in
classical dynamics and electrostatics.

3.1 Electric current density and current

Free charge carriers in a conducting medium tend to be set into motion when there exists
an electric field1. If it is a uniform medium excited by a uniform field, all charges will
settle macroscopically into a constant velocity called drift velocity2 v; in a more general
scenario, charge motions can be space-dependent. A general charge flow can be described
by a vector field called electric current density J. At a certain spatial point, J has the
direction of applied electric field, and its magnitude corresponds to the amount of electric
charges passing through a unit cross-sectional area per unit time. While a conducting
medium can consist multiple types of charge carriers (e.g. in plasma), here we focus on
metals which have just free electrons responsible for charge flow. Under an electric field,
free electrons in a metal move along (actually opposite to) the field direction, resulting in
an electric current density J. If volume density of free electrons is N , and each electron
carries charge q and has an average speed v, J has magnitude

J = Nqv. (3.1)

1Random thermal motion will not lead to a macroscopic charge flow.
2We use v to denote speed. Note that v is sometimes used to represent voltage. Also, do not mix with

dv in volume integration.
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N and v depend on exact metal type; v is also, of course, decided by excitation field. The
direction of J is decided by v direction, modified by sign of q. Usually, for a certain metal
in a steady state, v is proportional to imposed electric field magnitude; therefore, J is
proportional to applied electric field E, i.e.

J = σE. (3.2)

Here, σ is called conductivity, which summarizes material properties including N and
lattice size, etc. Value of σ for common conductors are well documented in handbooks.

The above equations are valid at any volume position. An electric circuit, however,
restricts E and J into singly-directed quantities, i.e. along metal wire. Therefore, one
can discard their vector nature and care only about their magnitudes. Charge distribu-
tion across a thin metal wire’s cross-section is unimportant, whilst how fast charges flow
through wire is. Hence, one has definition of electric current as

I =
dQ

dt
, (3.3)

where Q is amount of charge passing through a wire’s cross-section.
Generally, for any virtual surface S (with differential element ds) in a conducting

medium where a J field exists, one calculates current passing through the surface as

I =

∫

S

J · ds. (3.4)

3.2 Ohm’s law, resistance

If a voltage V is applied on two ends of a metal wire with cross-sectional area S, one has
an electric field E and thereof current J in the wire. Scalar quantities are used since their
directions are unambiguously defined as the wire direction. In electric circuit, current is
I = JS. Equation 3.2 can be written as

I

S
= σ

V

l
. (3.5)

One has voltage-current relationship

V =

(

l

σS

)

I, (3.6)

which is the classic Ohm’s law in circuit theory

V = RI. (3.7)

Resistance R is calculated from the conductor’s material and geometric parameters as

R =
l

σS
. (uniform conductor) (3.8)

3.3 Joule’s law

Here we show that under an applied voltage V , electric power dissipated in a piece of
uniform metal wire (length l, cross-section S, resistance R) is P = V I = I2R, i.e. Joule’s
law.

While drifting due to applied electric field, free electrons will experience collisions
with stationary ions. After collision, the free electrons will pick up some random moving
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directions — drift velocity is temporarily reset to zero, and then increases quadratically
with respect to traveling distance until next collision. To simplify analysis, we ignore
the reset-acceleration processes, and assume the electrons immediately gain a constant
average drift velocity v after each collision. v is defined as the ratio between average
collision distance δl and average collision time δt, or v = δl/δt. In this picture, kinetic
energy is lost suddenly and then re-picked up immediately on each collision. Note that
random electron motion due to thermal drift can be ignored. Therefore, charge velocity
and hence current density are in the same direction as the applied electric field. Hence,
scalar quantities can be used in the following analysis.

Energy dissipated in each collision for charge q is equal to work done by the electric
field on the charge as

δw = (qE) δl, (3.9)

corresponding to a power

p =
δw

δt
= qEv. (3.10)

For a small volume dv with number of charges per unit volume as N , the power dissipated
is

dP = NqEv dv. (3.11)

Since J = Nqv, the above equation becomes

dP = EJ dv. (3.12)

The total power dissipated in a volume is

P =

∫

V

EJ dv. (3.13)

For an elongated conductor with cross-sectional area S and length l,

P =

∫

V

EJ dv =

∫

C

E dl

∫

S

J ds = V I = I2R. (3.14)

3.4 Kirchhoff’s current law

In a general 3D volume, J is a position-dependent vector field depicting flow of charges.
The principle of conservation of charges dictates that, during any time interval, charges
flowing out of a volume is equal to change of charges within the volume. Mathematically,
the equation reads

∮

S

J · ds = −dQ

dt
. (3.15)

The LHS can be converted to a volume integral through divergence theorem, and the RHT
side is in fact also a volume integral in terms of charge density ρ. Therefore

∫

V

∇ · J dv = −
∫

V

∂ρ

∂t
dv. (3.16)

By equating the kernels, we have equation of continuity

∇ · J = −∂ρ

∂t
. (3.17)
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In a steady state, Q and ρ do not vary with time. Hence Eqs. 3.17 and 3.15 become
respectively

∇ · J = 0, and

∮

S

J · ds = 0. (3.18)

The latter in Eq. 3.18 is in fact Kirchhoff’s current law in circuit theory, which says sum
of currents into (or out of) a node is zero. That is

∑

j

Ij = 0. (3.19)

3.5 Kirchhoff’s voltage law

Kirchhoff’s voltage law states that sum of voltages around a closed circuit is equal to zero.
It is a direct result from conservation nature of (static) electric field, and is mathematically
equivalent to Eq. 2.16. Kirchhoff’s voltage law is expressed as

∑

j

Vj = 0. (3.20)

3.6 Circuit with capacitor

3.6.1 DC bias

Refer to the simple electric circuit with a resistor and capacitor connected in series in
Fig. 3.1. Such a circuit is referred to as a RC circuit. We would like to find out current I
running in the circuit as a function of time, after the circuit is connected. Under DC bias,
based on Kirchhoff’s voltage law, one has

RI + Vc = V, (3.21)

or

RI +
Q

C
= V. (3.22)

Take derivative against time on both sides. One has

R
dI

dt
+

1

C

dQ

dt
=

dV

dt
. (3.23)

V

R

C

Time

I

Figure 3.1: Left: Simple RC electric circuit. Right: Current as a function of time.
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For DC, dV/dt = 0. And time variation of charge dQ/dt is simply current I. Hence,

I =
dQ

dt
. (3.24)

Equation 3.23 becomes
dI

dt
+

1

RC
I = 0. (3.25)

This first-order differential equation can be solved as

I(t) =
V

R
exp

(

− t

RC

)

. (3.26)

As shown in the right panel in Fig. 3.1, current drops from V/R to 0, with a time constant
of τ0 = RC of the RC-circuit. Charge and voltage on the capacitor are

Q(t) = V C

[

1− exp

(

− t

τ0

)]

, (3.27)

Vc(t) = V

[

1− exp

(

− t

τ0

)]

. (3.28)

3.6.2 AC bias

If source voltage has sinusoidal time dependence, one can resort to frequency-domain
analysis through the so-called phasor expressions. A harmonic source voltage and current
are written as complex phasors as

V = V0 exp(iωt), and I = I0 exp(iωt), (3.29)

where ω is angular frequency and i is the imaginary unit (i2 = −1). From Eq. 3.23, one
obtains

R
dI

dt
+

1

C
I =

dV

dt
(3.30)

Substituting Eq. 3.29, one has

R(iω)I0 +
1

C
I0 = iωV0. (3.31)

A common exp(iωt) factor has been eliminated for all terms. One has straightforwardly
relation between V0 and I0

V0 =

(

R+
1

iωC

)

I0. (3.32)

We define impedance of a capacitor as

Zc =
1

iωC
, (3.33)

which has the same unit as resistance but with a purely imaginary value.
Voltage across the capacitor is

Vc = V −RI = V0 exp(iωt)

(

1− iωRC

1 + iωRC

)

. (3.34)

Voltage on the capacitor goes to zero as ω →∞. The circuit is a low-pass filter.
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3.6.3 Cascaded capacitors

Cascaded capacitors can be treated effectively as a single capacitor. One uses individ-
ual impedances, as if they are resistances for resistors, to calculate the overall effective
impedance. In the case of serial connection, the total impedance is calculated as

Z = Z1 + Z2 + ...+ Zn. (3.35)

If all capacitors are of parallel-plate type with the same geometry, Z corresponds to
impedance of an effective capacitor with plate distance increased by n times, compared to
an individual capacitor in the series. Total capacitance is reduced by n times.

In the case of parallel connection, one has

1

Z
=

1

Z1
+

1

Z2
+ ...+

1

Zn
. (3.36)

Again, if all capacitors are of parallel-plate type with the same geometry, the overall
effective capacitor has a plate area n times as large as that of an individual capacitor.
Total capacitance is increased by n times.

Exercises

1. A planar sheet of infinite size is placed on xy plane. The sheet carries a uniform
charge density ρs = 1 nC/cm2. If the sheet moves towards +x direction with a
speed of 10 m/s. Calculate effective surface current density on the sheet from a
standing-still observer.

2. A circular line loop carries a uniform charge of 20 µC. The loop has radius 15 cm and
is placed on xy plane with its center at origin. If the loop is set to rotation around
z axis with a speed of 50 rounds per second (clockwise as observed from z = +∞),
calculate the effective current in the loop for a stationary observer.

3. A point charge of 20 µC is placed at 15 cm from origin. If the point charge is
set to rotation around z axis with a speed of 50 rounds per second (clockwise as
observed from z = +∞), calculate the effective current due to the moving charge for
a stationary observer.



Chapter 4

Magnetostatics

When we talk about “action at a distance”, magnets probably leave us a deeper impression.
Brio’s toy trains never fail to amuse toddlers, simply because (I guess) the force they feel
has a different character than gravity. For thousands of years, people thought this magic
force was only associated with certain stones or metals until Hans Christian Ørsted1

observed in 1820 about magnetic field around a current-carrying metal wire. Since then,
we came to know that magnetism is caused by charges in motion, or electric current.

4.1 Magnetic field and force

4.1.1 Magnetic field

Magnetic field, denoted by symbol B, has unit of tesla (T). A magnetic field is generated
by moving charges, and the field exerts force on other moving charges. In principle, one can
formulate magnetic field and magnetic force using charges and their velocities. However,
it is sometimes convenient to use the high-level, more-measurable quantity — current I.
This is especially true since charge flow is most often guided in thin metal wires, not
unbounded in 3D space. A static magnetic field is generated by a constant current.

The shape of magnetic field generated by a small straight section of current I placed
at origin O is depicted by the Biot-Savart’s law2, which is equivalent to Coulomb’s law in
electrostatics. It says

dB =
µ0I

4π

dl× r̂

r2
, or =

µ0I

4π

dl× r

r3
. (unit: tesla, T) (4.1)

µ0 is a fundamental constant called free-space permeability (µ0 = 4π×10−7 henry/meter,
H/m). The current source has magnitude I and direction encoded in dl. r is position
vector with length r and unit vector direction r̂; if the current section is not placed at
origin, one should use displacement vector rSP, vector from source point S to observation
point P . Note that current always goes in a closed loop; therefore, the total magnetic
field at a point usually requires one carries out a closed-loop line integral of the expression
above.

Question: According to Eq. 4.1, one can picture magnetic field generated by a small line
section of current I dl. Describe main properties of the field.

1Hans Christian Ørsted (1777-1851): Danish physicist who discovered that there exists circulating
magnetic field around a current-carrying metal wire.

2Formulated by Frenchmen Jean-Baptiste Biot and Félix Savart in 1820.

35



CHAPTER 4. MAGNETOSTATICS 36

O

S

rSP

z rSP

P
r

I

z

I

B

Figure 4.1: Left: Schematic for calculation of magnetic field produced by an infinite line
current. Right: B field generated (view from +z side).

Magnetic field by line current

Based on Biot-Savart’s law, derive magnetic field generated by a straight, infinitely
long metal wire carrying a current I (Fig. 4.1, left panel).

Solution: Use cylindrical coordinate, and place the wire on the z axis with current
running in +z direction. Based on symmetry, we can argue that the field generated
will be independent of azimuthal angle φ, or the z coordinate. Therefore, we only
pay attention to the field’s dependence on r coordinate. We assume the observation
point P is leveled at z = 0.
Field at P by an elemental current section at S is

dB =
µ0Idz

4π

ẑ × r̂SP

r2SP
=

µ0Idz

4π

1

r2SP
sin θφ̂.

Total field at P is

B =

∫ ∞

z=−∞
dB =

∫

z

µ0Idz

4π

1

r2SP
sin θφ̂ =

µ0I

4π
φ̂

∫

z

1

r2SP
sin θdz

=
µ0I

4π
φ̂

∫

θ

sin2 θ

r2
sin θ

r

sin2 θ
dθ ←

[−z
r

= cot θ → dz =
r

sin2 θ
dθ

]

=
µ0I

4π
φ̂

∫

θ

sin θ

r
dθ =

µ0I

4πr
φ̂[− cos θ]π0 =

µ0I

2πr
φ̂.

The magnetic field is rotating around the line current (Fig. 4.1, right panel), with
magnitude decaying according to radial distance as 1/r.

Biot-Savart’s law dictates that the direction of magnetic field generated by a line
current is related to the current flow direction through the right-hand rule: with right-
hand thumb pointing towards the current, the rest fingers naturally curl along the magnetic
field direction.

In the above example, we didn’t consider complete current loop. It is a valid approxi-
mation if our interested field region is relatively close to the straight line current compared
to the rest of current circuit. If complete current distribution is considered, calculation of
B field can be tedious. However, for problems possessing certain symmetry, solution via
Biot Savart’s law can be manageable.
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Magnetic field by circular current loop

In cylindrical coordinate, a circular line current loop with radius a and current Iφ̂
is placed on rφ plane with center at origin. Based on Biot-Savart’s law, derive
magnetic field along z axis. [Exam 2019]

Solution: For a small line segment on the current loop dl one has

dl = adφφ̂, and rSP = zẑ − ar̂.

The total magnetic flux density at P is

B =

∮

C

µ0I

4π

dl× rSP
r3SP

=

∫

φ

µ0I

4π

adφφ̂ × (zẑ − ar̂)

(z2 + a2)
3

2

=

∫

φ

µ0I

4π

(azr̂ + a2ẑ)

(z2 + a2)
3

2

dφ ← [r̂ comp. cancels out with integration]

=

∫

φ

µ0I

4π

a2

(z2 + a2)
3

2

dφ ẑ =
µ0Ia

2

2(z2 + a2)
3

2

ẑ

4.1.2 Magnetic force

Magnetic force experienced by a charge q moving in velocity v is

Fm = qv ×B. (4.2)

The force is always perpendicular to velocity. Magnetic force does no work to a charged
particle. If one injects a charged particle into a magnetic field with an initial velocity
perpendicular to the field direction, trajectory of the particle will form a circle. The radius
of circle has been widely used for determining charge and mass of unknown particles.

It is more often in electrical engineering to have a stream of moving charges or current.
A small section of conductor dl carrying a current I in a magnetic field B experiences a
force, governed by

dFm = Idl×B. (4.3)

On a whole conductor loop, the net force will be integration of dFm along the loop path.

B
L

I

x

y

Figure 4.2: Magnetic force on moving conductor (with electric contact) in a magnetic field.
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Magnetic force on conductor carrying current

Refer to Fig. 4.2. A straight conductor is placed on top of two parallel metal rails
separated by distance L. Between the two rails, there exists a uniform magnetic field
with magnitude B, directed into paper. Calculate magnetic force on the vertical
conductor when a current I flows as shown.

Solution: Through Eq. 4.3, the total force is

Fm =

∫

C

Idl×B =

∫

C

I(−dlŷ)× (−Bẑ) =

∫

C

BIdlx̂ = BILx̂.

4.2 Magnetic dipole

As mentioned, magnetic monopole doesn’t exist. The most primitive magnetic field source
is a magnetic dipole — in the form of a small current loop. The second example in the
previous section revealed partially magnetic field of a magnetic dipole. The full field
of a magnetic dipole can be qualitatively pictured by applying right-hand rule along the
current loop. A sketch of the full magnetic field lines is shown in Fig. 4.3 (right panel). It is
compared by the electric-field lines of an electric dipole (left). In fact, the two vector fields
share exactly the same spatial dependence at distance much larger than the geometric size
of the dipoles. Some features include: the fields have rotation symmetry around their axis
(independent of φ); their fields have the maximum amplitude at equator (when θ = 90◦);
and their fields have zero amplitude along polar directions (when θ = 0◦ or 180◦).

Figure 4.3: Left: Electric-field lines of an electric dipole. Right: Magnetic-field lines of a
magnetic dipole.

For a planar current loop, regardless of its shape, we define its magnetic dipole moment
as product of current and area of current loop. For a circular current loop with radius a,
one has

m = I(πa2)n̂ (unit: A·m2). (4.4)

n̂ is surface normal unit vector, determined from current direction by right-hand rule.

4.3 Magnetic torque

Torque due to magnetic force deserves a separate section, since the mechanism underpins
operation of all electric motors. If field B is uniform, the total force on a loop in the field
is always zero. However, a closer look tells that a current loop tends to turn. Refer to
the left panel in Fig. 4.4, a rectangular current loop carrying current I with length a and
height b is placed in a uniform magnetic field B. The left and right current sections do not
experience magnetic force since they are parallel to B. According to Eq. 4.3, the upper
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section experiences a magnetic force F = BIa, pointing out of paper; and the lower section
experiences the same amount of force but in opposite direction. The loop shall undergo
rotation around the indicated red axis, with a torque T = 2F b

2
= Fb = BIab = Bm,

where m is amplitude of the loop’s magnetic moment m. The torque is at its largest
magnitude when the current loop is at the illustrated position, or when loop plane is
parallel to magnetic field. Imagine after rotating 90 degrees, we arrive at the middle panel
in Fig. 4.4. It is difficult to see the current loop; therefore, we switch our perspective
by observing the loop from below. What we see then is as shown in the right panel of
Fig. 4.4. Biot-Savart’s law tells that now all line sections experience a force. Forces on the
vertical sections F ′ vary in magnitude during the rotation, but they always cancel each
other and do not contribute to rotation. Forces on the horizontal sections F have constant
amplitudes during rotation; at this particular position they don’t result in a torque as they
pass through the central axis. This minimum torque occurs when loop plane is normal to
magnetic field, or the current loop’s own magnetic field is aligned with external magnetic
field.

B

b

a

I

F

F

B

b a

B

b

a

I

F

F

F’ F’

Figure 4.4: Left: Force and torque on a current loop in magnetic field. Middle: Rotation
after 90 degrees. Right: Same as the middle panel but viewed from below.

A more rigorous analysis can lead to the following general formula for magnetic torque
on a planar current loop of any shape in a uniform magnetic field,

T = m×B. (4.5)

The torque is affected by angle between the magnetic field and the surface normal of loop
plane. In a stable condition (minimum torque), a magnetic dipole aligns its dipole moment
with external magnetic field.

Magnetic torque on circular current loop

Calculate torque on circular current loop by magnetic field B (Fig. 4.5).

Solution: A quick examination reveals that the upper half circle and the bottom half
circle give the same amount of torque around the rotation axis. We focus on the top
half. For a differential current section, the magnetic force at point P (Eq. 4.3) is

dF = Idl×B = I(adφ)(−φ̂)×B = IadφB sinφ ẑ.

Differential torque at P is

dT = rO’P × dF = (a sinφ ŷ)× (IadφB sinφ ẑ) = Ia2B sin2 φdφ x̂.
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The total torque is

T =

∫

dT = 2 ·
∫ π

φ=0

Ia2B sin2 φdφx̂

= 2Ia2B

∫ π

0

sin2 φdφ x̂ = I(πa2)B x̂.

One can arrive at the solution much more quickly through Eq. 4.5.
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I
a

O

P

O’

dF

dF

x

T
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z

Figure 4.5: Magnetic torque on a circular current loop.

4.4 Laws for static magnetic field

Behavior of static magnetic field B is governed by two fundamental equations, which
conform to our observations so far. First, there exist no isolated magnetic monopoles (or
magnetic charges). In Gauss’s formulation, it is expressed as

∮

S

B · ds = 0. (Gauss′s law, magnetic field) (4.6)

Magnetic flux coming out of a closed surface is zero. Through divergence theorm, it can
be written in differential form

∇ ·B = 0. (4.7)

This equation is also referred to as Gauss’s law for magnetic field. The absence of magnetic
monopole is also evidenced by the fact that the magnetic field lines close on themselves,
whereas electric field lines originate from positive charges (monopoles) and close on neg-
ative charges (monopoles).

Another equation governing magnetic field is due to Andrè-Marie Ampère3. It relates
vector line integral of magnetic field along a closed loop (can be a fictitious line loop, also
known as Amperian loop) to total current passing through the loop. In free space, it is
expressed as

∮

C

B · dl = µ0I. (Ampère’s law in free space, magnetostatics) (4.8)

According to Stoke’s theorem, LHS of Eq. 4.8 can be converted to a surface integral,
as

∮

C
B · dl =

∫

S
∇ × B · ds. RHS of Eq. 4.8 can also be written in integral form as

µ0I =
∫

S
µ0J · ds. By equating the kernels, one can put Eq. 4.8 in differential form as

∇×B = µ0J. (4.9)

3Andrè-Marie Ampère (1775-1836): French physicist who contributed to relation between electricity
and magnetism.
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Equation 4.9 relates curl of magnetic field to current density at a spatial point. In a
general scenario, current does not have to be uni-directional or of uniform density. Eq. 4.8
(or equivalently Eq. 4.9) is called Ampère’s law, valid so far for magnetostatics.

We focus on applications of integral forms of the two fundamental relations, i.e.
Eqs. 4.6 and 4.8 in this text. It is worth pointing out (again) that the integration path or
surface in the two relations are arbitrary. Below we show how Ampère’s law can be used
to simplify calculation magnetic field around a straight line current.

Magnetic field by line current, through Ampère’s law

Based on Ampère’s law, derive magnetic field generated by a straight, infinitely long
metal wire carrying a current I.

Solution: Symmetry reasoning says that the generated magnetic field should be di-
rected along φ, invariant along z, and constant at a fixed radial r position. Therefore
we use a circular integration path in rφ plane, with the line current at its center.
There, we should have a uniform B = Bφ̂. Based Eq. 4.8, integration along the
circular path is

∮

C

B · dl =
∮

C

Bφ̂ · rdφφ̂ = Br

∮

φ

dφ = Br[φ]2π0 = B 2πr.

The quantity should be equal to µ0I. Therefore B = µ0I
2πr

, in φ direction.

Magnetic field by planar current, through Ampère’s law

Derive magnetic field generated by an infinite, thin current sheet placed on xy plane
with a uniform surface current density Js flowing along +x direction.

Solution: Refer to lecture notes. Importantly, owing to symmetry, field is uniform in
+z half space with direction pointing to −y, and is uniform of the same magnitude
but directed towards +y direction in −z half space.

4.5 Magnetization, H field

We now know all atoms are made of charged particles. Among them, electrons are con-
tinuously circulating around heavier nuclei, giving rise to orbiting currents and hence
magnetic dipole moments. Of less significant effect, the electrons, while orbiting, are
spinning around their own axes, also leading to magnetic dipole moments. Without an
external magnetic field, these magnetic dipole moments are oriented in random directions,
resulting no net magnetic field. Under an external magnetic field, the magnetic dipoles
tend to align their dipole moments towards the field direction, hence a net dipole moment
appears. The material is being magnetized. We use magnetization M to denote volume
density of resulted magnetic dipole moments. Mathematically, M is vector summation of
magnetic dipole moments of atoms in each unit volume; practically, M is an un-measurable
quantity. What we do know is that the resulted M will lead to a secondary internal mag-
netic field Bi, whose strength is proportional to M. We simply say Bi = µ0M. Taking
curl of this equation, one has

∇× Bi

µ0
= ∇×M. (4.10)



CHAPTER 4. MAGNETOSTATICS 42

Side note: It can be proven that RHS is simply effective current generated in the medium,
i.e. ∇×M = Jm.

On the other hand, from Eq. 4.9, one has

∇× Be

µ0
= J, (4.11)

where Be and J are external magnetic field and free current density which generates Be,
respectively. By combining the two above equations, we have

1

µ0
∇× (Be +Bi) = J+∇×M. (4.12)

We denote the sum (Be +Bi) as the total magnetic field in the medium B. One then has

∇×
(

B

µ0

−M

)

= J. (4.13)

If we define a new quantity called magnetic field intensity H as

H =
B

µ0

−M, (unit: ampere per meter, A/m) (4.14)

Eq. 4.13 can be simplified as
∇×H = J. (4.15)

H is therefore an auxiliary field which encompasses both total magnetic field as well as
magnetization of a medium. Use of H can simplify mathematical expression relating total
field in a material and free current J. In free space, from Eq. 4.14, one has B = µ0H.

One can integrate LHS of Eq. 4.15 over a surface and convert it to a line integral
through Stoke’s theorem as

∫

S

(∇×H) · ds =
∮

C

H · dl. (4.16)

Vector integral of RHS of Eq. 4.15, i.e. J, on the same surface is nothing but total current
I passing through the surface. Therefore, one has

∮

C

H · dl = I. (Ampère’s law, magnetostatics) (4.17)

Equation 4.17 is a more general form of Ampère’s law, valid in both free space and in
medium.

4.6 Permeability, magnetic materials

For relatively small degree of magnetization, M has linear dependence on magnetic field
intensity H. Hence,

M = χmH. (4.18)

We call the proportionality constant χm as magnetic susceptibility. Substitute the relation
to Eq. 4.14, one has

B = µ0(1 + χm)H. (4.19)

µ0 is free-space permeability. The term in parentheses represents magnetic response of
a medium, which we call relative permeability, i.e. µr = (1 + χm). The product µ0µr is
simply called permeability. Hence, we have constitutive relation for magnetic field as

B = µ0µrH = µH. (4.20)
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Free space has µr = 1.
Magnetic property of a material that undergoes linear magnetization can be captured

by a fixed µr value (linear B-H curve). We can roughly put materials into three categories
according to their µr values. They are

• Diamagnetic if µr . 1

• Paramagnetic if µr & 1

• Ferromagnetic if µr ≫ 1

For both diamagnetic and paramagnetic materials, µr values differ from 1 by some
small value on the order of 10−5. Such materials are therefore hardly attracted by a
magnet. Ferromagnetic materials exhibit strong responses to a magnetic field. Micro-
scopically, a ferromagnetic material has small naturally magnetized domains separated by
domain walls. Under a magnetic field, domains with magnetizations directed along the
field tend to grow in size, whereas the other domains shrink. This causes an increase in B
field. The B-H relation is initially linear and reversible. However at large H, the relation
becomes nonlinear and reversible only through a hysteretic process (following by a lag).
The lag is caused by resistance in movement of domain walls. In short, B-H relation does
not follow the same curve when one increases or decreases H (magnetizing) field; rather,
the magnetization process traces a loop in the BH plane (Fig. 4.6), which we refer to as
a hysteresis loop.

no H with H

Figure 4.6: Left: Ferromagnet with and without excitation. Right: Magnetization curve -
hysteresis loop.

Some comments can be drawn from a hysteresis curve, such as

• Ferromagnetic material can become permanent magnet.

• The area of a hysteresis loop corresponds to energy loss per applied magnetic field
intensity cycle (i.e. Hmax → −Hmax → Hmax). For applications where repeated
change of magnetic field is used, one shall use soft ferromagnetic materials with nar-
row hysteresis loops; for permanent magnets, one prefer hard ferromagnetic materials
with fat hysteresis loops.

A permanent magnet can be de-magnetized through heating. The critical temperature
at which residual magnetization disappears is called curie temperature.

4.7 Boundary conditions

To solve for magnetic field distribution, one needs to know the boundary conditions when
field crosses a material boundary. This can be done similarly as we did for electrostatics,
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but with the two fundamental relations for magnetostatics in Sections 4.4&4.5. We re-use
figures in Fig. 2.6 for following clarifications, except that the “free space” is replaced by
another material (material 1 with permeability µ1 and the material below has µ2).

Refer to Fig. 2.6 (right panel). The condition for normal component can be obtained
by making surface integral of B on a fictitious box with infinitesimal height on a material
interface. The absence of magnetic monopole requires that the normal B component
should be continuous across a material interface. That is,

Bn1 = Bn2, or µ1Hn1 = µ2Hn2. (4.21)

Refer to Fig. 2.6 (left panel). The condition for tangential H field component can be
obtained by making line integral of the field on a fictitious loop with infinitesimal height
on a material interface. According to Ampère’s law for magnetostatics (Eq. 4.17), the
result should be equal to total current passing through the integration loop. One has

Ht1 −Ht2 = Js. (4.22)

Js is surface current density directed normal to the integration loop. For non-conducting
media, one usually has Js = 0; hence the tangential H field is in general continuous across
a material interface.

4.8 Magnetic energy

A static magnetic field has energy. One can imagine a magnetic field is generated by a
collection of circulating currents or magnetic dipoles placed close to each other (within
a magnet, for example). In corresponding ground state, the current loops are placed
infinitely apart. So the energy contained by a magnetic field is the amount of energy
needed to move the loops from being far away to a close adjacency (while keeping currents
unchanged in all loops). In terms of field strength, magnetic energy is

Wm =
1

2

∫

V

H ·B dv =
1

2

∫

V

B2

µ
dv. (4.23)

In next chapter, it will be shown that magnetic field energy can also be defined in terms
of inductance.

4.9 Cascaded current loops — coil

We have studied magnetic field due to small section of line current (Biot-Savart’s law), a
current loop (a magnetic dipole). One important device that critically contributes to our
modern electrification is current coil, alternatively known as solenoid.

Shown in Fig. 4.7 (left panel), a current coil is a helical conductor wire. It can be
treated equivalently as many current loops placed side by side with the same electric
current running through them. Despite its relatively complex structure, one can easily
calculate magnetic field inside a current coil through Ampère’s law. Consider a line-
integration loop (indicated by the red dashed line in right panel of Fig. 4.7) with one side
running within the coil. According to Ampère’s law, line integral of B field around the
integration loop shall be equal to the total current passing through the loop. For a coil
with N turns and current I, one has

∮

C

B · dl = µ0NI. (4.24)
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l
I

circuit symbol

I

Figure 4.7: Left: A current coil and its circuit symbol. Right: Magnetic field of a coil.

As Fig. 4.7 shows, magnetic field lines spread out heavily outside the coil; in other words,
field amplitude outside in general is much weaker than field inside the coil. When treating
LHS of Eq. 4.24, one can approximately discard integration along line sections outside the
coil. Furthermore, if one assumes B is evenly distributed inside the coil, one has

Bl = µ0NI, (4.25)

where l is the coil length. Hence

B =
µ0NI

l
. (4.26)

If the coil is wound around a ferromagnetic bar with permeability µ, one has

B =
µNI

l
. (4.27)

Such a device is also referred to as electromagnet. A ferromagnetic core can greatly
enhance magnetic flux density (e.g. iron has µr = 200000). An extended ferromagnetic
core can channel the flux to another coil, so as to achieve power transfer without electrical
connection (transformer; see next chapter).

A current coil with a constant current generates magnetic field of very similar pattern
as that by a permanent magnet. This is not a coincidence. In a permanent magnet, there
are residual magnetic dipole moments pointing to its north pole. One can think of these
dipoles as caused by current loops (e.g. electrons orbiting around their nuclei) with loop
planes normal to the magnet-bar direction. The microscopic currents tend to cancel each
other so there appear to be no net current within the magnet except on the surface of the
magnet.

Summary of equations

Two fundamental equations governing magnetostatics are
∮

S

B · ds = 0, or ∇ ·B = 0; (Gauss’s law, magnetic field) (4.28)

∮

C

H · dl = I, or ∇×H = J. (Ampère’s law, magnetostatics) (4.29)
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Exercises

1. Consider a section of straight line conductor of length 10 cm aligned on x axis with
its center at origin. A current of 10 A follows along +x direction in the conductor.
Calculate magnetic flux density B generated by the line current section at point
with Cartesian coordinates (0,0,5) cm.

2. A square-shaped current loop with side length 10 cm is placed on xy plane, centered
at origin. From +z perspective, one sees a current of 10 A flowing in the loop
along counterclockwise direction. Calculate magnetic flux density B generated by
the current loop at point with Cartesian coordinates (0, 0, 5) cm.

3. A circular current loop with radius 5 cm is placed plane-parallel to xy plane with
a displacement along −z direction by 5 cm. Another current loop of the same size
is placed also plane-parallel to xy plane but with a displacement along +z by 5 cm.
Both loops are centered around z axis and carry a current of 10 A in counter-
clockwise direction (if viewed from z = +∞). Calculate B field at origin generated
by the two current loops.

4. Refer to Exercise 2 in Chap. 3. Calculate the generated magnetic flux density B at
the loop center.

5. A circular disk carries a uniform charge of 100 µC. The disk has a radius of 5 cm and
is placed on xy plane with its center at origin. If the disk rotates about z axis at a
speed of 50 rounds per second (counterclockwise observed from z = +∞), calculate
the generated magnetic flux density B at the disk center.

6. A straight wire of length 8 cm is oriented along x axis, centered at origin. Two end
sections of the wire, each with length of 2 cm, is charged with a uniform line charge
ρl = 2 nC/cm. If the wire is set to rotation around z axis with a speed of 100 rounds
per second (counterclockwise observed from z = +∞), calculate B field generated
at origin.

7. A particle carrying a charge of q = −1 nC is moving with an instantaneous velocity
v = (300x̂ + 500ŷ) m/s in a uniform magnetic field B = 2x̂ mT. Calculate the
magnetic force on the particle.

8. Same as the above but with a magnetic field B = (2ŷ + 2ẑ) mT.

9. A charged particle is accelerated to velocity v = 1x̂ km/s and is then sent into a
uniform magnetic field B = 5ẑ T. The particle has mass m = 1 pg and charge
q = −0.2 nC. Describe, as quantitatively as possible, the motion of the particle in
the magnetic field.

10. Two straight line conductors are oriented parallel to each other with a separation
distance of 10 cm. Both conductors carry a 10 A current towards the same direction.
Calculate magnetic force experienced by each conductor owing to magnetic field of
the other conductor. Specify their directions.

11. A thin conductor sheet of infinite size is placed on xy plane. A uniform current
with surface current density Js = 0.1 A/mm flows in the conductor sheet along +x
direction. Calculate B field generated by the current sheet at point with Cartesian
coordinate (0, 0, 10) cm.



Chapter 5

Magnetic Induction

Magnetic field generated by electric current in one circuit or device can “induce” a current
in a second circuit or device placed in the field. This action of “inductance” happens when
there is a change of magnetic field of, or equivalently a change of current in the primary
circuit. The primary circuit acts as an electromagnet. A permanent magnet can replace
the role of the primary circuit. One would then have to move the permanent magnet in
order to induce a current in the second circuit. A current in the second circuit is essentially
due to existence of electric field. Hence, time-varying magnetic field generates electric field.
Magnetic induction tells that electric field and magnetic field are not separate phenomena,
but are coupled to each other.

5.1 Faraday’s discovery

Michael Faraday1 discovered in 1831 that if one inserts or pulls a magnet in or out of a
conductor loop, a current is observed in the loop (see Fig. 5.1). The magnitude of current
is related to the speed of magnet movement.

current meter
battery

coil

magnet

Figure 5.1: Faraday’s experiment on magnetic induction.

This phenomenon is summarized as Faraday’s law of electromagnetic induction —
change of magnetic flux in a loop leads to an electromotive force (EMF) E (equivalent
to a voltage sustained by a battery) along the loop. Furthermore, it is observed that the
resulted current due to the EMF generates a magnetic flux that compensates change of
the original magnetic flux (Lenz’s law). Mathematically, Faraday’s law says

E = −dΦ

dt
(unit: volt, V), (5.1)

1Michael Faraday (1791-1867): English self-taught scientist who contributed critically to electromag-
netic induction, and consequently electric motors.

47
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where Φ is total flux passing through concerned circuit.
The magnitude of Φ essentially depends on coupling between the “inducing” magnetic

field and the circuit under consideration in the field. To quantify this coupling, we create
a new quantity called “inductance”, discussed below.

5.2 Inductor and inductance

5.2.1 Self inductance

In electrostatics, we came across capacitor and capacitance. A capacitor (usually two metal
pieces) stores charges after being applied an electric potential. Capacitance is defined as
ratio between the stored charge and the potential; mediating field is electric field. In
magnetostatics, one has similar concepts: inductor and inductance. An inductor (e.g. a
metal loop) holds a magnetic flux after being applied an electric current. The mediating
field is magnetic field. Magnetic flux flowing through a loop is

Φ =

∫

S

B · ds. (unit: weber, Wb) (5.2)

In general, definition of inductance2 L is

L =
Φ

I
. (unit: henry, H) (5.3)

I is current in an inductor circuit, and Φ is total magnetic flux passing through the circuit.
Like capacitance, inductance L depends on the inductor’s geometry and material. For a
linear medium, L does not depends on current in the loop.

Based on the above definition, it is straightforward to find out inductance of a current
coil. Given a coil with number of turns N , current I, and length l, magnetic field inside
the coil is B = µNI

l
. The total magnetic flux that the coil encloses is

Φ =

∫

Scoil

B · ds =
∫

Scoil

Bds =

∫

Scoil

µNI

l
ds. (5.4)

Notice that a subscript “coil” is added just as a reminder that the surface integration is
not on the coil’s cross-section, but on a surface bounded by the coil’s helical line. One
can well treat a N -turn coil as N separated current loops, and thereby the integration
surface can be approximated by N circular surfaces bounded by each current loop. That
is to say, the surface integral shall be carried on the coil’s cross-section S for N times.
Furthermore, direction of the differential surface element is in line with the magnetic field
direction; hence the vector dot product became product of two scalars.

Φ =
µNI

l
(S)(N) =

µN2S

l
I. (5.5)

Hence the (self) inductance of a coil is

Lcoil =
µN2S

l
. (5.6)

Definition of inductance allows expression of magnetic energy stored in an inductor as

Wm =
1

2
LI2. (5.7)

2Symbol L is used in honour of the physicist Heinrich Lenz.
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5.2.2 Mutual inductance

For a capacitor, its electric field originates from positive charges and terminates on negative
charges; the electric field can be well confined and does not affect other neighbouring
capacitors. In the contrary, magnetic field line has to form a loop, which is extended in
space. Therefore, an inductor’s magnetic field not only passes through its own circuit, but
also can pass through a neighbouring inductor, e.g. another circuit. For this reason, we
have “self inductance” and “mutual inductance”. The term “inductance” by default refers
to “self inductance”.

Loop 1 Loop 2B1

Figure 5.2: Mutual inductance.

Take two circular loops in Fig. 5.2 for example. Current in loop 1 generates a magnetic
field, some of which passes through loop 2. Loop 1 has a “magnetic influence” on loop 2;
or, there exists a mutual inductance between the two loops. To quantify the mutual
inductance, one first calculates the amount of magnetic flux generated by loop 1 that
passes through loop 2, as

Φ12 =

∫

S2

B1 · ds2. (5.8)

Then the mutual inductance defined as

L12 =
Φ12

I1
, (5.9)

where I1 is current in loop 1. It can be proven that there is always

L12 = L21. (5.10)

I1

z

d w

h

r

dr

Figure 5.3: Mutual inductance between infinite line conductor and square conductor loop.
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Mutual inductance

Calculate mutual inductance between an infinitely long conductor and a rectangular
conductor loop placed as shown in Fig. 5.3.

Solution: Consider straight line conductor as circuit 1 and the square conductor
loop as circuit 2. It is easier to calculate magnetic flux due to the straight conductor
passing through circuit 2 than the other way around. We know from Ampère’s law
that the magnetic field due to current in circuit 1 is B = µ0I1

2πr
φ̂. Flux passing

through circuit 2 is

Φ12 =

∫

S2

B1 · ds2 =

∫ d+w

r=d

(

µ0I1
2πr

φ̂

)

· (drhφ̂)

=
µ0I1h

2π

∫ d+w

r=d

1

r
dr =

µ0I1h

2π
ln

(

1 +
w

d

)

.

Hence, the mutual inductance is

L12 =
Φ12

I1
=

µ0h

2π
ln

(

1 +
w

d

)

.

5.3 Faraday’s law of induction

5.3.1 Induction leads to electromotive force

The electromotive force defined by Faraday’s law in Eq. 5.1 can be written in terms of
inductance, by use of Eq. 5.3, as

E = −LdI

dt
. (5.11)

Here L can be self or mutual inductance. In the case of self inductance, an EMF (more
properly voltage) is induced by the inductor’s own current variation. In the case of mutual
inductance, an EMF is induced by current change in some other inductor!

5.3.2 Faraday’s law of induction, generalized

Faraday’s law of magnetic induction, i.e. Eq. 5.1, applies well to a conductor loop. How-
ever, it has far more general implication. Effectively, E is line integral of induced E, and
magnetic flux Φ is area integral of magnetic field B — time-varying magnetic field pro-
duces electric field! Faraday’s observation is one special instance of the following relation
between field quantities E and B

∮

C

E · dl = −
∫

S

∂B

∂t
· ds. (Faraday’s law) (5.12)

Through Stoke’s theorem, LHS can be converted to surface integral of ∇×E. Therefore,
the above equation becomes

∫

S

∇×E · ds = −
∫

S

∂B

∂t
· ds. (5.13)

Although in Faraday’s observation, this equation is valid for a surface bounded by a
conductor loop encompassing a time-varying B field, a little forward-thinking leads to the
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belief that it should be valid on all surfaces, regardless of size, location, or orientation.
Neither E nor B needs existence of a conductor loop. Taking the kernels of Eq. 5.13, one
has an equation in differential form

∇×E = −∂B

∂t
. (Faraday’s law) (5.14)

The above equation is valid at any spatial point for all material systems. Equations 5.12&5.14
are generalized Faraday’s law of induction, which shall replace the fundamental relation
∮

C
E · dl = 0 (or differential form ∇ × E = 0) in electrostatics. Electric field becomes

non-conservative in a time-varying scenario.

5.3.3 EMF due to moving conductor in magnetic field

When a metal is moving in a magnetic field, free electrons in the metal can experience a
magnetic force. This force consequently drags the electrons towards one direction, resulting
in a build-in electric field, hence an induced EMF in the moving metal. The electric field
exerts an electric force on electrons, which is working against the magnetic force. An
equilibrium state is reached when the electric force is equal to the magnetic force in
magnitude. The steady-state EMF in a magnetic field B is

E =

∫

C

(v ×B) · dl , (5.15)

where v is velocity of the conductor.

B
LR

v

x

y

Figure 5.4: EMF induced by moving conductor in stationary magnetic field.

For a moving conductor loop, one uses loop integral. The final result is equivalent to
E = −dΦ

dt
, i.e. EMF generated in the loop is proportional to (negative) change of magnetic

flux in the loop per unit time. Consequence: no overall EMF in the circuit if B is spatially
uniform.

EMF due to moving conductor in magnetic field

Refer to Fig. 5.4. A metal bar is moving in a constant magnetic field with a fixed
velocity. Calculate current through the resistor connected to the left terminals.

Solution: The voltage between the two terminals (top v.s. bottom) is

E =

∫ top

bottom

(v ×B) · dl =
∫ L

y=0

[vx̂× (−Bẑ)] · dyŷ = vBL.

Current is then I = E

R
= vBL

R
, along −y direction.
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5.4 Electric circuit with inductor

Figure 5.5 (left panel) shows a simple electric circuit with a voltage source V , a resistor
R as well as an inductor L connected in series (a RL circuit). One can solve analytically
for current, given a DC or AC voltage source.

V

R

L

Time

I

Figure 5.5: Left: Simple electric circuit with a resistor and an inductor, or RL circuit.
Right: Current response.

DC case

Given a DC voltage source, the RL circuit will take some time to settle to a steady state
after switch is closed. According to Kirchhoff’s voltage law, sum of voltage drops across
the resistor VR and the inductor VL shall be equal to that of the voltage source.

VR + VL = V. (5.16)

Note that voltage “decreases” across an inductor under “rising” current in the coil (and
vice versa), i.e. VL = −E = LdI

dt
. Hence

RI + L
dI

dt
= V. (5.17)

Current can be solved as

I(t) =
V

R

[

1− exp

(

−R

L
t

)]

. (5.18)

One sees It=0 = 0 and It=∞ = V/R, as illustrated in the right panel in Fig. 5.5.
The voltage across the inductor is

VL(t) = V −RI(t) = V exp

(

−R

L
t

)

. (5.19)

AC case

If the voltage is sinusoidal. One resorts to phasor expressions

V = V0 exp(iωt), (5.20)

I = I0 exp(iωt). (5.21)

Substituting them into Eq. 5.17, one has

RI0 + (iω)LI0 = V0. (5.22)

It follows that

I0 =
V0

R+ iωL
. (5.23)
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We define impedance of the inductor as

ZL = iωL. (5.24)

The voltage across the inductor is

VL = V −RI = V
iωL

R+ iωL
. (5.25)

One notices VL,ω=0 = 0; or, voltage is appreciable only when frequency is high. The circuit
is a high-pass filter.

Notice that impedance ZL plays a similar role as resistance. When coil inductors
are connected in series, one can lump the coils as a single inductor with an impedance
ZL = ZL1 + ZL2 + ... + ZLN . When coils are connected in parallel, one has 1

ZL
= 1

ZL1
+

1
ZL2

+ ...+ 1
ZLN

. We assume here that there is no mutual inductance among the inductors.

5.5 Transformers

A ferromagnetic material with large permeability can be heavily magnetized and carries
a large total magnetic field B in the material. A ferromagnetic bar, also referred to as
“magnetic core”, is often used to confine and guide magnetization and thereby magnetic
field for various applications. A classic application is transformer, as illustrated in Fig. 5.6.
Under AC bias, a transformer transfers electric energy based on “perfect” magnetic in-
duction from one electric circuit to another through a magnetic core; in doing so, it can
transform voltage as well as current. The ease of varying voltage with transformers across
an electric network made AC a natural choice for distribution of electricity since early
1900s.

Figure 5.6: Schematic diagram for a transformer.

Refer to Fig. 5.6 and take note of the indicated directions and polarities. Magnetic field
generated in the left primary coil (N1 turns) is guided to the secondary coil (N2 turns),
without leakage in the case of µr →∞ for the magnetic core. Guidance of magnetic field
without leakage allows us to use total magnetic flux Φ. According to Faraday’s law of
induction

V1 = N1
dΦ

dt
, and V2 = N2

dΦ

dt
. (5.26)

Therefore, one has

V1

V2
=

N1

N2
, (5.27)

which is well-known voltage relation across a transformer. For a perfect transformer, one
assumes µr →∞ in its magnetic core; in turn, one has H = B

µ
→ 0 in the magnetic core.
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By applying Ampère’s law, i.e.
∮

C
H · dl = I, on a closed integration path around the

magnetic core, one can obtain relation between the input and output currents, as

N1I1 = N2I2, or
I1
I2

=
N2

N1

. (5.28)

Figure 5.7: Eddy current in magnetic core and its mitigation.

Ferromagnetic core is usually made of conducting media, mostly commonly iron. As
a result, an issue with transformer, which is also due to magnetic induction, is existence
of Eddy current in the magnetic core, as illustrated in Fig. 5.7 (left). Eddy current can
cause heating of the core material owing to Ohmic resistance, which leads to energy loss.
An effective way to reduce such loss is to use a laminated ferromagnetic core — core
made of a stack of ferromagnetic material pieces electrically insulated from each other, as
shown in Fig. 5.7 (right). With such a design, Eddy current is confined in each individual
lamination. Since magnitude of Eddy current is inversely proportional to cross-sectional
area of a single lamination, one can minimize energy loss.

5.6 Summary of equations

Faraday discovered that time-varying magnetic field creates electric field
∮

C

E · dl = −
∫

S

∂B

∂t
· ds, or ∇×E = −∂B

∂t
. (Faraday’s law)

Exercises

I

v

a

b

s

x

y

z

Figure 5.8: Exercise 1.

1. Refer to Fig. 5.8. A planar rectangular conductor loop is placed in plane with an
infinite straight conductor in free space. A constant current I = 10 A flows in the line
conductor towards the right. The rectangular conductor loop has width a = 10 cm
and height b = 5 cm. The conductor loop is moving away from the line current with
a velocity v = 25 cm/s. Calculate the electromotive force generated in the conductor
loop at the moment when distance between its lower edge is separated from the line
current by s = 7.5 cm, and current direction in the loop as a consequence of the
generated electromotive force.



Chapter 6

Maxwell’s Equations and Wave

Solutions

6.1 Maxwell’s equations

Before Faraday’s discovery in 1831, electric and magnetic phenomena were considered to
have no mutual connection. Faraday showed that a varying magnetic field can create
electric field. Not much happened thereafter in further development of theories governing
the fields. Maxwell1 tried in 1861 (barely 30 years old) to assemble the disparate laws into
a coherent set of equations, and he discovered that the equation system can be consistent
only if one accepts that, apart from current, time-varying electric field can also induce
magnetic field. His postulate leads to a modified Ampère’s law, which is somewhat easier
to understand from the differential form, as ∇ × H = J + ∂D

∂t
. The red term ∂D

∂t
is

Maxwell’a addition, and it seemingly plays a similar role as free current density J. For
this reason, the term is sometimes referred to as displacement current density. The concept
of displacement current is helpful for understanding e.g. the simple RC circuit in Chap. 3.1.
More generally, together with Faraday’s law, it states that electric and magnetic fields are
mutually coupled. Maxwell’s effort in unifying the laws and his contribution in adding
the new term in Ampère’s law warrant that history remembers this set of equations in his
name.

Maxwell’s equations in integral forms are

∮

S

D · ds = Q, (Gauss’s law, electric)

∮

S

B · ds = 0, (Gauss’s law, magnetic)

∮

C

E · dl = −
∫

S

dB

dt
· ds, (Faraday’s law)

∮

C

H · dl = I +

∫

S

∂D

∂t
· ds. (Ampère’s law)

(6.1)

(6.2)

(6.3)

(6.4)

1James Clerk Maxwell (1831–1879): Scottish scientist who unified electromagnetic equations and
claimed that light is in fact electromagnetic wave.
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And, in differential form, they are

∇ ·D = ρ, (Gauss’s law, electric) (6.5)

∇ ·B = 0, (Gauss’s law, magnetic) (6.6)

∇×E = −∂B

∂t
, (Faraday’s law) (6.7)

∇×H = J+
∂D

∂t
. (Ampère’s law) (6.8)

Maxwell’s equations determine electric and magnetic fields (now electromagnetic field)
as a function of space and time, from any given sources ρ and J. One shall take note
that ρ and J are not independent; they are connected through the principle of charge
conservation or equation of continuity

∮

S

J · ds = −dQ

dt
(integral), or ∇ · J = −∂ρ

∂t
(differential). (6.9)

The principle states that total current flowing out from a closed surface is equal to time
rate of charge decrease inside the enclosed volume. The addition of displacement-current
term by Maxwell is precisely to make this equation satisfied, which one can verify by
taking divergence of the Ampère’s law (differential form).

6.2 Time-harmonic electromagnetic wave equation

Electromagnetic waves are generated by charge and current sources (ρ and J). In many
practical situations, the sources’ dependences on time are of sinusoidal nature. Corre-
spondingly, the fields generated are also sinusoidal. If not, a complicated time-dependence
can be represented by multiple time-harmonic functions (detailed discussion of such de-
composition falls into a specific subject called Fourier analysis). Time-harmonic sources
and fields are therefore of significant interest in electrical engineering.

When analyzing time-harmonic systems, one often uses phasor notations. As an ex-
ample, sinusoidal current I(t) = Io cos (ωt+ φ) is written in complex quantity during
mathematical derivation as I(t) = Io exp[i(ωt + φ)]. I0 is amplitude, ω is angular fre-
quency, and φ is initial phase. i is imaginary unit which satisfies i2 = −1. Final solutions
are obtained by taking real part of the complex solutions. By using complex phasor ex-
pressions, one avoids manipulation of complicated trigonometric functions — exponential
functions in phasor notation remain their forms upon differentiation or integration.

In phasor notation, a time-harmonic electric field can be expressed asE(x, y, z) exp(iωt),
and so on. Substituting the expressions into the Maxwell’s equations (Eqs. 6.5-6.8) and
eliminating the common exp(iωt) factor, one has

∇ ·D = ρ, (6.10)

∇ ·B = 0, (6.11)

∇×E = −iωB, (6.12)

∇×H = J+ iωD. (6.13)

Take note that the source and field quantities are now functions of space only, though the
same symbols are used.

In a homogeneous, source-free region (ǫ and µ constant, ρ = 0 and J = 0), by taking
another curl on Eq. 6.12 and using the vector identity

∇×∇×A = ∇(∇ ·A)−∇2A, (6.14)
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one can arrive at a Helmholz wave equation

∇2E+
ω2

v2
E = 0, (6.15)

where v = 1√
ǫµ
. ∇2 is another del operator called Laplace operator which we did not

mention in Chap. 1. Mathematically, ∇2 is “divergence of gradient”, or ∇·∇. In Cartesian
coordinate, it has the form

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (6.16)

Correspondingly, in Cartesian coordinate, Eq. 6.15 can be decomposed into three scalar
wave equations.

6.3 Plane wave solution

The most primitive form of electromagnetic wave is plane wave — wave with planar
constant-phase front. Such a wave has its electric field directed in one direction. If we
assume that E is solely along x, we have the following scalar wave equation

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

Ex +
ω2

v2
Ex = 0. (6.17)

Further, if we consider that Ex field varies only along z direction, one has

∂2

∂z2
Ex + k2Ex = 0, (6.18)

where we used substitution k = ω
v
. The general solution to Eq. 6.18 is

E = E+
0 exp(−ikz)x̂ + E−

0 exp(ikz)x̂, (6.19)

where E±
0 is electric-field amplitudes. The first term on RHS is a plane wave traveling

towards +z axis and the second term is traveling towards −z. k indicates how quickly
phase varies along z; it is therefore spatial frequency of the wave. A more common name
for k is wave number, indicating how many wavelengths in a unit propagation length (times
2π). It is easy to verify that k = ω

v
= 2π

λ
, where λ is electromagnetic wavelength in the

medium. Comparatively, ω indicates how quickly phase varies in time t, and is therefore
called temporal (angular) frequency of the wave.

Putting E (only the +z traveling wave) into Eq. 6.12, one can compute the correspond-
ing magnetic field as

H =
i

ωµ

∂Ex

∂z
ŷ =

1
√

µ
ǫ

E0 exp(−ikz)ŷ. (6.20)

One sees that the directions of electric field, magnetic field, and wave propagation form
an orthogonal triplet. The magnetic field is in phase with the electric field and has a
magnitude relative to that of the electric field by a factor called intrinsic impedance of the
medium

Z =

√

µ

ǫ
. (6.21)

Including time-harmonic dependence, one has +z-propagating plane-wave solutions as

E = E0 exp [i(−kz + ωt)] x̂,

H = H0 exp [i(−kz + ωt)] ŷ,

(6.22)

(6.23)
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with E0/H0 = Z. The expressions above are in phasor form. The instantaneous fields are
the real parts

E = E0 cos(−kz + ωt)x̂,

H = H0 cos(−kz + ωt)ŷ.

(6.24)

(6.25)

They are sinusoidal spatial functions moving towards +z as time increases. Figure 6.1
(left panel) schematically illustrates spatial variation of the two field components. The
right panel in Fig. 6.1 shows another way of presenting the same plane wave.

k

x

z
y

Figure 6.1: Electromagnetic plane wave. Left: Schematic representation. Right: Field
representation with electric field shown by arrows and magnetic field shown by color (red
for positive values and blue for negative values).

The phase (−kz + ωt) varies when space and/or time varies. One can track traveling
speed of a constant phase, i.e. −kz + ωt = Const. It requires the overall phase change
owing to a displacement in space ∆z and a time lapse ∆t should be zero, i.e.

− k∆z + ω∆t = 0. (6.26)

One sees phase velocity of wave traveling as

∆z

∆t
=

ω

k
=

ω

ω/v
= v = [definition following Eq. 6.15] =

1√
ǫµ

=
1√
ǫrµr

1√
ǫ0µ0

. (6.27)

In free space, one has ǫr = 1 and µr = 1. v is then simply 1√
ǫ0µ0

. Maxwell found that

this calculated velocity is rather close to the measured light speed2. Thereby, he claimed
“light is electromagnetic wave”!

It is worth commenting the factor
√
ǫrµr in Eq. 6.27. It determines the factor of slowing

down of electromagnetic wave velocity in a medium, as compared to that in vacuum. For
light, which has frequency over 300 THz, the factor has a special meaning. At such a high
frequency, materials usually have no magnetic response, i.e. µr = 1. Therefore the factor
becomes

√
ǫr, which we commonly refer to as refractive index, or

n =
√
ǫr . (6.28)

Refractive index defines how much speed of light slows down in a medium, which in turn
determines, as we will see in the next chapter, how light is reflected and refracted across
a material interface.

6.4 Electromagnetic plane wave, generalized

In the previous section, we have derived time-harmonic electromagnetic plane wave so-
lution based on the assumption that the wave is propagating along z direction and with

2Speed of light was measured by English astronomer James Bradley to a good accuracy already in 1729.
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electric field directed along x. Generally, a homogeneous medium accommodates plane
waves propagating in any directions. The more general expression for plane-wave solution
in terms of E (spatial dependence only) is

E = E0 exp(−ik · r), (6.29)

and a similar equation for H field. k is called wave vector ; its magnitude is wave number
(k) and its direction is wave propagation direction. In Cartesian coordinate, the dot
product in exponent can be fully expanded, the above expression becomes

E = E0 exp [−i(kxx+ kyy + kzz)] , (6.30)

with k2x + k2y + k2z = k2. Upon substituting Eq. 6.29 and the similar expression for H into
time-harmonic Maxwell’s equations (Eqs. 6.10-6.13), one can realize that the vectors E,
H, and k form a mutually orthogonal triplet. A plane wave therefore always has electric
and magnetic field components transverse to the propagation direction. We call such an
electromagnetic wave a transverse electromagnetic (TEM) wave.

6.5 Plane-wave properties

6.5.1 Polarization

Polarization of an electromagnetic plane wave is its E field direction. A simple plane wave
has linear polarization – the direction of its E field is oriented in one direction and not
changing with respect to position or time. One expresses E field for such a plane wave,
for example, as

E = Ex0 exp [i(−kz + ωt)] x̂. (6.31)

In a more general scenario, a place wave can be superposition of two linearly polarized
plane waves sharing the same wave vector. For example, apart from one x-polarized plane
wave, i.e. Eq. 6.31, there can co-exist a y-polarized plane wave a constant phase difference
δφ to the x-polarized plane wave component. So the overall plane wave is written as

E = Ex0 exp [i(−kz + ωt)] x̂+ Ey0 exp [i(−kz + ωt+ δφ)] ŷ. (6.32)

If δφ = 0 and Ex0 = E0y, the combination is a plane wave with an amplitude
√
2Ex0 and

a linear polarization directed 45◦ with respect to x axis.
Another special case is when phase of the y-component plane wave lags by π/2, i.e.

δφ = −π/2. The combined plane wave is then

E = Ex0 exp [i(−kz + ωt)] x̂+ Ey0 exp
[

i
(

−kz + ωt− π

2

)]

ŷ. (6.33)

One can examine time-evolution of E field at a constant z position, say z = 0. The above
expression becomes

E = Ex0 exp(iωt)x̂+ Ey0 exp
[

i
(

ωt− π

2

)]

ŷ. (6.34)

The instantaneous field is the real part of the phasor. Therefore,

E = Ex0 cos(ωt)x̂+ Ey0 cos
(

ωt− π

2

)

ŷ = Ex0 cos(ωt)x̂+ Ey0 sin (ωt) ŷ. (6.35)

If Ex0 = Ey0 ≡ E0, one observes that the overall vector E has an amplitude E0 and its tip
rotating anti-clockwise in xy plane as time t increases. The rotation can be characterized
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Figure 6.2: Operation principle of an LCD display. Left: ON state (no voltage applied);
Right: OFF state (voltage applied). [Source: S.W. Depp and W.E. Howard, Scientific
American 268, p. 90 (1993).]

with hand, in this case using one’s right-hand — with thumb pointing towards wave prop-
agation direction (z), the rest fingers’ curling direction is the E field’s rotation direction.
Therefore, the plane wave has right-hand circular polarization.

If the y-component plane wave has a leading phase of δφ = π/2, the rotation of E
will fit to a left-hand gesture. In that case, one says it has left-hand circular polarization.
Generally, Ex0 6= Ey0 and δφ 6= ±π/2, and the overall E will in general have an elliptical
polarization. The tip of E vector traces an ellipse.

Polarizer is a device to purposely stop transmission of a certain linearly polarized
electromagnetic wave, while letting the other perpendicularly polarized wave to transmit
through. One type of such polarizer is made of an array of fine parallel metal wires, usually
embedded in or supported by a glass piece. If an incident wave is polarized along the wire
direction, its electric field will excite current in the wires which is then dissipated as heat.
For visible light, a cheaper option is to use oriented long polymer molecules, which one
can fabricate by simply stretching softened polymer material in one direction. In this case
it is polarization/displacement current which causes dissipation. The latter you may find
in eyeglasses for watching 3D movies.

There are ways to convert polarization from one linear polarization to another linear
polarization, or to circular polarization, and vice versa. A pixel in liquid-crystal display
(LCD) is made of a thin layer of liquid crystal (LC) material sandwiched between two
orthogonally placed polarizers. Refer to Fig. 6.2. The first polarizer selectively passes
one light polarization emitted by backlight. At ON state (left panel), light polarization
tends to rotate with the twisting of the LC molecules; light after the LC layer therefore
has polarization rotated by 90 degrees, and hence transmits through the second polarizer.
At OFF state, a voltage is applied across the LC layer which forces its molecules directed
vertically. Light polarization will no longer experience rotation by the LC layer; light will
be stopped by the second polarizer.

6.5.2 Group velocity

An electromagnetic plane wave travels with a phase velocity v, which is dependent on
medium’s permittivity and permeability. The material constants in general vary according
to frequency (which is known as material dispersion). Therefore electromagnetic waves at
different frequencies travel at different speeds. This effect limits how fast electromagnetic
signals can be transmitted. Electromagnetic signals are always carried by a band of
frequencies. The envelope of the combined wave can bear information which can then be
read by a receiver, given knowledge of a proper key/protocol. The speed of transmission
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of the envelope is called “group velocity” vg.
The formula for computing group velocity can be obtained through the following sim-

plified case study. Consider a wave consisting two plane waves of equal amplitudes E0,
one with angular frequency ω0+∆ω and the other ω0−∆ω, where ∆ω ≪ ω0. Two plane-
wave components have also slightly different phase velocities, or correspondingly (since
v = ω/k) different wave numbers k0 +∆k and k0 −∆k respectively. Polarizations are the
same, which is omitted in the following expression. The combined wave is

E(z, t) = E0 cos[(ω +∆ω)t− (k0 +∆k)z]

+E0 cos[(ω −∆ω)t− (k0 −∆k)z]

= 2E0 cos(∆ωt−∆kz) cos(ω0t− k0z). (6.36)

On RHS, the factor cos(ω0t − k0z) is a quick-varying function (signal-carrying wave, or
carrier), while the factor cos(∆ωt−∆kz) is a slow-varying envelope function (modulating
wave), representing signal. The velocity of the envelope is determined by tracing a constant
phase of the envelope function, i.e. ∆ωt−∆kz = Const. It requires that the overall phase
change owing to a displacement in space ∆z and a time lapse ∆t should be zero, i.e.

∆ω∆t−∆k∆z = 0. (6.37)

The group velocity is then vg =
∆z
∆t

= ∆ω
∆k

. In differential form,

vg =
dω

dk
. (6.38)

6.5.3 Electromagnetic power

Electromagnetic wave transports power. Ultimately, radiation from the Sun sustains all
events and lives on the Earth. Modulation and detection of electromagnetic power is the
basis for e.g. optical information communication and mobile networking. Here, we learn
how to quantify power of an electromagnetic wave, from its field quantities E and H.

We start from the two curl equations in Maxwell’s equations, i.e. Eqs. 6.7 and 6.8.
Through taking dot-product of Eq. 6.7 withH and respectively Eq. 6.8 with E, one obtains

H · (∇×E) = −H · ∂B
∂t

, (6.39)

E · (∇×H) = E · J+E · ∂D
∂t

. (6.40)

Subtracting the two equations, LHS becomes

H · (∇×E)−E · (∇×H) = ∇ · (E×H). (6.41)

Among the terms on RHS, one has

H · ∂B
∂t

= H · ∂(µH)

∂t
=

1

2

∂(µH ·H)

∂t
=

∂

∂t

(

1

2
µH2

)

, (6.42)

E · ∂D
∂t

= E · ∂(ǫE)

∂t
=

1

2

∂(ǫE · E)

∂t
=

∂

∂t

(

1

2
ǫE2

)

, (6.43)

and
E · J = σE2. (6.44)

Therefore,

∇ · (E×H) = − ∂

∂t

(

1

2
ǫE2 +

1

2
µH2

)

− σE2. (6.45)
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Take volume integral and use divergence theorem for LHS. One obtains
∮

S

(E ×H) · ds = − ∂

∂t

∫

V

(

1

2
ǫE2 +

1

2
µH2

)

dv −
∫

V

σE2dv. (6.46)

The terms on RHT have clear physical meanings. The first term on RHS is decrease of
energy stored in electric and magnetic fields in an enclosed volume per unit time. The
second term on RHS is ohmic power loss owing to conducting current in the volume, if
conductivity is non-zero. Consequently, the surface integral on LHS must correspond to
sum of power losses in the volume. By reasoning, E ×H must be surface power density
flowing outwards from the volume, according to conservation of energy. We define the
vector cross product as Poynting vector P , as

P = E×H. (unit: W/m2) (6.47)

In general, P , like E or H, has a time-dependent value. However, the oscillations
occur so fast such that one cares more for time-averaged Poynting vector Pav. If an
electromagnetic wave has oscillating period T , Pav can be expressed as

Pav =
1

T

∫ T

0

P dt. (6.48)

Using phasor expressions of E and H fields, after a purely mathematical derivation, one
can arrive at an very simple expression of Pav as

Pav =
1

2
ℜ(E×H∗), (E and H are phasors) (6.49)

where ∗ is complex conjugate.
Pav can be computed on any surface where an electromagnetic field exists. One can

then integrate Pav over the surface area (through dot product) to calculate total power
flowing through the surface (unit W), i.e.

P =

∫

S

Pav · ds. (6.50)

As a specific example, one can integrate Pav over an spherical surface enclosing a source
to find out the power emitted by the source. As another example, for a laser beam in
free space or light propagating in a waveguide (e.g. optical fiber), electromagnetic wave
is propagating in one direction. One can then compute Pav on a cut-plane normal to the
wave propagation direction, and thereby to compute the total beam power.

For a plane wave, its power per unit cross-sectional area, which is usually referred to
as intensity I, can be readily calculated through the phasor expressions of E and H fields
(Eqs. 6.22 and 6.23). Since E and H are everywhere perpendicular to each other, Pav is

Pav =
1

2
ℜ(E×H∗)

=
1

2
ℜ{E0 exp [i(−kz + ωt)] x̂} × {H0 exp [−i(−kz + ωt)] ŷ}

=
1

2
E0H0ẑ =

1

2
E0

E0

Z
ẑ =

1

2

√

ǫ

µ
E2

0 ẑ.

=
1

2
ǫ0c

√

ǫr
µr

E2
0 ẑ. (6.51)

Hence wave intensity (unit W/m2) is

I =
1

2
ǫ0c

√

ǫr
µr

E2
0 . (6.52)
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6.6 Dipole radiation

We have so far excluded the source terms in the Maxwell’s equations and examined how
the equations lead to a source-free wave equation with basic plane-wave solutions. With
sources present, Maxwell’s equations can be used to determine electromagnetic field gen-
erated by the sources. One elemental source is a harmonically oscillating current in a
very short straight piece of conductor, which we call as an electric dipole, or sometimes
Hertzian dipole.

Derivation of electromagnetic field based on time-varying charge and/or current sources
requires introduction of new variables called electric and magnetic potentials. The latter,
magnetic potential, has been intentionally skipped in Chap. 4. In general, a point charge
(q, scalar) generates an electric potential distribution (V , scalar) in its surrounding. Spa-
tial variation in V (more specifically ∇V ) leads to electric field distribution in space.
Magnetic field can be obtained by taking curl of the electric field. In analogy, a very
short linear current (Idl, vector) generates a magnetic potential distribution (A, vector,
directed along dl) in its surrounding. Curl of A leads to magnetic field distribution, and
electric field can be consequently obtained by taking curl of the magnetic field.

Assume a current source i(t) = ℜ(I exp iωt), oriented along z in free space at origin,
and its length is much shorter than operating wavelength. The vector potential generated
is

A =
µ0Idl

4π

exp(−ik0R)

R
ẑ, (6.53)

where R is magnitude of position vector R, and k0 is free-space wave number.
Magnetic field can be obtained by taking curl of the vector potential, in spherical

coordinate. It turns out to have only azimuthal component, as

H =
1

µ0

∇×A

= −Idl

4π
k20 sin θ

[

1

ik0R
+

1

(ik0R)2

]

exp(−ik0R) φ̂. (6.54)

Here θ is the angle between R and z axis.
Electric field is obtained as

E =
1

iωǫ0
∇×H

= −Idl

4π
Z0k

2
02 cos θ

[

1

(ik0R)2
+

1

(ik0R)3

]

exp(−ik0R) r̂

− Idl

4π
Z0k

2
0 sin θ

[

1

ik0R
+

1

(ik0R)2
+

1

(ik0R)3

]

exp(−ik0R) θ̂. (6.55)

Radiation field by an electric dipole is shown in Fig. 6.3. At a very distant place, i.e.
R≫ λ/2π or k0R≫ 1, one considers only the 1/(ik0R) term in the brackets. The far-field
electromagnetic wave is therefore

E = i
Idl

4π
Z0k0 sin θ

exp(−ik0R)

R
θ̂, (6.56)

H = i
Idl

4π
k0 sin θ

exp(−ik0R)

R
φ̂. (6.57)

Electric and magnetic fields are perpendicular to each other, with amplitudes different
by a factor of Z0, and propagate away from the source. The maximum radiation is along
θ = π/2 (equator) direction, and zero radiation is found along the polar axis. The radiated
wave asymptotically approaches a plane wave for a local observer at a far distance.
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z

Figure 6.3: Left: Radiation from an electric dipole (green arrow). Electric field (with θ
and r components) is shown in arrows. Magnetic field (with only φ component) is shown
in color (red for positive and blue for negagive). Right: Zoom-in view.

The near-field electromagnetic wave, if one focuses on electric field, is dominated by the
1/(ik0R)3 terms in brackets. At near-field regime, i.e. R ≪ λ/2π, electric-field strength
varies strongly as a function of distance (e.g. increases 8 times when distance is reduced
by half).

Radiation power by oscillating electric dipole

Calculate total electromagnetic power emitted by an electric dipole of length d car-
rying a current I with an angular frequency ω. (Exercise 11-4)

Solution: Use far field for calculation. The phasor expressions for a dipole is shown
in Eqs. 6.56&6.57. One can well use substitution C = Idl

4π
k0 to simplify expressions.

From the time-averaged Poynting vector formula, Eq. 6.49, one can calculate the
surface power density on a spherical surface at R = R0 enclosing the dipole as

Pav =
1

2
ℜ(E×H∗)

=
1

2
ℜ
{[

iCZ0 sin θ
exp(−ik0R0)

R0
θ̂

]

×
[

−iC sin θ
exp(ik0R0)

R0
φ̂

]}

=
1

2

C2Z0

R2
0

sin2 θ r̂.

Total power is integral of this surface power density on the spherical surface at
R = R0.

P =

∮

S

Pav · ds =
∮

S

1

2

C2Z0

R2
0

sin2 θ r̂ · ds

=
1

2

C2Z0

R2
0

∫

θ

∫

φ

sin2 θR2
0 sin θdθdφ =

1

2
C2Z0

∫

θ

sin3 dθ

∫

φ

dφ

=
1

2
C2Z0 ·

4

3
· (2π) = 4

3
πC2Z0.

The result is irrelevant to R0 value, as long it is relatively far from the dipole.
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6.7 Boundary conditions

Similar to electrostatics and magnetostatics, boundary conditions can be obtained by ex-
amining the Maxwell’s equations in integral form just across a material interface. The
line-integral equations lead to conditions for tangential field components; and the surface-
integral equations lead to conditions for normal field components. It turns out the bound-
ary conditions are the same as in static cases, i.e.

Et1 = Et2,

Ht1 −Ht2 = Js,

Dn1 −Dn2 = ρs,

Bn1 = Bn2.

(6.58)

(6.59)

(6.60)

(6.61)

For lossless dielectric media (no free charge or surface current), one sees that all Et,
Ht, Dn and Bn fields are continuous across interface. Conditions for the other fields (e.g.
Dt, Bt, En, and Hn) can be obtained through constitutive relations.

For perfect conductors (gold, silver, copper, etc), we assume they have an infinite
conductivity. Electric field within them is zero as otherwise there would be infinite current
density. In time-varying situation, magnetic field is also zero since (E,D) and (B,H)
mediate each other. Therefore, all fields in a perfect conductor are zero. In general, an
incoming electromagnetic wave cannot penetrate into a perfect conductor; it is reflected
backward (principle of household mirror). Field at the interface, according to boundary
conditions in Eqs. 6.58-6.61, must fulfill

Et = 0,

Ht = Js,

Dn = ρs,

Bn = 0.

(6.62)

(6.63)

(6.64)

(6.65)

Physically, an effective surface current (Js) and surface charge (ρs) are generated on con-
ductor surface to completely shield the incident electromagnetic wave. In practice, owing
to finite conductivities of metals, field can penetrate slightly into metals. The depth of
penetration is called skin depth, which we do not discuss in depth here.



Chapter 7

Reflection and Refraction

In the previous chapter we have learned basic form of electromagnetic wave propagation
in a homogeneous medium. Media usually have finite extent. This chapter describes
reflection and refraction (transmission) of an electromagnetic wave upon meeting a planar
interface. When applied to waves at optical frequencies (wavelength 400-700 nm), the
discussion is relevant to many visual effects that we observe in our daily lives.

Imagine a plane wave propagating in medium 1 (ǫ1, µ1) and meets a flat interface
into medium 2 (ǫ2, µ2). We consider the general case where the propagation direction
has an angle of θi against the surface normal of the interface plane. We call θi as angle
of incidence. Very importantly, analysis of such a physical problem always starts with
identifying the plane of incidence. This plane is defined by two vectors — the wavevector
of the incident plane wave k and the surface-normal unit vector of the interface plane n̂.
The plane of incidence is always perpendicular to the interface plane. Then, we can impose
an appropriate Cartesian coordinates accordingly. In the following, we say the interface
is z = 0 plane and the plane of incidence is y = 0 plane. The wave is propagating in xz
plane. The structure as well as wave are invariant in y direction, which means we are now
dealing with a 2D problem.

Let’s see how the problem can be simplified by setting ∂
∂y

= 0 in the source-free time-
harmonic Maxwell’s equations. Only two curl equations are needed (Eqs. 6.12 and 6.13).
Each of the curl equations can be broken into three equations in the Cartesian coordinate.
That is, Eqs. 6.12&6.12 become respectively



































∂Ez

∂y
− ∂Ey

∂z
= −iωµHx

∂Ex

∂z
− ∂Ez

∂x
= −iωµHy

∂Ey

∂x
− ∂Ex

∂y
= −iωµHz ,



































∂Hz

∂y
− ∂Hy

∂z
= iωǫEx

∂Hx

∂z
− ∂Hz

∂x
= iωǫEy

∂Hy

∂x
− ∂Hx

∂y
= iωǫEz .

By getting rid of y dependences, i.e. ∂
∂y

= 0, one has
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−∂Ey

∂z
= −iωµHx
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− ∂Ez

∂x
= −iωµHy

∂Ey

∂x
= −iωµHz ,































−∂Hy

∂z
= iωǫEx

∂Hx

∂z
− ∂Hz

∂x
= iωǫEy

∂Hy

∂x
= iωǫEz .

It is noticed the equations can be re-organized into two groups, one containg field
components (Ey,Hx,Hz) and the other containing (Hy, Ex, Ez). These two sets of field
components represent two light polarizations, each propagating without affecting the other.
The two equation groups are

TE































−∂Ey

∂z
= −iωµHx,

∂Ey

∂x
= −iωµHz,

∂Hx

∂z
− ∂Hz

∂x
= iωǫEy,

(7.1)

(7.2)

(7.3)

TM































∂Ex

∂z
− ∂Ez

∂x
= −iωµHy,

−∂Hy

∂z
= iωǫEx,

∂Hy

∂x
= iωǫEz

(7.4)

(7.5)

(7.6)

Refer to Fig. 7.1. Wave with the first set of field components in Eqs. 7.1-7.3 has
transverse-electric (TE) components (electric field perpendicular to the plane of incidence),
and wave with the second set of field components in Eqs. 7.4-7.6 has transverse-magnetic
(TM) polarization (magnetic field perpendicular to the plane of incidence). An arbitrarily
polarized incident plane wave can always be decomposed into TE and TM polarizations.
Study of an electromagnetic plane wave crossing an interface can be studied separately
according to its polarization.
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Figure 7.1: Left: Plane wave incidence with TE polarization. Right: TM polarization.
Convention: upon reflection, reflected wave has electric field oriented in the same direction
as incident wave (best understood at normal incidence).

7.1 TE polarization

A closer look at the equations for TE components tells that Hx and Hz can be written in
terms of Ey. If expressions for Hx and Hy are substituted into Eq. 7.3, one has the wave
equation based on only Ey

∂2Ey

∂x2
+

∂2Ey

∂z2
+ k2Ey = 0. (7.7)

Refer to Fig. 7.1 (left panel). In medium 1 (upper domain), the incident plane wave is a
solution of the equation as

Ei
y = Ei

y0 exp(−ikixx+ ikizz), (7.8)
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where superscript i is used for denoting incident wave. Without loss of generality, we set
interface location at z = 0 as well as zero initial phase for plane wave solutions. Both
kx and kz are positive so the plane wave is propagating along +x and −z directions,
conforming to Fig. 7.1. There must be kix

2
+kiz

2
= k21 = k20ǫr1µr1. Moreover, kix = k1 sin θi

and kiz = k1 cos θi.
The reflected wave, according to convention indicated in Fig. 7.1, shall have a general

plane wave solution as
Er

y = Er
y0 exp(−ikrxx− ikrzz). (7.9)

krx and krz are positive. We have reversed the sign before (ikrzz), because the reflected wave
has to propagate away from the interface. In medium 2 (lower domain), the transmitted
wave is a plane wave solution to Eq. 7.7 as

Et
y = Et

y0 exp(−iktxx+ iktzz). (7.10)

ktx and ktz are positive, and there must be ktx
2
+ ktz

2
= k22 = k20ǫr2µr2.

Ey is tangential to the interface. Its value has to be continuous across the interface,
i.e. (Ei

y + Er
y)|z=0+ = Et

y|z=0− . From Eqs. 7.8-7.10, one has

Ei
y0 exp(−ikixx+ ikiz0) + Er

y0 exp(−ikrxx− ikrz0) = Et
y0 exp(−iktxx+ iktz0). (7.11)

or
Ei

y0 exp(−ikixx) + Er
y0 exp(−ikrxx) = Et

y0 exp(−iktxx). (7.12)

The expression effectively is asking that Ey has to be continuous across the interface at
all x positions along the interface. The only chance for this to be satisfied is

kix = krx = ktx. (7.13)

The incident, reflected, and transmitted waves have to vary in phase along x direction.
The above condition decides the reflection and transmission angles. First, kix = krx leads
to k1 sin θi = k1 sin θr, which means θi = θr. For transmission, kix = ktx leads to k1 sin θi =
k2 sin θt, which can be further written as

√
ǫr1µr1 sin θi =

√
ǫr2µr2 sin θt. (7.14)

In optics, materials are usually non-magnetic, i.e. µr = 1 and ǫr = n2, where n is defined
as refractive index. The above equation is simply the so-called Snell’s law

n1 sin θi = n2 sin θt. (7.15)

Equation 7.12 can now be simplified to

Ei
y0 + Er

y0 = Et
y0. (7.16)

Ei
y0 is known (incidence). To calculate the other two amplitudes, we need another equa-

tion, which one can establish using continuity of another tangential field component, Hx.
According to Eq. 7.1, Hx can be calculated based on Ey. Imposing (H i

x +Hr
x) = Ht

x at
z = 0 and taking kix = krx = ktx ≡ kx, one has

kiz
µ1

Ei
y0 −

krz
µ1

Er
y0 =

ktz
µ2

Et
y0. (7.17)

Since kiz = krz , one has
kiz
µ1

(

Ei
y0 − Er

y0

)

=
ktz
µ2

Et
y0, (7.18)
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or

Ei
y0 − Er

y0 =
ktz
kiz

µ1

µ2
Et

y0, (7.19)

or (through kiz = k1 cos θi = k0
√
ǫr1µr1 cos θi and intrinsic impedance Z =

√

µ/ǫ),

Ei
y0 − Er

y0 =
Z1 cos θt
Z2 cos θi

Et
y0. (7.20)

From Eqs. 7.16 and 7.20, one can obtain reflection and transmission coefficients re-
spectively as

rTE =
Er

y0

Ei
y0

=
Z2 cos θi − Z1 cos θt
Z2 cos θi + Z1 cos θt

,

tTE =
Et

y0

Ei
y0

=
2Z2 cos θi

Z2 cos θi + Z1 cos θt
.

(7.21)

(7.22)

The two coefficients fulfill the relation 1 + rTE = tTE.
At optical frequencies (µr = 1 for both media, ǫr = n2), one has

rTE =
n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

,

tTE =
2n1 cos θi

n1 cos θi + n2 cos θt
.

(7.23)

(7.24)

7.2 TM polarization

Refer to Fig. 7.1 (right panel). For TM polarization, one has a 2D wave equation similar
to Eq. 7.7 based on Hy. The incident plane wave in medium 1 is

H i
y = H i

y0 exp(−ikixx+ ikizz). (7.25)

The reflected wave, according to convention indicated in Fig. 7.1 (right panel) is

Hr
y = −Hr

y0 exp(−ikrxx− ikrzz), (7.26)

And the transmitted wave is

Ht
y = Ht

y0 exp(−iktxx+ iktzz). (7.27)

The continuity condition for Hy across the interface (z = 0) gives rise to

H i
y0 exp(−ikixx)−Hr

y0 exp(−ikrxx) = Ht
y0 exp(−iktxx). (7.28)

Again, one must have kix = krx = ktx. And from this equation, one knows the reflection
and transmission angles, which are exactly the same as in the TE case. Snell’s law applies
regardless of polarization.

Equation 7.28 is further reduced to

H i
y0 −Hr

y0 = Ht
y0. (7.29)

H i
y0 is input and its value is known. To find out the other two amplitudes, we need another

equation – the continuity of Ex component at the interface. From Eq. 7.5, one can obtain
Ex field expressions in terms of Hy amplitudes. By letting Ex amplitudes at two sides
equal at z = 0, one has

H i
y0 +Hr

y0 =
Z2 cos θt
Z1 cos θi

Ht
y0. (7.30)



CHAPTER 7. REFLECTION AND REFRACTION 70

From Eqs. 7.29 and 7.30, one has

Hr
y0

H i
y0

=
Z2 cos θt − Z1 cos θi
Z2 cos θt + Z1 cos θi

, and
Ht

y0

H i
y0

=
2Z1 cos θi

Z2 cos θt + Z1 cos θi
. (7.31)

Reflection and transmission coefficients are defined after ratios between electric fields as,

rTM =
Er

0

Ei
0

=
Hr

y0

H i
y0

=
Z2 cos θt − Z1 cos θi
Z2 cos θt + Z1 cos θi

,

tTM =
Et

0

Ei
0

=
Z2

Z1

Ht
y0

H i
y0

=
2Z2 cos θi

Z2 cos θt + Z1 cos θi
.

(7.32)

(7.33)

The two coefficients fulfill the relation 1 + rTM = tTM
cos θt
cos θi

.

At optical frequencies (µr = 1 for both media, ǫr = n2), one has

rTM =
n1 cos θt − n2 cos θi
n1 cos θt + n2 cos θi

,

tTM =
2n1 cos θi

n1 cos θt + n2 cos θi
.

(7.34)

(7.35)

7.3 Reflectance and transmittance of beam power

A beam of electromagnetic wave (e.g. a laser beam) can in many cases be treated as a
plane wave. Refer to Fig. 7.2. The total power of an incident beam will be divided upon
reflection and transmission upon meeting a material interface.

θi

θt

wi

wt

Figure 7.2: Reflectance and transmittance of a light beam.

Ratio between reflected beam power with respect to that of incidence, defined as
reflectance, is calculated as R = IrSr

IiSi
. I is plane-wave intensity (Eq. 6.52), and S refers to

beam cross-sectional area. Note that the reflected beam has the same cross-sectional area
as the incident beam, or Si = Sr. Recall that plane-wave intensity is I = 1

2
ǫ0c

√

ǫr
µr
E2

0 .

Reflected and incident beams are in identical medium. Hence,

R =
IrSr

IiSi
=

Er
0
2

Ei
0
2
= r2. (7.36)

It is valid for both TE and TM cases.
The transmitted beam has an increased beam width in one dimension, from the inci-

dent beam width wi to wt (see Fig. 7.2), and wt

wi
= cos θt

cos θi
. Hence, St

Si
= cos θt

cos θi
. In addition,

the transmitted beam is in a different medium. Therefore, transmittance, or ratio between
transmitted beam power to incident power, is

T =
ItSt

IiSi
=

Et
0
2

Ei
0
2

√

ǫr2
µr2

√

ǫr1
µr1

cos θt
cos θi

= [for optics] = t2
n2

n1

cos θt
cos θi

. (7.37)
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If both media are lossless, from conservation of energy, one has R+ T = 1.

7.4 Normal incidence

At θi = 0, the incident wave’s electric and magnetic fields are both parallel to the interface.
Therefore, they are indifferent from each other. One can also see that the reflection and
transmission coefficients become the same (setting also θt = 0), as

r =
Z2 − Z1

Z2 + Z1

, (7.38)

t =
2Z2

Z2 + Z1
. (7.39)

At optical frequencies (µr = 1), one has Z =
√

µr/ǫr = 1/n. Therefore,

r =
n1 − n2

n1 + n2

, (7.40)

t =
2n1

n1 + n2
. (7.41)

It is now easier to see that when an electromagnetic wave, or rather light, is reflected by an
interface, r can be negative or equivalently the reflected wave acquires a π phase change
if the second medium has a higher refractive index.

7.5 Total internal reflection

Here we limit our discussion to optics where materials have no magnetic responses. From
Snell’s law, n1 sin θi = n2 sin θt, one sees that for two fixed media with n1 > n2, one shall
have in general sin θi < sin θt or θi < θt for the equation to be satisfied. However, sin θt has
an upper limit of 1, or equivalently θt has an upper limit of π/2. This critical condition
can always be met by an appropriate incident angle, which we call critical incident angle
θc. Beyond the critical angle, no transmitted light is able to satisfy the required phase
matching condition along the interface. Therefore, incident light will be totally reflected.
We call such phenomenon as total internal reflection. Critical angle can be determined by
setting θt = π/2. The Snell’s relation gives n1 sin θc = n2. Therefore, one has

sin θc =
n2

n1

, (7.42)

which is applicable to both TE and TM incidence cases.

7.6 Brewster angle

There exists a special scenario for TM polarization where an incident electromagnetic
wave can pass through an interface without any reflection. This happens only at a certain
incident angle, which is referred to as Brewster angle θB. The scenario is fulfilled by
setting the numerator in Eq. 7.34 to zero. At optical frequencies (µr = 1 for all media),
one can use refractive indices. From numerator in Eq. 7.34, one has

n1 cos θt = n2 cos θB. (7.43)

Multiplying the equation with Snell’s law n2 sin θt = n1 sin θB, one has sin θt cos θt =
sin θt cos θt, or sin(2θt) = sin(2θB). Therefore θB + θt = π/2. At Brewster incident angle,
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transmitted TM light beam would form a right angle to reflected light beam (of zero
intensity). Put this condition back to Eq. 7.43, one has

tan θB =
n2

n1

. (7.44)

Figure 7.3: Left: Reflection coefficient for light travelling from air (n1 = 1) to glass
(n2 = 1.5). Right: From glass to air.

Extended discussion: Figure 7.3 (left panel) shows graphically dependence of reflection
coefficient on incident angle when light travels from air (refractive index n1 = 1) to glass
(n2 = 1.5). Reflection coefficients for TE and TM polarizations are calculated through
Eqs. 7.23 and 7.34, respectively. TE light has negative reflection coefficient; therefore, the
reflected light undergoes π phase shift. Reflection coefficient for TM light is negative at
incident angle smaller than Brewster angle θB = 56.3◦ (π phase shift upon reflection) and
positive afterwards (no phase change upon reflection).
Reversely, if light travels from glass to air, reflection-coefficient curves for two polarizations
are shown in Fig. 7.3 (right panel). Both polarizations experience total internal reflection
after incident angle of θc = 41.8◦. Before the critical angle, TE light has positive reflection
coefficient; therefore, no phase shift will occur for reflected light. Reflection coefficient for
TM light is positive at incident angle smaller than Brewster angle θB = 33.7◦ (no phase
shift upon reflection) and negative afterwards (π phase change upon reflection).

θi

n2

n1

E

H

Figure 7.4: Schematic for a light beam incident on a detector.

Light power received by photodetector

Example: See Fig. 7.4. A light beam (plane electromagnetic wave) with indicated
polarization is incident on a photodetector at an incident angle θi = 60◦. The
light transmits from air (index n1 = 1) to a lossless glass protecting layer (blue
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color, index n2 = 1.5). The refracted light then gets completely absorbed by the
detecting layer (black color). The incident light has an electric field amplitude E0 =
50 V/m. Calculate electromagnetic power density detected by the photodetector in
unit mW/cm2. [Re-exam 2019]

Suggested steps: (1) Determine light polarization (TM). (2) Calculate through
Snell’s law θt in the glass layer. (3) Calculate transmission coefficient t, hence
transmitted electric-field amplitude. (4) Calculate transmitted light intensity It.
(5) Calculate surface power density on detecting layer based on It and θt (beam
cross-sectional area spreads out on detecting surface by a factor of 1/ cos θt.)
Final solution: 0.166 mW/cm2.

7.7 Reflection by perfect conductor

Electromagnetic wave interaction with a perfect conductor surface is an extreme scenario
of the reflection/transmission phenomenon discussed above. Perfect conductor (σ = ∞)
has zero intrinsic impedance, i.e. Z = 0. Let’s see why. A conductor (not necessary
perfect yet) with permittivity ǫ and conductivity σ can be viewed as a material with
complex permittivity. This can be understood from Maxwell’s equation 6.13. Presence of
an electric field will generate a current density J = σE. Hence the equation becomes

∇×H = σE+ iωǫE = iω
(

ǫ+
σ

iω

)

E. (7.45)

A conductor therefore has a complex effective permittivity

ǫc = ǫ+
σ

iω
= ǫ

(

1 +
σ

iωǫ

)

. (7.46)

A criteria for being a good conductor is σ ≫ ωǫ. Hence, ǫc ≈ σ
iω
. Intrinsic impedance for

a good and even perfect conductor becomes

Z =

√

µ

ǫc
≈

√

µ
σ
iω

=

√

iωµ

σ
= [if perfect conductor, i.e. σ =∞] = 0. (7.47)

The formulas for calculating reflection and transmission coefficients, i.e. Eqs. 7.21-
7.22 and 7.32-7.33, are still valid in the limiting case of Z2 = 0. One finds reflection
and transmission coefficients for an electromagnetic wave incident on a perfect conductor
surface simply as

r = −1, t = 0. (7.48)

The wave is totally reflected back (with θr = θi), acquring a phase shift of π. No field will
penetrate into a perfect conductor.

A more detailed analysis through boundary conditions governing field on perfect-
conductor surface (Section 6.7) can lead to exact field expressions for reflected wave,
given an incident wave. For TE polarization, if the incident wave is (i.e. Eq. 7.8)

Ei
y = Ey0 exp(−ikxx+ ikzz), (7.49)

the reflected wave is
Er

y = −Ey0 exp(−ikxx− ikzz). (7.50)

The total electric field in the upper domain will form a standing wave.
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In case of normal incidence (kx = 0, kz = k0, assuming air for medium 1), one has
total electric field

Ey = Ei
y +Er

y = Ey0 exp(ik0z)− Ey0 exp(−ik0z) = 2iEy0 sin(k0z). (7.51)

Appending time-harmonic dependence and taking real part, one has instantaneous standing-
wave field as

Ey = −2Ey0 sin(k0z) sin(ωt). (7.52)



Chapter 8

Inteference and Diffraction

“Interference” is a phenomenon that associated with all types of waves, including elec-
tromagnetic wave. Interference is a direct result of the superposition principle — When
multiple waves are present in a common spatial region, total wave amplitude can locally be
strengthened or weakened, depending on phase values of the individual incoming waves.
A criteria for having interference effect is that each of the input waves should be coherent,
or in the simplest case, can be described as cosine functions. While interference can occur
for dissimilar wave frequencies, the most basic interference phenomena are achieved with
waves with the same frequency. Specifically to electromagnetic waves, the input waves
shall also have the same polarization. In optics, interference is closely associated with
“fringe pattern”, or mixture of bright and dark light intensities which one can observe
with naked eyes. It was such fringe patterns resulted from sunlight interacting with fine
objects that made Thomas Young in early 1800s claim that light is a kind of wave. Young’s
experiments challenged Isaac Newton’s century-old description of light as particles, and
revived the wave theory of light (which was put forward by Christiaan Huygens earlier
in 1678). “Diffraction”, as far as this chapter concerns, generally refers to the tendency
of broadening of an electromagnetic beam, such as light passing through a narrow slit.
As will be shown in this chapter, diffraction is intimately connected to interference, and
can be treated as interference of infinite number of point sources. In the last part of the
chapter, we will examine how light interacts with a transmissive-type “grating”, a periodic
arrangement of narrow slits. One will see that the transmitted wave is rather interference
of diffracted beams from individual slits.

8.1 Huygens’ wave theory of light

Christiaan Hygens formulated intially wave theory of light. Huygens argued that any point
at a light wave’s wavefront acts as a point source that emits spherical wave. Superposition
of these spherical “wavelets” collectively determines wavefronts at a later spatial position.
A numerical verification of the Huygens principle is illustrated in Fig. 8.1 (left panel).

It turns out that passing light through a fine pinhole or slit serves as a simple yet
effective method to get a clean point- or respectively line-like light source. Since almost
all sorts of light exhibit certain degree of coherence if observed within a very small spatial
region, light passing through a pinhole or narrow slit can be coherent. Based on fine slits,
Thomas Young was able to experimentally demonstrate interference effect of sunlight
(Fig. 8.1, right panel). A slit on the first screen creates a line-like source with cylindrical
wavefront. The two slits on the second screens serve as two coherent line sources, which
can effectively interfere and create a fringe pattern.
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Figure 8.1: Left: numerical verification of Huygens’ principle. A plane electromagnetic
wave is incident on a metal screen with a linear slit opening (infinite along paper-normal
direction). The slit has a vertical width equal to the wavelength. The wave passing through
the slit has a nearly circular (more exactly cylindrical) wavefront. Color represents the
plane wave’s electric field, which is polarized in paper-normal direction. Right: Young’s
double-slit experiment.

8.2 Interference: two coherence sources

z

x

O

d

P

r

d

Figure 8.2: Interference of two point (line) sources.

Refer to Fig. 8.2. Two line sources (slits) are separated by a distance of d located
at origin (d is very small). Each source emits a cylindrical wave towards a cylindrical
screen at distance z = r. We assume r ≫ d. Wave amplitude from each slit, as revealed
in Fig. 8.1 (left panel), decreases as the wave propagates. The decrease in amplitude is
about the same for both sources. By ignoring the common decrease in amplitude, one can
treat waves from the two sources as plane waves of equal amplitudes at P on the screen.
In addition, we consider P to be very close to wave propagation axis, or θ ≈ 0. Therefore,
optical path lengths from the two sources to P differ by d sin θ ≃ dθ. Electric field (Ey

component only) at P is superposition of fields from two sources, as

E = E0 exp[i(−kr + ωt)] +E0 exp{i[−k(r + dθ) + ωt]}
= E0 exp[i(−kr + ωt)] +E0 exp[i(−kr + ωt− kdθ)]

= E0 exp

[

i

(

−kr + ωt− kdθ

2
+

kdθ

2

)]

+ E0 exp

[

i

(

−kr + ωt− kdθ

2
− kdθ

2

)]

= E0 exp

[

i

(

−kr + ωt− kdθ

2

)][

exp

(

−ikdθ
2

)

+ exp

(

i
kdθ

2

)]

.

The instantensous field is real part of the above, hence

E = E0 cos

(

−kr + ωt− kdθ

2

)[

cos

(

−kdθ

2

)

+ cos

(

kdθ

2

)]

= 2E0 cos

(

−kr + ωt− kdθ

2

)

cos

(

kdθ

2

)

(8.1)
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Imagine one places a cylindrical detecting screen with radius r centered to origin. The
first cosine function on RHS represents quick oscillation of field in time, giving to all-white
exposure to the screen; the second cosine function modulates the field along θ direction,
resulting in fringes. Note that for very small θ, the cylindrical screen is approximately a
flat screen. Wave intensity I is proportional to E2. On the screen, one has recorded wave
intensity

I = 4I0 cos
2

(

kdθ

2

)

= 2I0 [1 + cos(kdθ)] . (8.2)

I0 is the intensity on the screen due to a single source. Bright fringes have peak intensity
4I0, and they happen when the condition kdθ = m · (2π) (m is integer) is fulfilled. Phys-
ically, fringe maxima correspond to path-length difference dθ at multiple of wavelengths.
At θ = 0 (when m = 0), there is always maximum intensity. The (angular) distance
between two fringe maxima is calculated as kd∆θ = 2π, or

∆θ =
λ

d
. (8.3)

8.3 Interference: many coherent sources
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Figure 8.3: Interference of many point (line) sources.

Refer to Fig. 8.3. If there are N such sources with source separation d, one has E
phasor field at observation point

E =

N−1
∑

n=0

E0 exp [i(−kr + ωt+ nδ)] (δ = kdθ) (8.4)

= E0 exp [i(−kr + ωt)]
N−1
∑

n=0

exp(inδ), (8.5)

where the geometric series

N−1
∑

n=0

exp(inδ) =
exp(iNδ) − 1

exp(iδ) − 1
(8.6)

=
exp

(

iNδ
2

)

exp
(

iδ
2

)

exp
(

iNδ
2

)

− exp
(

− iNδ
2

)

exp
(

iδ
2

)

− exp
(

− iδ
2

) (8.7)

= exp

[

i(N − 1)δ

2

]

sin
(

Nδ
2

)

sin
(

δ
2

) . (8.8)



CHAPTER 8. INTEFERENCE AND DIFFRACTION 78

Insert the above into Eq. 8.5. One has

E = E0 exp

[

i

(

−kr + ωt+
(N − 1)δ

2

)]

sin
(

Nδ
2

)

sin
(

δ
2

) . (8.9)

Taking real part, one has instantaneous field as

E = E0 cos

[(

−kr + ωt+
(N − 1)δ

2

)]

sin
(

Nδ
2

)

sin
(

δ
2

) . (8.10)

Again, imagine there is a cylindrical screen with radius r centered to origin. The cosine
function represents quick varying field in time, giving rise to all-white exposure. The ratio
between two sine functions modulates the field, giving rise fringes. Intensity distribution
on the screen is

I = I0
sin2

(

Nδ
2

)

sin2
(

δ
2

) . (8.11)

Figure 8.4: Intensity on a cylindrical screen for N = 5 (left) and N = 10 (right).

In the case of N = 5 (or 10), we have the fringes (dependence on δ/2) shown in Fig. 8.4.
There are high-intensity peaks (bright fringes) separated by relatively weaker peaks and
dark fringes. The highest peaks occur when denominator in Eq. 8.11 becomes zero, or
δ
2
= mπ (m is an integer). The peak intensities are not infinite because the numerator

also becomes zero at these conditions. By taking a limit, one sees that the peak intensity
is N2I0. From the above condition, one gets the angular distance between two highest
peaks as (again)

∆θ =
λ

d
. (8.12)

8.4 Diffraction: wave through a slit

An electromagnetic wave can’t be limited to an arbitrarily small cross-sectional size; it
tends to spread out as a result of diffraction. Refer to Fig. 8.5 (left panel), the classic
example for diffraction is the single-slit experiment, where a coherent light passing through
a narrow slit is found to diverge. The phenomenon can be seen with our naked eyes if
the slit width is comparable to the light wavelength (a rule of thumb is < 100λ). The
beam after the slit is no longer a clear image of the slit, but predominantly a high-
intensity line, plus some weaker lines on two sides. The dominant high-intensity line has a
width larger than slit width — the beam is diverging with a divergence angle θd. Similar
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phenomenon occurs when light passes through a small pinhole (Fig. 8.5, right panel).
Generally speaking, the more tightly one wants to limit a coherent light beam, the larger
will be the divergence angle.

d

Figure 8.5: Left: Light diffraction by a narrow slit. Right: Diffraction by a pinhole.

Physically, light at the slit opening can be treated as infinite number of coherent point
sources (Huygen’s principle). Therefore, wave transmission through a single slit can be
treated as interference of waves emitted by these point sources. This equivalence allows
us to proceed with the solutions which we obtained in the previous section. The problem
setting is now: there exist linearly arranged N (N → ∞) point sources with nearest-
neighbor separation d (d→ 0) such that the product Nd = D, where D is the slit width.
With this setting, intensity at the detecting screen due to a single source I0 approaches
zero. Along θ = 0 direction, one expects the maximum intensity, i.e. Im = N2I0, owing to
constructive interference. Further, since d → 0, one has δ → 0; therefore sin(δ/2) = δ/2.
If one continues from Eq. 8.11, one has

Islit = I0
sin2

(

Nδ
2

)

sin2
(

δ
2

) = I0
sin2

(

Nδ
2

)

(

δ
2

)2
= N2I0

sin2
(

Nδ
2

)

(

Nδ
2

)2
. (8.13)

If one additionally defines u = Nδ
2

= Nkd sin θ
2

= Nkdθ
2

= πDθ
λ

, one can write the wave
intensity after a slit as

Islit = Im
sin2 u

u2
.

(

= Im sinc2u
)

(8.14)

The numerator tells that there shall be bright and dark fringes, while the denominator
damps the overall intensity as u deviates from 0. A plot of the intensity after the slit is
shown in Fig. 8.6. It is not a sharp image of the slit — boundaries are blurred, and there
are fringes extending to both sides.

The main intensity peak has half-width u = π or πDθ
λ

= π, which defines the divergence
angle of the beam as

θd =
λ

D
. (8.15)

Smaller aperture and longer wavelength lead to larger divergence. This value for divergence
angle is exact for line slits, and gives a good approximation to aperture in other shapes, or
even beam in other intensity profiles (we have only considered input light with constant
amplitude in the aperture).

8.5 Grating: wave through many slits

Grating is an optical device that can, in general, convert a laser beam into several beams
propagating in different directions. For a transmissive-type grating, it can simply be made
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Figure 8.6: Intensity recorded on cylindrical screen for light passing through a slit.

of a linear array of identical slits. So far, we have obtained solutions for light intensity
interferenced by many point sources, as well as for light intensity diffracted by a single
slit. We can make use of these knowledges to get solution for light passing through a
transmissive grating. The way to do this is simply to replace I0 in Eq. 8.11 by Islit in
Eq. 8.14. The result is

Igrating = Islit
sin2

(

Nδ
2

)

sin2
(

δ
2

) = Im
sin2 u

u2
sin2

(

Nδ
2

)

sin2
(

δ
2

) . (8.16)

As in the previous section, u = πDθ
λ

and δ = kd sin θ = kdθ = 2πdθ
λ

. N is number of slits;
D is slit width; and d is slit separation (grating period).

For illustration, we choose N = 5 and D = d/4. The latter leads to δ = 8u. Light
intensity after the grating is as shown in Fig. 8.7. A beam becomes multiple beams
propagating in different directions with enhanced peak intensities (maximum N2 = 25
times compared to a single slit case). Its outer envelope is defined by the profile in Fig. 8.6
(diffraction by a single slit), and the fine high-intensity beams are owing to interference
by N slits as in Fig. 8.4 (N = 5, left panel). Figure. 8.8 shows diffraction of a laser beam
as viewed from side. Only the zeroth-order (straight through) and first-order diffracted
beams are visible. The angular separation between two beams is the same as that for
interference by multiple point sources, i.e.,

∆θ =
λ

d
. (8.17)

Figure 8.7: Intensity after a grating recorded on cylindrical screen for N = 5 and D = d/4.
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Figure 8.8: Diffraction of a laser beam by a grating. (Source: Wikipedia)



Chapter 9

Waveguides

9.1 Introduction

Modern society is built upon electrification and information technology, both of which are
based on transportation of electromagnetic waves. Electromagnetic radiation from their
sources, such as antennas, usually goes in all directions. Even a coherent laser beam tends
to diverge as it propagates, which can be further adversely affected by diffraction upon
meeting obstacles. Waveguide is an indispensable device for delivering electromagnetic
wave from its source to a specified destination with minimal loss. Depending on operation
frequency, electromagnetic waveguides can appear differently. The exact theory for ana-
lyzing them can also vary: at extremely low frequency, one can use circuit theory, where
one solves for voltage and current; at high frequency, one shall resort to field theory, where
one solves for electric and magnetic fields. In Fig. 9.1, four representative types of electro-
magnetic waveguides are illustrated. Generally, waveguides can have different geometry
or material designs in their transverse or cross-sectional domain, but are uniform along
their longitudinal or axial direction.

(a) (b) (c) (d)

Figure 9.1: (a) Two-conductor cable. (b) Co-axial waveguide. (c) Hollow metallic waveg-
uide. (d) Optical fiber.

The waveguides shown in panels (a) and (b) have two conductors; they are therefore
referred to as two-conductor waveguides. From electromagnetic theory, two-conductor
waveguides support transverse-electric-magnetic (TEM) mode (detailed discussion is omit-
ted in this text). This property leads to well-defined voltage value at any position of the
waveguide. Furthermore, TEM mode has no lower limit of operating frequency (so-called
cut-off frequency), which allows such waveguides to have dimensions much smaller com-
pared to guided electromagnetic wavelength. The two-conductor waveguide shown in panel
(a) is commonly used for low-frequency (up to few kHz) applications. They can be found
in ubiquitous power-line networks for transporting electricity (normally 50 Hz), as well
as traditional telephone networks (< 3400 Hz). We know already that, such a two-pole
cable, when connected to source and a load, makes a simple electric circuit. At 50 Hz,

82
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electromagnetic wavelength is 6000 km, which is much larger than the circuit size. When
this condition fulfills, we say the circuit is operating at static limit. That is, one can use
static field as well as circuit theory to analyze the circuit. At each time instance, the
load (or neutral) line in household electrical network has everywhere identical voltage.
Drawbacks of this waveguide are two-fold. First, the propagating mode has electric and
magnetic fields exposed in the cable surroundings; the field can interact with nearby ob-
jects and incur power loss. Second, at even higher frequencies, alternating current in the
two wires can simply radiate out electromagnetic wave. Panel (b) shows another type of
two-conductor waveguide, which is commonly referred to as co-axial cable. This partic-
ular design allows electric field to be well confined in the dielectric spacer between the
center conductor and the outer cylindrical conductor shell. Electromagnetic shielding not
only prevents signal from being disturbed by nearby objects, but also prevents potential
radiation loss at high frequencies. Therefore, co-axial cables can be used in circuits that
operate in a frequency up to a few GHz. Applications include radio, TV, and scientific
instruments, where requirement on data rate is relatively high. Note that electromagnetic
wavelength can now be in centimeters, i.e. smaller than circuit dimension; voltage and
current in a circuit are no longer of the same values but propagate like waves in the cir-
cuit. A special circuit theory, called transmission-line theory (not discussed in this text),
is developed to model such networks.

The waveguide shown in panel (c) is called hollow metallic waveguide, which is the
main topic of this chapter. It is made of a single conductor. Such waveguide is used in
typical microwave circuits with frequency up to 300 GHz. The co-axial cable in panel (b)
suffers from heavy resistive loss at these high frequencies. Unlike waveguides in panels
(a)&(b) where there is a well-defined voltage between the two conductors at any longitu-
dinal position, a hollow metallic waveguide, being a single conductor, has no well-defined
voltage at a longitudinal position. Instead of signal input by biasing a voltage on two
conductors for waveguides in panels (a) or (b), a high-frequency signal is first converted
to electromagnetic wave through antenna, and the generated wave is coupled into such a
hollow metallic waveguide for signal transportation. Although one can straightforwardly
understand wave transportation in such a waveguide as wave reflection by all “mirror-like”
inner facets, a quantitative understanding requires complete field analysis. From electro-
magnetic theory, this waveguide does not support a TEM mode. As a direct consequence,
the waveguide has a lower limit in operating frequency. As we will learn in next section,
a hollow metallic waveguide has its cross-sectional size comparable to or larger than the
operating electromagnetic wavelength.

The waveguide shown in panel (d) is an optical fiber. It is an all-dielectric waveguide
developed for transmitting electromagnetic wave at optical frequencies (> 150 THz). At
these frequencies, mirrors made of metallic materials are too lossy for long-distance com-
munication. Instead, one relies on the phenomenon of “total internal reflection” between
two dielectric materials to confine and channel optical waves. In order to do so, the core
material has a slightly higher refractive index compared to the outer cladding material.
Usually the core dimension is a few times as large as the operating wavelength (in the
material). Operating frequency is limited by the transparency range of the material used.
Telecommunication networks use optical wavelengths close to 1.55 µm, where silica-based
fibers have the lowest loss (∼ 0.2 dB/km). Often, a field theory is required to completely
understand behavior of such optical fibers.

9.2 Rectangular hollow metallic waveguide

As mentioned, the principle for electromagnetic wave guidance in a rectangular hollow
metallic waveguide is wave reflection by metal surface. We assume metal considered here
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is perfect conductor. In general, a confined wave will experience repeated reflections by up
to four mirrors at lateral sides. From Section 6.7 as well as 7.7, we learned that a perfect
conductor requires specific boundary conditions for electromagnetic field at its surface.
The boundary conditions have to be fulfilled at all interfaces where wave reflections occur.
The requirement on boundary conditions dictates that only certain specific propagation
“modes” exist in such a waveguide. What this implies in practice is that, when one
couples an electromagnetic wave into a rectangular hollow metallic waveguide, one has
to carefully choose polarization, plane of incidence, and incident angle in order for the
wave to propagate in the waveguide. Propagating modes in a rectangular waveguide can
be categorized into two groups: transverse-electric (TE) modes and transverse-magnetic
(TM) modes. Refer to geometric and coordinate setups in Fig. 9.2. We elaborate below
formation and properties of the so-called fundamental TE mode, physically corresponding
to a (laterally) standing wave formed from reflections by two opposite mirrors (left and
right surfaces). For a reason that is to be clarified in the following sub-section, this
particular mode is referred to as TE10 mode.

Figure 9.2: A rectangular hollow-metallic waveguide.

9.2.1 TE10 mode

Mode field derivation

Refer to geometrical parameters in Fig. 9.2. We can take a xz cut-plane through the center
(y = b/2) of a rectangular hollow-metallic waveguide, and treat the cut-plane as incident
plane for a plane wave (more appropriately “wave propagation plane”). Furthermore, we
send out along the plane a TE-polarized plane wave, i.e. with Ey electric field component
and Hx and Hz magnetic field components. Wave frequency ω, and in turn wave number
k = ω

c
, are known. Note that given this polarization, boundary conditions at top and

bottom side walls (surfaces at y = 0 and b) are always satisfied, because only normal
electric field and tangential magnetic field with respect to these two surfaces exist. The
remaining task is to find out under what conditions (incident angle θi, and in turn kz =
k sin θi and kx = k cos θi) the boundary conditions at left and right side walls (surfaces at
x = 0 and a) can be satisfied.

If we single out the above-mentioned wave propagation plane, we have wave-reflection
scenario shown in Fig. 9.3. Incident plane wave in phasor can be written as

Ei = E0 exp(ikxx− ikzz + iωt), (9.1)

where the incident wave vector has been decomposed into two components, i.e. kz =
k sin θi and kx = k cos θi. The reflected plane waves shall be

Er = −E0 exp(−ikxx− ikzz + iωt). (9.2)
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Figure 9.3: xz cut plane on the rectangular hollow metallic waveguide.

Notice the field amplitude has be flipped in sign (recall Subsection 7.7), which ensures
tangential electric field is zero at metal interface (x = 0). The total electric field is

E = Ei + Er = E0 [exp(ikxx)− exp(−ikxx)] exp(−ikzz + iωt) (9.3)

= E0 [2i sin(kxx)] exp(−ikzz + iωt). (9.4)

Take the real part, one has instantaneous field

E = 2E0 sin(kxx) sin(−kzz + ωt). (9.5)

Standing wave is formed along x direction, whose spatial dependent is decided by sin(kxx),
or kx. One can double-check that the (tangential) electric field is zero at x = 0, i.e. surface
of the bottom perfect conductor. At surface of the upper conductor x = a, one must also
fulfill the boundary condition of zero tangential electric field. In order to achieve that, we
must impose

kxa = mπ. (m = 1, 2, 3...) (9.6)

In other words, in order for an electromagnetic wave to propagate in such a waveguide,
kx can only take discrete values

kx =
mπ

a
. (m = 1, 2, 3, ...) (9.7)

This relation decides the specific kx values, and in turn the incident angle θi as well as (of
course) kz , in order for the wave to propagate in the waveguide. Hence, electric field (y
component) for TE modes inside waveguide shall have the form

Ey = 2E0 sin
(mπ

a
x
)

sin(−kzz + ωt). (9.8)

When m = 1, the field has “1” π phase change along x direction inside the waveguide,
while “0” phase change happens along y coordinate. By convention, we use the number
of π phase changes along two lateral-coordinate directions as subscripts to denote each
mode. Therefore, we have TE10 (fundamental mode), TE20 mode, etc.

The magnetic field can be obtained similarly, except that it has both x and z compo-
nents. The incident and reflected magnetic fields are

Hi = H0(− sin θix̂− cos θiẑ) exp(ikxx− ikzz + iωt), (9.9)

Hr = H0(sin θix̂− cos θiẑ) exp(−ikxx− ikzz + iωt). (9.10)

where the amplitude H0 = E0

Z0
with free-space impedance Z0 =

√

µ0

ǫ0
. The x- and z-

components of magnetic field can be summed. After taking real part and with the help of
trigonometric identity cos(α+ β) = cosα cos β − sinα sin β, they are respectively

Hx = 2H0 sin θi sin(kxx) sin(−kzz + ωt), (9.11)
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Hz = −2H0 cos θi cos(kxx) cos(−kzz + ωt). (9.12)

The amplitude for Hx can be re-written as 2H0 sin θi = 2E0

Z0

kz
k

= 2E0

µ0

kz
ω

(note k = k0 =
ω
c
,

and both Z0 and c can be expressed in ǫ0 and µ0). Hx and Hy can be re-written using E0

as

Hx =
2E0

µ0

kz
ω

sin(kxx) sin(−kzz + ωt), (9.13)

Hz = −
2E0

µ0

kx
ω

cos(kxx) cos(−kzz + ωt). (9.14)

The condition for magnetic field, i.e. the normal component of magnetic field (Hx) shall be
zero at the boundary of a perfect conductor, is automatically satisfied with the condition
identified in Eq. 9.7. The whole wave solution (multiple of them as m can vary) in Eqs. 9.8,
9.13, and 9.14 represents legitimate electromagnetic modes propagating in the rectangular
hollow-core metallic waveguide.

Mode field plot

Based on field solutions in Eqs. 9.8, 9.13, and 9.14 one can sketch out TE10 mode field in
the rectangular hollow metallic waveguide, as shown in Fig. 9.4.
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a

Figure 9.4: TE10 mode. Left: Electric (red arrows) and magnetic (blue arrows) fields
as seen from cross-sectional plane (xy) of the hollow metallic waveguide. Right: Electric
(red-blue color map) and magnetic (blue arrows) fields on xz cut plane. Red color denotes
positive value and blue color denotes negative value.

From Fig. 9.4 (left panel), one sees that electric field Ey has different magnitude at
different lateral x positions. If one integrates Ey along y at different x positions, one has
different voltages. That is, wave in a single-conductor waveguide can’t be represented by
V (and I) parameters.

One also notices from Fig. 9.4 (left panel) that, surface-normal electric field exists at
top and bottom metal surfaces (y = 0, b). This is due to effective surface charge generated
by the mode field. One can calculate surface charge density through Gauss’s law based on
the electric field. Tangential magnetic field exists at all four sides of the waveguide. From
the field, one can calculate surface current density through Ampère’s law. Alternatively,
one can readily calculate such surface charge or current densities through the boundary
conditions for electromagnetic waves listed in Section 6.7, more specifically Eqs. 6.63&6.64.

Modal dispersion and cut-off frequency

One sees that the waveguiding condition in a rectangular hollow metallic waveguide is
defined by Eq. 9.7. Combined with the relation

k2x + k2z = k2, (9.15)
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where k = ω/c, one has

(mπ

a

)2

+ k2z =
(ω

c

)2

. (dispersion relation, TEn0 modes) (9.16)

Given a fixed geometry (a) and mode order (m), one have a definite relation between
electromagnetic wave frequency ω versus kz . For waveguides, kz is usually referred to as
propagation constant. This relation is called dispersion relation. When plotted out as a
curve, it is called dispersion curve. Below in Fig. 9.5 we plot dispersion curves for first
three TE modes guided in a waveguide with a = 3 cm.

Figure 9.5: First three TE modes of a rectangular waveguide with a = 3 cm. Dashed line
is the dispersion relation for a plane wave propagating in free space (no waveguide) along
z direction (usually referred to as light line).

One sees that there are cut-off frequencies for each guided mode. According to the
dispersion relation Eq. 9.16, the lowest frequency happens when kz = 0; or physically,
wave is not propagating along z (just along x, forming standing wave). According to
Eq. 9.16, the cut-off frequency for TEm0 mode is

ωc =
mπc

a
. (9.17)

When translated to wavelength, the cut-off wavelength is

λc =
2a

m
. (9.18)

TE10 mode has the lowest cut-off frequency among all modes. For that reason, one can
refer to the cut-off frequency of TE10 mode as the waveguide’s cut-off frequency. Below this
frequency, electromagnetic wave simply can’t propagate in a hollow metallic waveguide.
Knowledge about cut-off frequencies is important when one wants to design a waveguide
with single-mode operation at a particular frequency. Single-mode waveguide has a higher
data transmission speed compared to multi-mode waveguides.

Cut-off frequency of hollow-metallic waveguide

Refer to Fig. 9.2. In the case of a = 3 cm and b = 1 cm, calculate cut-off frequency
of its TE10 mode.
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Solution: Direction application of Eq. 9.17 leads to ωc =
1·πc
a

= 31.4 GHz. λc = 6 cm
(or waveguide width a is half of wavelength). b is not used.

Phase and group velocities

Phase velocity of a mode is defined now by kz. That is

v =
ω

kz
. (9.19)

In comparison, plane-wave has phase velocity v = ω/k. Since kz is projection of k along z
direction, guided modes have larger phase velocities as compared to plane-wave velocity at
the same frequency. Information on phase velocity is contained in the dispersion relation,
as plotted in Fig. 9.5.

Group velocity for each mode is calculated as

vg =
dω

dkz
. (9.20)

It can be interpreted as slope of the dispersion curves in Fig. 9.5. Although the propagating
modes have higher phase velocities than speed of light, their group velocities are always
less than speed of light. For each mode, at low-frequency limit (close to cut-off frequency),
vg → 0; at very high frequency, vg approaches speed of light.

9.2.2 TEmn modes

In the above subsection, we have discussed TEm0 modes with a focus on the fundamental
TE10 mode. These modes correspond to waves propagating in xz plane with an Ey electric
field component (TE polarization). In general, there are other TE modes, called TEmn

modes, where the subscripts m and n are integers referring to the number of π phase
changes along x and y directions, respectively. Among these modes, TE0n modes are
rather easy to picture (refer to Fig. 9.2): one uses instead yz cut-plane as wave propagation
plane with Ex electric field component (still TE polarization). Then it is the waveguide
height b that decides the fulfillment of boundary conditions. The condition for lateral wave
number, dispersion relation, and cut-off frequency are the same as those in Eqs. 9.7, 9.16,
and 9.17, except one shall replace kx by ky, a by b (and m by n). In case of waveguides
with b < a (as in Fig. 9.2), the cut-off frequencies for TE0n modes are higher than those
for TEm0 modes.

For general TEmn modes (m 6= 0, n 6= 0), the wave propagation plane can be considered
as an intermediate plane between xz and yz planes. The wave vector has both kx and ky
components, besides kz. Still, the incident wave can have a TE polarization; but now the
electric field has both x and y components. The propagating modes shall in general fulfill

kx =
mπ

a
, and ky =

nπ

b
. (m,n = 0, 1, 2, 3, ...) (9.21)

Note m and n can’t be zero at the same time. Dispersion relation can be obtained from

(mπ

a

)2

+
(nπ

b

)2

+ k2z =
(ω

c

)2

. (dispersion relation, TEmn modes) (9.22)

Cut-off frequencies for these modes are therefore

ωc = πc

√

(m

a

)2

+
(n

b

)2

. (cut-off frequency, TEmn modes) (9.23)
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We have so far borrowed analogy to the definition of “TE polarization” for plane wave
interaction with a planar interface to call the modes discussed as TE modes. A more com-
mon way to tell a TE mode is that such a mode has electric field in waveguide’s transverse
(cross-sectional) domain, i.e. no component in waveguide’s longitudinal direction.

9.2.3 TMmn modes

Besides TE modes, there exist also TM modes in a rectangular hollow metallic waveguide.
The modes can similarly be pictured as TM-polarized plane wave being reflected by side
walls, following a certain propagation plane. Like TE modes, they can be classified by
two integer subscripts, as TMmn modes, where m and n denotes the number of π phase
changes of modal field along x and y directions, respectively. However, here neither m nor
n can be zero. Effectively speaking, one can’t get a legitimate mode solution satisfying all
boundary conditions if one tries to use xz or yz cut-plane as wave propagation plane.

It turns out that the condition for lateral wave vector components in order to have a
legitimate TM mode is the same as that for the TE mode (with the same m and n values),
i.e. Eq. 9.21. It follows that dispersion relation as well as cut-off frequency for each TM
mode are also identical to those of the corresponding TE mode, i.e. Eqs. 9.22 and 9.23.

Field components for TMmn modes are summarized as follows

Ex =
kzkx

k2x + k2y
E0 cos(kxx) sin(kyy) sin(−kzz + ωt) (9.24)

Ey =
kzky

k2x + k2y
E0 sin(kxx) cos(kyy) sin(−kzz + ωt) (9.25)

Ez = E0 sin(kxx) sin(kyy) cos(−kzz + ωt) (9.26)

Hx = − kky
Z0(k2x + k2y)

E0 sin(kxx) cos(kyy) sin(−kzz + ωt), (9.27)

Hy =
kkx

Z0(k2x + k2y)
E0 cos(kxx) sin(kyy) sin(−kzz + ωt). (9.28)

The lowest-order mode, i.e. TM11 mode has its mode field plotted in Fig. 9.6. From
the left panel, one sees that the waveguide mode has the maximum z-directed power close
to the side walls, which decreases towards waveguide center.
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Figure 9.6: TM11 mode. Left: Electric (red arrows) and magnetic (blue arrows) fields as
seen from cross-sectional plane (xy) of the hollow metallic waveguide. Right: Electric field
(red arrows) and x-component of magnetic field (red-blue color map) on yz cut plane at
x = a/2. Red color denotes positive value and blue color denotes negative value.



Appendix A: Solution to exercises

Chap. 2 Electrostatics

1. E = Er̂ = 450(
√
2
2
x̂+

√
2
2
ŷ) V/m.

2. E = Er̂ = 545.45(−0.7785x̂ − 0.6228ŷ + 0.0778ẑ) V/m.
3. E = 587.88ẑ V/m.

4. F = F r̂ = 45(
√
2
2
x̂+

√
2
2
ŷ) nN; WE = −q2∆V = 3.182 nJ.

5. E1 = Er̂ = 28.125(
√
2
2
x̂+

√
2
2
ŷ) V/m; E2 = 0 V/m.

6. V1 = 15.91 V; V2 = 45 V; V3 = 45 V.
7. ∆V = −48 V.
8. WF = 0.212 mJ.
9. E1 = 28.125(

√
2
2
x̂ +

√
2
2
ŷ) V/m; E2 = 20 V/m and E3 = 1800 V/m (same direction).

(Use generalized Gauss’s law.)
10. E2 = 10x̂− 8ŷ + 2.4ẑ V/m.
11. C = 0.214 nF/m.

Chap. 3 Electric circuit

1. Js = 10−4 A/m along x direction. (Charge passing through a unit length in the plane
per unit time.)
2. I = 1 mA, in the same direction as the rotation.
3. Same as the previous problem.

Chap. 4 Magnetostatics

1. B = −2.828 × 10−5ŷ T. (Refer to Example “Magnetic field by line current” and set
appropriate integration limits.)
2. B = 8 × 10−5ẑ T. (Use the result in the previous problem. Four sides of the current
loop have “similar contributions to the field at the point.)
3. B = 8.886 × 10−5ẑ T. (Refer to Example “Magnetic field by circular current loop”.)
4. B = −4.189ẑ nT.
5. B = 1.257 × 10−7ẑ T. (Use knowledge in the previous problem.)
6. B = 1.742× 10−11ẑ T. (Similar to the previous problem. Each differential line charge,
when rotating about center of the line, forms a current loop. Note: suggested solution for
Pre-exam 2 in 2017 is incorrect.)
7. Fm = 1ẑ nN.
8. Fm = −x̂+ 0.6ŷ − 0.6ẑ = 1.311(−0.7625x̂ + 0.4575ŷ − 0.4575ẑ) nN.
9. The particle experiences at this moment a magnetic force Fm = 10ŷ µN. Later on,
the particle will move in a circular motion with a radius of 10 cm, counterclockwise as
observed from z = +∞.
10. Fm = 0.2 mN per meter length of conductor. Direction: towards the other conductor.
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11. B = −6.283 × 10−5ŷ T.

Chap. 5 Magnetic induction

1. 2.667 × 10−7 V. Current direction: counterclockwise. (Use either Eq. 5.1 or Eq. 5.15.)

Chap. 6 Electromagnetic wave

(to be updated)
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