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Abstract. It is shown by several authors going back to Huisken-
Yau that asymptotically Schwarzschildean time-slices possess a
unique foliation by stable constant mean curvature (CMC) spheres
defining the so-called CMC center of mass. We analyze how the
leaves of this foliation evolve in time under the Einstein equations.
More precisely, we prove that, asymptotically, their time evolution
is a translation induced by the quotient of their linear momentum P
and mass m, as to be expected from the corresponding Newtonian
setting. In particular, the definitions of mass and linear momentum
defined by Arnowitt-Deser-Misner (ADM) are compatible with the
interpretation of the CMC foliation as the center of mass of the
time-slice by Huisken-Yau. Furthermore, we prove that the coordi-
nate version of the center of mass by Arnowitt-Deser-Misner and
the coordinate version of the CMC center of mass coincide – with-
out additional conditions on the scalar curvature. This is even true
in the sense of existence, i. e. if one of the two exists then so does
the other.

1. Introduction and general considerations

It is well known, that the center of mass ~z of any isolated Newtonian gravi-
tating system evolves in time via

∂~z

∂t
=

~P

m
,
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2 Christopher Nerz

where ~P denotes the linear momentum and m > 0 the mass of the entire
system. It is thus natural to ask whether this is also true when we consider
isolated systems in general relativity. For such systems, there is no obvious
way to define physical quantities such as mass, linear momentum, and center
of mass. For relativistic (total) mass m and relativistic (total) linear momen-
tum P, the definitions given by Arnowitt-Deser-Misner (ADM) [ADM61] are
well-established in the literature. However, the contemporary literature knows
several definitions of the relativistic center of mass of an isolated system in
general relativity.

Several authors suggest to define the center of mass of an isolated system
as a foliation near infinity of the corresponding Riemannian manifold with
total mass m > 0. Following [CN13], we will call such definitions abstract to
contrast what we call coordinate definitions of center of mass, see below. The
first such definition was given by Huisken-Yau [HY96], who defined the (CMC)
center of mass to be the unique foliation near infinity by closed, stable surfaces
with constant mean curvature. This was motivated by the idea of using CMC
surfaces in this setting by Christodoulou-Yau [CY88]. Later, Lamm-Metzger-
Schulze [LMS11] used a unique foliation by spheres of Willmore type and (in
the static case) Cederbaum [Ced12, Cor. 3.3.4, Thm. 5.3.3] used level-sets of
the lapse function.

There are several coordinate centers of mass, e. g. the one suggested by
Arnowitt-Deser-Misner [ADM61], by Huisken-Yau [HY96], by Corvino-Schoen
[CS06] and by Huang [Hua10] (based on an idea by Schoen). Here, we call
them ‘coordinate’ centers of mass as they are defined as a (three-dimensional)
vector z ∈ R3 which depends on the choice of coordinates near infinity –
at least a-priori. It is well-known that the coordinate CMC center of mass
coincides with the coordinate ADM center of mass if the scalar curvature
is asymptotically antisymmetric, see [Hua10] and [EM12]. In the context of
static isolated systems, Cederbaum [Ced12, Def. 4.3.1] defined a ‘pseudo-
Newtonian’ (quasi-local and total) coordinate center of mass and proved that
it coincides with the coordinate CMC and ADM centers of mass [Ced12,
Thm. 4.3.5]. Furthermore, she showed that the coordinate pseudo-Newtonian
(and thus the coordinate CMC and coordinate ADM) center of mass con-
verges to the Newtonian one in the Newtonian limit c→∞. The coordinate
CMC center of mass is generally well-defined for static isolated systems as
the scalar curvature vanishes outside a compact set, see also [CN13].

Chen-Wang-Yau recently suggested a completely new definition of (quasi-
local and total) center of mass, which is given by optimal isometric embed-
dings into Minkowsky spacetime [CWY13, Def. 3.2]. Additionally, their center
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Time evolution of ADM and CMC center of mass 3

of mass fulfills ∂z/∂t = P/m [CWY13, 2. Theorem]. To the best knowledge of
the author, they give the first rigorous proof of ∂z/∂t = P/m for any definition
of center of mass in the setting of isolated systems in general relativity.

In this paper, we focus mainly on the abstract CMC definition of center of
mass. Thus, the central object is the unique foliation {σΣ}σ>σ0 near infinity
of an asymptotically Schwarzschildean three-dimensional Riemannian mani-
fold (M, g) by stable spheres σΣ with constant mean curvature. These CMC
spheres can be indexed in different ways, e. g. by the area |σΣ| = 4πσ2. We use
the mean curvature, i. e. the surface σΣ is the unique element of the foliation
with mean curvature σH ≡ −2/σ + 4m/σ2. Existence and uniqueness of such a
foliation was first proven by Huisken-Yau [HY96]. Metzger [Met07], Huang
[Hua10], and Eichmair-Metzger [EM12] subsequently weakened the decay
and regularity assumptions on the metric g . Furthermore, Eichmair-Metzger
[EM12] proved that the foliation exists for arbitrary dimension dimM ≥
3. The uniqueness results were generalized by Qing-Tian [QT07], Metzger
[Met07], Huang [Hua10]. Brendle-Eichmair [BE13] proved that uniqueness is
only valid for the whole foliation {σΣ}σ>σ0 , not for a single leaf σΣ.

Huisken-Yau [HY96] defined what we will call following [CN13] the coordi-
nate CMC center of mass σz ∈ R3 to be the limit of the Euclidean coordinate
center σz of the leaf σΣ as σ →∞, i. e.

(1) zCMC ..= lim
σ→∞ σz with σz ..=

ˆ
σΣ
xi dH 2,

where x denotes the chosen coordinates in which the assumed asymptotic
decay conditions on the metric g are satisfied and where H 2 is the measure
induced on σΣ by the Euclidean metric eg . The coordinate ADM center of
mass zADM is defined by the limit of a surface integral (on the coordinate
sphere {|x| = r} for r →∞) – comparable to the ADM mass and ADM linear
momentum, see [ADM61].

The first main result of this paper is that ∂z/∂t = P/m holds for the abstract
CMC, the coordinate CMC, and the coordinate ADM center of mass and we
prove this in three versions:

spacetime version (temporal foliation), abstract:
Let Φ : I ×M → M̂ be an asymptotically flat foliation of a given space-
time (M̂, ĝ) by asymptotically Schwarzschildean spacelike hypersurfaces
tM ..= Φ(t,M). Let {σtΣ} denote the unique foliation of tM near infin-
ity by stable, closed hypersurfaces σ

tΣ with constant mean curvature
σ
tH ≡ −2/σ + 4m/σ2. We show in Theorem 4.1 that the time-evolution
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of σ
tΣ is asymptotically (with respect to σ) characterized by a quan-

tity σ
tP and by the total mass tm of tM , where σ

tP has to be under-
stood as a pseudo quasi-local linear momentum, see Remark 4.2. If
the momentum-density tJ ..= tdiv(tH tg − tk) on tM decays ‘fast enough’,
then σ

tP converge to the linear momentum tP of tM as σ →∞. In this
sense, ∂z/∂t = P/m holds abstractly for the abstract CMC center of mass
z.

spacetime version (temporal foliation), coordinate:
Let Φ : I ×M → M̂ be an asymptotically flat foliation of a given space-
time (M̂, ĝ) by asymptotically Schwarzschildean, spacelike hypersur-
faces tM ..= Φ(t,M). Assume the coordinate CMC center of mass t0zCMC
is well-defined at a time t0 ∈ I and that tJ ..= tdiv(tH tg − tk) on tM
decays ‘fast enough’ for all t ∈ I. We prove in Corollary 4.4, that under
these assumptions the coordinate CMC center of mass tzCMC is well-
defined for all times t ∈ I and satisfies ∂ tzCMC/∂t = tP/m.

initial data set version:
There is a well-defined version of the main result for abstract asymp-
totically Schwarzschildean initial data sets (Theorem 4.6).

The second main result of this paper states that the coordinate ADM and
coordinate CMC center of mass coincides for asymptotically Schwarzschildean
manifolds (M, g) not fulfilling the assumption of the asymptotic antisymme-
try of the scalar curvature: The coordinate CMC center of mass is well-defined
if and only if the coordinate ADM center of mass is well-defined; moreover
they coincide whenever they are well-defined. In particular, ∂z/∂t = P/m holds
also for the ADM center of mass, if it is well-defined and if J decays fast
enough. We note that [Hua10] and [EM12] assume weaker decay conditions
on the metric g itself than we do, but an need asymptotic antisymmetry
assumption on the scalar curvature. In particular, the coordinate CMC cen-
ter of mass is always defined in their setting [EM12, Lemma F.1].

The results in this paper should carry over analogously to arbitrary dimen-
sion n ≥ 3 and should also persist under weaker decay assumptions on g .

Acknowledgment. The author wishes to express gratitude to Gerhard
Huisken for suggesting this topic, many inspiring discussions and ongoing
supervision. Further thanks is owed to Katharina Radermacher for proof-
reading. Finally, this paper would not have attained its current form and
clarity without the useful suggestions by Carla Cederbaum.



i
i

“Time˙evolution˙of˙ADM˙and˙CMC” — 2014/7/1 — 18:31 — page 5 — #5 i
i

i
i

i
i

Time evolution of ADM and CMC center of mass 5

Structure of the paper

In Section 2, we fix notations and define when a Riemannian manifolds is
said to be asymptotically Schwarzschildean. We prove in Section 3 that the
leaves of the CMC foliation are not completely off-center, i. e. there is an
estimate on how far away the spheres can be from the coordinate origin (or
coordinate CMC center of mass, if it is defined). The three versions of the
first main result (Theorem 4.1, Corollary 4.4, and Theorem 4.6) are stated
precisely and proven in Section 4. In Section 5, we prove that existence of
the coordinate ADM center is equivalent to existence of the coordinate CMC
center and that they coincide, if one and thus both of them exist.

2. Assumptions and notation

In order to study temporal foliations of four-dimensional spacetimes by three-
dimensional spacelike slices and foliations (near infinity) of those slices by
two-dimensional spheres, we will have to deal with different manifolds (of
different or the same dimension) and different metrics on these manifolds,
simultaneously. All four-dimensional quantities like the Lorentzian spacetime
(M̂, ĝ), its Ricci and scalar curvatures R̂ic and Ŝ , and all other derived quan-
tities will carry a hat. In contrast, all three-dimensional quantities like the
spacelike slices (M, g), its Ricci, scalar, exterior and mean curvature Ric, S ,
k and H , its future-pointing unit normal ν and all other derived quantities
carry a bar, while all two-dimensional quantities like the CMC leaf (Σ, g),
its Ricci, scalar, exterior and mean curvature Ric, S , k and H , its outer unit
normal ν and all other derived quantities carry neither. When different three-
dimensional manifolds or metrics are involved, then the upper left index will
always denote the (real or artificial, see Construction 3.8) time-index of the
‘current’ time-slice. The only exceptions are the upper left indices e, S , and
a, which refer to the Euclidean, the Schwarzschild, and the artificial metric
(see Construction 3.8), respectively. If different two-dimensional manifolds or
metrics are involved, then the lower left index will always denote the mean
curvature index σ of the current leaf σΣ, i. e. the leaf with mean curvature
σH = −2/σ + 4m/σ2. The two-dimensional manifolds and metrics (and therefore
other metric quantities) thereby ‘inherit’ the time-index of the corresponding
three-dimensional manifold. We abuse notation and suppress these indices,
whenever it is clear from the contest which metric we refer to.

It should be noted that we interpret the second fundamental form and
the normal vector of a hypersurface, as well as the ‘lapse function’ and the
‘shift vector’ of a hypersurfaces arising as a leaf of a given deformation or
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6 Christopher Nerz

foliation as quantities on the hypersurfaces (and thus as ‘lower’ dimensional).
For example, if tM is a hypersurface in M̂ , then tν denotes its normal (and
not ν̂).

Furthermore, we use upper case latin indices I, J , K, and L for the
two-dimensional range {2, 3} and lower case latin indices i, j, k, and l for the
three-dimensional range {1, 2, 3}. The Einstein summation convention is used
accordingly.

As mentioned, we frequently use foliations and evolutions. These are
infinitesimally characterized by their lapse functions and their shift vectors.

Definition 2.1. Let θ > 0, σ0 ∈ R, I ⊇ (σ0 − δσ, σ0 + δσ) an interval, and
let (M, g) be a Riemannian manifold. A smooth map Φ : I × Σ→M is called
deformation of the closed hypersurface Σ = σ0Σ = Φ(σ0,Σ) ⊆M , if σΦ( · ) ..=
Φ(σ, ·) is a diffeomorphism onto its image σΣ ..= σΦ(Σ) and if σ0Φ ≡ idΣ. The
decomposition of ∂Φ/∂σ into its normal and tangential parts can be written as

∂Φ
∂σ

= σu σν + σβ,

where σν is the outer unit normal to σΣ. The function σu : σΣ→ R is called
the lapse function and the vector field σβ ∈ X(σΣ) is called the shift of Φ. If
Φ is a diffeomorphism (resp. diffeomorphism onto its image), then it is called
a foliation (resp. a local foliation).

In the setting of a Lorentzian manifold (M̂, ĝ) and a non-compact, space-
like hypersurface M ⊆ M̂ the notions of deformation, foliation, lapse α and
shift β are defined correspondingly.

As there are different definitions of ‘asymptotically Schwarzschildean’, we
now describe the asymptotic assumptions we make. To rigorously define these
and to shorten the statements in the following, we distinguish between the
Riemannian, the initial data, and the foliation case.

Definition 2.2. On R3 \ {0}, the metric Sg and the lapse function Sα of the
standard Schwarzschild timeslice are defined by

Sg ..=
(

1 + m

2r

)4
eg , Sα ..=

1− 2m
r

1 + 2m
r

,

where m > 0, eg denotes the Euclidean metric, and r : R3 \ {0} → (0,∞) :
x 7→ |x| denotes the Euclidean distance to the origin.
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Time evolution of ADM and CMC center of mass 7

Definition 2.3. Let ε > 0. A triple (M, g , x) is called Ck-asymptotically
Schwarzschildean of order 1 + ε, if (M, g) is a smooth manifold and x : M \
L→ R3 is a chart of M outside a compact set L such that there exists a
constant c ≥ 0 with∣∣∣∣∣∂|γ|

(
g ij − Sg ij

)
∂xγ

∣∣∣∣∣ ≤ c

r1+|γ|+ε , ∀ |γ| ≤ k,

where r : M \ L→ (0,∞) : p 7→ |x(p)| is the Euclidean coordinate distance
to the coordinate origin.

Definition 2.4. Let ε > 0 and let (M, g , x, k, %, J) be an initial data set,
which means that (M, g) is a Riemannian manifold, k a symmetric (0, 2)-
tensor, % a function, and J a one-form on M , respectively, satisfying the
Einstein constraint equations2

S −
∣∣∣k∣∣∣2

g
+ H 2 = 2%, div

(
H g − k

)
= J,

where H ..= tr k. The tuple (M, g , x, k, %, J, α) is called Ck-asymptotically
Schwarzschildean of order 1 + ε if (M, g , x) is Ck-asymptotically Schwarz-
schildean of order 1 + ε and if α is a function on M such that there are
constants δ ∈ (0, 1 + ε) and c ≥ 0 with

(2)
∣∣∣∣∣∂|γ| (α− Sα)

∂xγ

∣∣∣∣∣ ≤ c

r1+|γ|+ε−δ ,

∣∣∣∣∣∂|γ| kij
∂xγ

∣∣∣∣∣ ≤ c

r1+|γ|+δ ∀ |γ| < k

holds (in the chart x).

We remark that the asymptotic decay in (2) is a generalization of the
one frequently used in the literature, where one assumes δ = 1, i. e. |k| ≤ C/r2

and |α− Sα| ≤ C/rε. In particular, this is the minimal assumption for which
one can hope for existence of the ADM linear momentum – without imposing
any asymptotic symmetry assumption as for example the Regge-Teitelboim
conditions.

Definition 2.5. Let ε > 0. The smooth level sets tM ..= t−1(t) of a smooth
function t on a four-dimensional Lorentz manifold (M̂, ĝ) are called a Ck-
asymptotically Schwarzschildean temporal foliation of order 1 + ε, if the gra-
dient of t is everywhere time-like, and if there is a chart (t, x̂) : Û ⊆ M̂ →

2We dropped the physical factor 8π for notational convenience.
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R×R3 of M̂ , such that (tM, tg , tx ..= x̂|tM , tk, t%, tJ, tα) is a Ck-asymptotically
Schwarzschildean initial data set of order 1 + ε for all t with not necessarily
uniform tc and tδ. Here, the corresponding second fundamental form tk, the
lapse function tα, the energy-density t% and the momentum density tJ are
defined by

tα ..=
√
−ĝ
(
∂

∂t
,
∂

∂t

)
, tkij ..= −1

2tα
∂ tg ij
∂t

,
∂

∂t

∣∣∣∣
tM

= tα tν,

t% ..= R̂ic
(tν, tν)+ Ŝ

2 ,
tJ ..= R̂ic

(tν, ·),
respectively, where tν is the future-pointing unit normal to tM . If the con-
stants tc and tδ of the decay assumptions can be chosen independently of
t, then the temporal foliation is called uniformly Ck-asymptotically Schwarz-
schildean.

It is important to note that the decay assumptions made in Definition 2.4
do not imply that the ADM linear momentum P is well-defined. In particular,
there is no hope to prove ∂z/∂t = P/m under these assumptions. This is why we
use the pseudo quasi-local linear momentum σP for which we prove ∂z/∂t =
σP/m. This is explained in more detail in Remark 4.2. Beside the obvious
advantage of achieving a more general result, the approach with these weak
decay assumptions allows us to prove equality of the ADM and CMC center
of mass under other assumptions than those in the literature and to use these
results in the setting of the examples in [CN13].

3. CMC leaves are almost asymptotically concentric

In this section, we assume that (M, g , x) is an three-dimensional, asymp-
totically Schwarzschildean Riemannian manifold with mass m > 0. Due to
[Met07], there exists a foliation Φ : (σ0,∞)× S2 →M of M near infinity by
closed surfaces with constant mean curvature σH ≡ −2/σ + 4m/σ2. We show
in this section, that the leaves of the CMC foliation for one fixed time-slice
M ..= tM are almost concentric, i. e. the Euclidean coordinate center σz of
each leaf σΣ (as defined in (1)) is of order σ1−ε. Cederbaum-Nerz [CN13]
constructed examples proving that these results are sharp. It should be men-
tioned that an additional assumption on the scalar curvature S implies bet-
ter estimates. More precisely by [EM12, Lemma F.1], the center of mass is
well-defined if S fulfills the Regge-Teitelboim conditions (is asymptotically
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Time evolution of ADM and CMC center of mass 9

antisymmetric) and Corollary 5.1 then ensures that the Euclidean coordinate
centers are bounded.

To prove that a given asymptotically Schwarzschildean three-dimensional
Riemannian manifold (M, g) can be foliated by stable CMC spheres, Metzger
defined artificial metrics τg ..= Sg + τ(g − Sg) and proved that the set

I ..=
{
τ ∈ [0, 1]

∣∣ a CMC foliation near infinity exists with respect to τg
}

is non-empty, open and closed in (and therefor equal to) [0, 1] [Met07]. In
doing so, he has to prove several decays conditions of these spheres. All in all,
we cite the following special case of [Met07, Thm. 1.1]:

Theorem 3.1. There exists a constant σ0 = σ0(m, ε, c) and a C 1-map Φ :
[0, 1]× (σ0,∞)× S2 →M such that the geometric spheres σ

τΣ ..= Φ(τ, σ, S2)
are stable, have constant mean curvature σ

τH ≡ −2/σ + 4m/σ2 with respect to
the artificial metric τg ..= Sg + τ (g − Sg). Furthermore, there is a constant
C = C(m, ε, c) not depending on τ or σ such that

(3)
∣∣∣|στΣ| − 4πσ2

∣∣∣ ≤ Cσ,
∥∥
σ
τ ◦k
∥∥

L∞(στΣ) +
∥∥
σ
τ∇ σ

τ ◦k
∥∥

L2(στΣ) ≤
C

σ2 ,

where σ
τ ◦k ..= σ

τk−1/2 σ
τH σ

τg denotes the trace-free part of the exterior curvature
σ
τk, σ

τg denotes the induced metric – both with respect to τg – and σ
τ∇ is the

Levi-Civita connection. Additionally, there is a constant CS = cS (m, ε, c) not
depending on τ or σ such that

‖f‖L2(στΣ) ≤ CS
(
σ‖|στ∇f |‖L1(στΣ) + ‖f‖L1(στΣ)

)
∀ f ∈ C 1(στΣ).

Furthermore, τΦ ..= Φ(τ, ·, ·) is a C 1-foliation of M near infinity.

By using DeLellis-Müller [DLM05], Metzger concluded that for any τ ∈
[0, 1] and σ > σ0 there is a conformal parametrization σ

τψ : S2 → σ
τΣ with

‖στψ − (στz + σ id)‖H2(S2) ≤ Cσ,
∥∥∥h2 − 1

∥∥∥
H1(S2)

≤ C,(4)

‖N − σ
τν ◦ στψ‖H1(S2) ≤ C,(5)

where id ..= x−1 ◦ i , i is the standard embedding of the Euclidean sphere S2
σ(0)

to R3, στz ∈ R3 is the Euclidean coordinate center of στΣ, h is the conformal
factor σ

τψ∗ eg = h2
σ
τg for the standard metric eg on S2, N is the Euclidean

outer unit normal to S2 ⊆ R3, στν is the normal to σ
τΣ with respect to τg and

the Sobolev norms are defined in Definition 3.2. Note that, in contrast to
[Met07], we use scale-invariant Sobolev norms.
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Definition 3.2. For any tensor T , k ≥ 1 and p ∈ [1,∞] the Sobolev norm
on the surface σ

τΣ is iteratively defined by

‖T‖Wk,p(στΣ)
..=
∥∥∥|T |

σ
τg

∥∥∥
Lp(στΣ)

+ σ‖∇T‖Wk−1,p(στΣ),

where W0,p(στΣ) ..= Lp(στΣ). Additionally, Hk(στΣ) ..= Wk,2(στΣ) for p = 2.

We mention that Metzger also proved that the Euclidean coordinate cen-
ters of the leaves are of order σ, with controlled constant < 1. As this is not
enough for our context, we prove the following inequality.

Proposition 3.3. Let (M, g , x) be C 2-asymptotically Schwarzschildean of
order 1 + ε with ε > 0. There are two constants C = C(m, ε, c) and σ0 =
σ0(m, ε, c) such that the Euclidean coordinate center σz of each σΣ with σ ≥ σ0
fulfills

|σz| ≤ Cσ1−ε,

where {σΣ}σ denotes the foliation of M near infinity by stable spheres σΣ with
constant mean curvature σH ≡ −2/σ + 4m/σ2.

In analogy to Metzger’s proof of [Met07, Thm. 1.1], we prove Proposition
3.3 by showing that the set of ‘almost concentric spheres’ is non-empty, open
and closed in (and therefor equal to) [0, 1]× (σ0,∞) for some σ0 <∞. Thus,
we define for c ≥ 0

Ic ..=
{

(τ, σ) ∈ [0, 1]× (σ0,∞)
∣∣∣ στz < cσ1−ε

}
.

Therefore, (τ, σ) ∈ Ic corresponds to a quantitative estimate of being almost
concentric. As the CMC foliation for the Schwarzschild metric (τ = 0) is given
by the concentric spheres S2

r (σ)(0), we see that Ic ⊇ {0} × (σ0,∞) for any
c ≥ 0. By continuity of Φ (see Theorem 3.1), we conclude that Ic is closed.

To show that Ic is open in [0, 1]× (σ0,∞) for some c <∞, we prove esti-
mates on the evolution of the CMC spheres σ

τΣ in ‘τ -direction’. To do so, we
have to show inequalities for the corresponding lapse function. As we will
show, the lapse function is defined by its image under the stability opera-
tor. The stability operator of a surface Σn ↪→ Rn+1 can be defined (or inter-
preted) as the linearization at 0 of the graph mean curvature map H2(Σ) 7→
L2(Σ) : f 7→ H ( graph f), where H ( graph f) denotes the mean curvature of
the graph f ..= {p+ f(p) ν | p ∈ Σ}. This map is well-defined if ‖f‖H2(Σ) is
small and Σ regular. It is well-known that the stability operator can be writ-
ten in the following form.
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Definition 3.4. The stability operator στL : H2(στΣ)→ L2(στΣ) on the surface
σ
τΣ is given by – omitting the τ and σ indices –

Lf ..= ∆f +
(
|k|2g + Ric(ν, ν)

)
f,

where Ric is the Ricci curvature of M and ν is the normal to Σ – both with
respect to the metric τg .

To conclude estimates for the stability operator, we have to control its
eigenvalues.

Lemma 3.5. There are constants C = C(m, ε, c, c) and σ0(m, ε, c, c) such
that every eigenvalue λ of the stability operator σ

τL on σ
τΣ with (τ, σ) ∈ Ic and

σ > σ0 fulfills

|λ| ≤ 1
σ2 ⇐⇒

∣∣∣∣λ− 6m
σ3

∣∣∣∣ ≤ C

σ3+ε .

Proof. Let (τ, σ) ∈ Ic and let us omit the corresponding indices in the follow-
ing. Furthermore, let ν be the normal to Σ, Ric the Ricci curvature of M –
both with respect to the metric τg –, N(x) ..= (x−z)/|x−z| the radial direction
with respect to the Euclidean coordinate center of Σ and µ(x) ..= x/|x| the
radial direction with respect to the coordinate origin. We obtain∣∣∣∣Ric(ν, ν) + 2m

σ3

∣∣∣∣ ≤ ∣∣∣∣Ric(µ, µ) + 2m
σ3

∣∣∣∣+ C

σ3 |N − ν|+
C

σ3 |N − µ|

≤ C

σ3+ε + C

σ3 |N − ν|+
C

σ4 |z|.

By assumption on (τ, σ) ∈ Ic, the estimate (5) on the normal and the Sobolev
inequality therefore imply that

(6)
∥∥∥∥Ric(ν, ν) + 2m

σ3

∥∥∥∥
L4(Σ)

≤ C

σ
5
2 +ε

.

By the estimates (4) of the approximation σΣ ≈ S2
σ(z) and the assumptions

on g , we conclude that the first three eigenvalues λ1, λ2 and λ3 of the Laplace
fulfill ∣∣∣∣λi − 2

σ2

(
1− 2m

σ

)∣∣∣∣ ≤ C

σ3+ε .

The desired inequality now follows by the estimates (3) on ◦k. ///
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Metzger now uses the implicit function theorem to ensure the existence
of the CMC spheres. Thereby, he obtains the regularity of spheres close to
a regular one by proving that any sphere with constant mean curvature is
regular. We obtain the estimate on the Euclidean coordinate center by taking
into account the lapse functions and their regularity. Thus, we now decompose
the derivative ∂Φ/∂σ (and later ∂Φ/∂τ) of Φ of Theorem 3.1 into lapse and shift:

Definition and Lemma 3.6. Let u ..= σ
τu be the lapse function in σ-direc-

tion (lapse function in space) of Φ on Σ ..= σ
τΣ, i. e.

∂Φ
∂σ

∣∣∣∣∣
Σ

=.. u ν + β,

with β ..= σ
τβ ∈ X(Σ) and where ν ..= σ

τν denotes the normal to Σ with respect
to the metric τg . There are constants C = C(m, ε, c, c) and σ0(m, ε, c, c) such
that for any (τ, σ) ∈ Ic with σ > σ0

‖u− 1‖H2(Σ) ≤ Cσ1−ε, ‖u− 1‖W1,∞(Σ) ≤
C

σε
.

Proof. By the definition of the lapse function u and the stability operator L,
we conclude from inequality (6) that∥∥∥∥L(u− (1 + m

σ

))∥∥∥∥
L4(Σ)

≤
∥∥∥∥ ∂∂σ

(
− 2
σ

+ 4m
σ2

)
−
(

1 + m

σ

) ( 2
σ2 −

10m
σ3

)∥∥∥∥
L4(Σ)

+ C

σ
5
2 +ε

≤ C

σ
5
2 +ε

.

By Lemma 3.5, we conclude the desired inequalities for u from the regularity
of the Laplace operator. ///

Now, we have to prove an analogous lemma for the lapse function w on Σ = σ
τΣ

in τ -direction (lapse function in spacetime), i. e.

∂Φ
∂τ

∣∣∣∣∣
Σ

=.. w ν + γ,

where γ ..= σ
τγ ∈ X(Σ) is the corresponding shift vector and ν ..= σ

τν denotes
the normal to Σ with respect to the metric τg . Therefore, we have to estimate
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σ
τL(στw), where σ

τL is the stability operator of the surface σ
τΣ (with respect to

the metric τg). As first step, we see that

∂(στH )
∂τ

≡ ∂

∂τ

(−2
σ

+ 4m
σ2

)
≡ 0.

By definition, σ
τH is the mean curvature of the surface σ

τΣ with respect to
the metric τg . Thus, by changing τ to τ + δτ , we do not only change the
surface, but also the corresponding metric from τg to τ+δτg . To distinguish
between these ‘two changes’, we define σ

τH (%) to be the mean curvature of the
surface σ

τΣ with respect to the metric %g . By the rules for the Lie derivative,
we conclude

(7) 0 ≡ ∂(στH )
∂τ

≡ ∂(στH (%))
∂τ

∣∣∣∣
%=τ

+ ∂(στH (%))
∂%

∣∣∣∣
%=τ
≡ σ

τL(στw) + ∂(στH (%))
∂%

∣∣∣∣
%=τ

.

Therefore, we have to estimate the last derivative in order to prove the regu-
larity of the lapse function in spacetime. To do so, we want to use the following
proposition to characterize this derivative. The proposition is formulated in
a more abstract way, because we also need it in Section 4.

Proposition 3.7. Let Φ : I ×M → M̂ be an orthogonal foliation of an arbi-
trary Lorentzian manifold by spacelike hypersurfaces tM ..= Φ(t,M), i. e.

∂Φ
∂t

= tα tν

for the lapse function tα on tM and the future-pointing unit normal tν to tM .
Let further Σ ⊆M be a closed hypersurface in M . If we denote by tH the
mean curvature of the hypersurface tΣ ..= Φ(t,Σ) in tM , then – omitting the
index t –

∂ tH
∂t

= α
(
J(ν)− div kν + tr

(
k� k

))
+ (Dνα) trk− 2 kν(∇α),

where ν denotes the outer normal of Σ = tΣ in M = tM , k the exterior cur-
vature of Σ in M , k the exterior curvature of M in M̂ , kν ( · ) ..= k(ν, ·) is a
one-form on Σ, J(ν) ..= R̂ic(ν, ν) and the (0, 2)-tensor k� k on Σ is defined
by ( k� k )IJ ..= kIK gKL kLJ .

Proof. We fix t0, omit all unnecessary indices, and identify Σ with Φ(t,Σ). We
note that the desired equality is a local identity, in particular, it is sufficient
to prove it in a chart. Thus, we construct an adapted chart x̂ of M̂ in a



i
i

“Time˙evolution˙of˙ADM˙and˙CMC” — 2014/7/1 — 18:31 — page 14 — #14 i
i

i
i

i
i

14 Christopher Nerz

neighborhood of an arbitrary point p ∈ Σ. Choose in a neighborhood U ⊆ Σ
of p a chart x, such that the metric g induced on Σ by Φ and tg is normal in
this point p ∈ U . Now, choose a chart x on a neighborhood of p in M . This
can be done in such a way, that x|Σ = (0, x) and such that ∂/∂x1 is everywhere
orthogonal to ∂/∂xI for I > 1. Finally, choose a chart x̂ on a neighborhood of p
in M̂ , such that x̂0|tM ≡ t for any t and x̂|t0M ≡ (t0, x) and that ê0 ..= ∂/∂x̂0 is
everywhere orthogonal to ∂/∂x̂i for i > 0. Let f be the orthogonal projection
of e1 ..= ∂/∂x1 on the unit normal tν of tΣ in tM , i. e. f ..= ê1 − ĝ IJ ĝ1I êJ . In
particular, we get ũ = u and ∂ũ/∂t = ∂u/∂t on Σ, where ũ ..=

√
ĝ(f, f) and

u ..=
√

ĝ(e1, e1).
Denoting the Lie derivative of a tensor T in direction of a vector field X

by LXT , we see

tr(Lê0k) = 1
2u2

∂u

∂x0 tr
(
Lê1 ĝ

)
− 1

2utr
(
Lê1Lê0 ĝ

)
− 1

2utr
(
L[ê0,f ]ĝ

)
= 1
u

(
α tr

(
Le1k

)
− ∂u

∂x0 H + ∂α

∂x1 trk
)

−
g rs

u

(
Dr

(
αu kνs

)
+Ds

(
αu kνr

))
= α kνν H + α

u

(
tr
(
Le1k

)
− 2kν(∇u)

)
+ ∂α

∂x1
trk
u
− 2kν(∇α)− 2α divkν .

This implies

Lê0 H = tr(Lê0k)− gpr
∂ g rs
∂x0 gsq kpq = tr(Lê0k) + 2α gpr krs gsq kpq

= tr(Lê0k)− α

u
gpr krs gsq

∂ gpq
∂x0

= α kνν H + 1
u

(
αLe1

(
trk
)
− 2α kν(∇u) + ∂α

∂x1 trk
)

− 2kν(∇α)− 2α divkν .

As a first step, we thus conclude

(8) Lê0(uH ) = Le1

(
α trk

)
− 2u kν(∇α)− 2α kν(∇u)− 2αu divkν .

By definition of the exterior curvature, we know

k(ν, ν) = −1
uα

∂u

∂x0 ,
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Time evolution of ADM and CMC center of mass 15

which by (8) leads to

(9) u
∂H
∂x0 =

∂
(
α trk

)
∂x1 − 2u kν(∇α)− 2α kν(∇u)− 2αu divkν −H

∂u

∂x0 .

By the Codazzi equation, we furthermore know

u J(ν) = ∂H
∂x1 −

(
divk

)
(e1)

=
∂
(
trk
)

∂x1 − 2kν(∇u) + u
(
kννH − div kν − tr

(
k� k

))
.

Combining this with (9), we get the desired identity. ///

To use Proposition 3.7 in the current setting, we have to construct a suitable
Lorentzian manifold. To do so, we recall that Metzger considers artificial
metrics τg ..= Sg + τ(g − Sg) (τ ∈ [0, 1]). We extend this idea and construct
an artificial spacetime.

Construction 3.8. Let (M, g , x) be an asymptotically Schwarzschildean
three-dimensional Riemannian manifold. The artificial Lorentzian manifold
(M̂, ĝ) of (M, g) is defined by

aM̂ ..= [0, 1]×M, aĝ ..= − dτ̂ ⊗ dτ̂ + Sg + τ̂
(
g − Sg

)
,

where the Schwarzschild metric is defined with respect to the given chart x
and τ : aM̂ → [0, 1] : (τ, p) 7→ τ denotes the artificial time. In particular, the
three-dimensional lapse function α fulfills α ≡ 1.

Now we can use Proposition 3.7 in order to get estimates of στL (στw).

Definition and Lemma 3.9. Let w ..= σ
τu be the lapse function in τ -

direction (lapse function in spacetime) of Φ on Σ ..= σ
τΣ, i. e.

∂Φ
∂τ

∣∣∣∣∣
Σ

=.. w ν + γ,

where γ ..= σ
τγ ∈ X(Σ) is the corresponding shift vector and ν ..= σ

τν denotes
the normal to Σ with respect to the metric τg . If στH (%) is the mean curvature



i
i

“Time˙evolution˙of˙ADM˙and˙CMC” — 2014/7/1 — 18:31 — page 16 — #16 i
i

i
i

i
i

16 Christopher Nerz

of στΣ with respect to the metric %g , we obtain

|στ0L σ
τ0w| =

∣∣∣∣∣ ∂στ0H (%)
∂%

∣∣∣∣
%=τ0

∣∣∣∣∣ ≤ C

σ2+ε ∀ (τ0, σ) ∈ Ic, σ > σ0

where C = C(m, ε, c, c) and σ0 = σ0(m, ε, c, c) are constants not depending
on τ .

Proof. Using Proposition 3.7 for the artificial Lorentzian manifold (M̂, ĝ) con-
structed above and Σ ..= σ

τΣ, we conclude – omitting the indices τ and σ –

∂H (%)
∂%

∣∣∣∣
%=τ

= aR̂ic
(
ν,

∂

∂τ̂

)
− div

(
Kν

)
+ tr

(
k� k

)
,

where we used the notation of Proposition 3.7. By the Codazzi equation, we
obtain

∂H (%)
∂%

∣∣∣∣
%=τ

= Dν

(
τtr k

)
−
(
τdiv k

)
(ν)− div

(
kν
)

+ tr
(
k� k

)
,

where τtr k is the trace of k and the one-form τdivk is the divergence of k –
both with respect to the metric τg . By recognizing that −2 kij = g ij − Sg ij
and using the assumptions on g , we see that |k| ≤ C/σ1+ε and |∇k| ≤ C/σ2+ε.
Therefore, we conclude the desired inequality with (7). ///

By Lemma 3.5, we conclude the following inequalities for w from the regularity
of the Laplace operator:

Lemma 3.10. There are constants C = C(m, ε, c, c) and σ0(m, ε, c, c) such
that for any pair (τ, σ) ∈ Ic with σ > σ0

‖w‖H2(Σ) ≤ Cσ2−ε, ‖w‖W1,∞(Σ) ≤ Cσ1−ε.

By definition, every evolution ψ of a sphere is characterized by the lapse
function ψw and the shift γ. In particular, this is true for the ‘movement’ of
the spheres, i. e. the change in time τ of the coordinate origin. By computing
the L2 norm of νi, we recognize that any function f ∈ L2 can be written as

f = fν + fR ..= 3
∑
i

νi

 
Σ
νi f dµ+ fR,

where fR is L2-orthogonal to νi up to an error. This error vanishes asymp-
totically and is explained by the fact that the νi are only asymptotically
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Time evolution of ADM and CMC center of mass 17

L2-orthogonal to each other. It is intuitively clear that this ψwν part of the
lapse function characterizes the ‘movement’ of the spheres.

Proposition 3.11. Let ψ : (−ϑ0, ϑ0)× σ
τΣ→ τM be a deformation of the

leaf Σ ..= σ
τΣ, i. e. ψ(0, ·) = id|Σ. There are constants C = C(m, ε, c, c) and

σ0 = σ0(m, ε, c, c) neither depending on ψ nor on τ , such that for σ > σ0 the
Euclidean coordinate centers ϑz of the hypersurface ϑΣ ..= ψ(ϑ,Σ) fulfill∣∣∣∣∂ ϑzi∂ϑ

− 3
 

Σ
νi

ψu dµ
∣∣∣∣ ≤ C

σ2

∥∥∥ψu∥∥∥
L2(Σ)

,

where ψu ..= τg(∂ψ/∂ϑ, ν) is the lapse function of ψ and ν denotes the outer
unit normal of στΣ with respect to the metric τg .

Proof. Let ψ be a evolution of Σ = σ
τΣ. Again, we suppress the indices τ and

σ. As the Euclidean coordinate center is invariant under diffeomorphisms, we
can assume that ∂ψ/∂ϑ = ψu ν. For the desired inequality, we first approximate
the derivation of the numerator (ϑz |ϑΣ| =

´
ϑΣ xi dµ):∣∣∣∣∂(ϑzi |ϑΣ|)

∂ϑ
− 3

ˆ
Σ
νi

ψu dµ+ H ψu zi dµ
∣∣∣∣

=
∣∣∣∣ˆ

Σ

∂(xi ◦ ψ)
∂ϑ

− H ψuxi − 3 νi ψu+ H ψu zi dµ
∣∣∣∣

=
∣∣∣∣ˆ

Σ
H ψu (xi − zi) + 2 νi ψu dµ

∣∣∣∣
≤ C

∥∥∥ψu∥∥∥
L2(Σ)

(
‖N − ν‖L2(Σ) + C

σ

)
≤ C

∥∥∥ψu∥∥∥
L2(Σ)

.

Using the Leibniz formula, we conclude the claimed inequality by∣∣∣∣∂(ϑzi)
∂ϑ

− 3
 

Σ
νi

ψu dµ dµ
∣∣∣∣

≤ |Σ|−1
∣∣∣∣∣∂
(
ϑzi

∣∣ϑΣ∣∣)
∂ϑ

+ zi

ˆ
H ψu dµ− 3

ˆ
Σ
νi

ψu dµ
∣∣∣∣∣

≤ C

σ2

∥∥∥ψu∥∥∥
L2(Σ)

. ///

We can now combine the Lemmas 3.6 and 3.10 and Proposition 3.11 to finish
the proof of Proposition 3.3:

Proof (of Proposition 3.3). By Lemmas 3.6 and 3.10 and Proposition 3.11,
there are constants C = C(m, ε, c, c) and σ0 = σ0(m, ε, c) such that for any
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(τ, σ) ∈ Ic with σ ≥ σ0∣∣∣∣∂στz∂τ
∣∣∣∣ ≤ C σ1−ε,

∣∣∣∣∂στz∂σ
∣∣∣∣ ≤ C

σε
.

Using the regularity of Φ, this implies that Ic is open in [0, 1]× (σ0,∞),
where σ0 and c are without loss of generality sufficiently large. As we already
know, Ic is non-empty and closed in and therefore equal to [0, 1]× (σ0,∞).
Per definition of Ic, this concludes the proof. ///

4. The evolution of the CMC center of mass

In this section, we characterize the evolution of the (abstract and coordi-
nate) CMC center of mass under the Einstein equations. As mentioned in
the introduction, the decay assumptions on the momentum density J of M
are not sufficient to ensure that the ADM linear momentum P of (M, g) is
well-defined. Thus, we cannot expect that the evolution is characterized solely
by mass and ADM linear momentum. We have to replace it by its approxi-
mating integrals (see Remark 4.2). Secondly, due to the weak assumptions on
the momentum density, we need an additional correction term. This term is
given by an integral, too.

Theorem 4.1. Let (M̂, ĝ) be a Lorentzian spacetime and ε > 0. Let {tM}t
be a C 2-asymptotically Schwarzschildean temporal foliation of (M̂, ĝ) of order
1 + ε. Let {σtΣ} be the foliation of tM near infinity by spheres σ

tΣ of constant
mean curvature σ

tH ≡ −2/σ + 4m/σ2 with respect to the induced metric tg on
tM . There are constants tC = C(m, tc, ε) and tσ0 = tσ0(m, tc, ε) such that the
Euclidean coordinate center σ

tz of σtΣ fulfills for σ > tσ0∣∣∣∣∣∂ σtzi∂t
− 1

8πm

ˆ
σ
tΣ

tH σ
tνi− tkij σtνj + σ J

(
σ
tν
)
σ
tνi dµ

∣∣∣∣∣ ≤ tC

σmin{ε,δ} ,(10)

where σ
tν denotes the outer unit normal of σ

tΣ in tM , tJ( · ) ..= R̂ic(tν, ·) the
momentum density, tν the future-pointing unit normal of tM in M̂ and the
constant δ is as in Definition 2.4.

Remark 4.2. The first two terms in (10) are motivated by the definition of
the ADM linear momentum P

Pi ..= 1
8π lim

r→∞

ˆ
{r≡r}

Π
(
∂

∂xi
, {r≡r}ν

)
dH 2 with Π ..= H g − k,
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where {r≡r}ν is the normal and H 2 is the canonical measure of the Euclidean
coordinate sphere {r ≡ r} ..= r−1(r ) – both with respect to the Euclidean
metric eg . By Stokes’ theorem, we see that the ADM linear momentum is well
defined if divΠ = J is small, e. g. |J | ∈ L1(M). Similarly, we see that under
this additional assumption the Euclidean coordinate spheres {r ≡ r} can be
replaced by the CMC spheres σΣ. Thus, the difference of these terms in (10)
has to be understood as a quasi-local linear momentum on σΣ. The additional
term is necessary due to the fact that we cannot use Stokes’ theorem, as the
momentum density is not assumed to be small enough.

Corollary 4.3. Let (M̂, ĝ) be a Lorentzian spacetime and ε > 0. Let {tM}t
be a C 2-asymptotically Schwarzschildean temporal foliation of (M̂, ĝ) of order
1 + ε and |tJ | ∈ L1(tM) for all t. Let {σtΣ}σ be the foliation of tM by spheres
σ
tΣ of constant mean curvature σ

tH ≡ −2/σ + 4m/σ2 with respect to the induced
metric tg on tM . There are constants tC = tC(m, tc, ε) and tσ0 = tσ0(m, tc, ε)
such that the Euclidean coordinate center σ

tz of σtΣ with σ > tσ0 fulfills∣∣∣∣∣∂σtz∂t − P
m

∣∣∣∣∣ ≤ tC

σmin{ε,δ} ,

where δ is as in Definition 2.4.

Corollary 4.4. Let (M̂, ĝ) be a Lorentzian spacetime and ε > 0. Let {tM}t
be a C 2-asymptotically Schwarzschildean temporal foliation of (M̂, ĝ) of order
1 + ε and |tJ | ∈ L1(tM) for all t. Let σtz be the Euclidean coordinate center of
the foliation of tM near infinity by spheres of constant mean curvature σ

tH ≡
−2/σ + 4m/σ2 with respect to the induced metric tg on tM . If the coordinate
CMC center of mass

tzCMC ..= lim
σ→∞ σ

tz

converges at one time t = t0 ∈ I then it converge for all times t and fulfills

∂ tzCMC

∂t
= P
m
.

Both corollaries are direct implications of Theorem 4.1.
By Proposition 3.11, ∂ σtzi/∂t is asymptotically characterized by the lapse

function σ
tw of the evolution of σtΣ (in time t for fixed σ), i. e. for any smooth

evolution ψ : (−%0, %0)× σ
tΣ→ M̂ with σ

t+δtΣ = ψ(δt, σtΣ), this lapse function
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is defined by

∂ψ

∂%

∣∣∣∣
%=0

= σ
tw σ

tν + σ
tβψ,(11)

where σ
tβψ ∈ X(σtΣ) is the shift of ψ on σ

tΣ. By Proposition 3.7 this lapse
function w is characterized in the following way:

Corollary 4.5. If is the lapse function on σ
tΣ as in (11) then – omitting the

t and σ indices –

Lw = α
(

div kν −J(ν)− tr
(

k� k
))
−Dνα trk + 2 kν(∇α),

where L denote the stability operator on Σ.

Now, we can continue with the proof of Theorem 4.1:

Proof (of Theorem 4.1). By Proposition 3.11 and Corollary 4.5, we conclude
the claim using the following Theorem 4.6. ///

In view of Proposition 3.11, identity (11) and Corollary 4.5, the following
Theorem 4.6 is the instantaneous version of Theorem 4.1. We use the expres-
sion instantaneous as no ‘real derivative’ is used, but only information of the
(abstract) initial data set (and the lapse function α).3

Theorem 4.6. Let ε > 0 and (M, g , x, k, %, J, α) be an arbitrary C 2-asympto-
tically Schwarzschildean (abstract) initial data set of order 1 + ε and let {σΣ}σ
be its foliation near infinity by constant mean curvature surfaces. There are
constants C = C(m, ε, c) and σ0 = σ0(m, ε, c) such that the lapse function σw
of the leaf σΣ with mean curvature H ≡ −2/σ + 4m/σ2 and σ ≥ σ0 fulfills∣∣∣∣3 

Σ
σνi σw dµ− 1

8πm

ˆ
Π(ν, ei) + σ · νi ·J(ν) dµ

∣∣∣∣ ≤ C

σmin{ε,δ} ,

where δ is as in Definition 2.4 and σw is characterized by – omitting the index
σ –

Lw = α
(

div kν −J(ν)− tr
(

k� k
))
−Dνα trk + 2 kν(∇α),

where L denote the stability operator on Σ.

3Note that the lapse function α does in fact characterize the ‘infinitesimal evolu-
tion’ of spacelike hypersurface under the Einstein equations in a Lorentzian mani-
fold.
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Proof. Omit the index σ. Let {fi} be an L2-orthonormal set of eigenfunctions
of the stability operator L corresponding to the eigenvalues λi with |λi| ≤ 1/σ2.
By characterization of the lapse function, we see
ˆ

Σ
fiw dµ =

ˆ
fi
λi

(
α
(
div kν −J(ν)− tr

(
k� k

))
−Dνα trk + 2 kν(∇α)

)
dµ.

By the decay assumption on α and k and the fact that Σ is almost asymp-
totically concentric by Proposition 3.3, we conclude

∣∣∣Dνα trk + 2 kν(∇α)
∣∣∣ ≤ C

σ3+ε ,∣∣∣α(div kν −J(ν)
)
−
(
div kν −J(ν)

)∣∣∣ ≤ C

σ3+ε .

Considering additionally the decay (3) of k, we furthermore get∣∣∣∣α tr
(
k� k

)
−H

2 trk
∣∣∣∣ ≤ C

σ3+min{ε,δ} .

The only remaining term that we need to understand is

(12)
ˆ
fi

(
J(ν) + H trk

2 − div kν
)

dµ =
ˆ

k(ν,∇fi) + fi

(
J(ν) + H trk

2

)
dµ.

To obtain the desired result, we now have to replace fi by the components
of the normal. By definition of the stability operator and the assumed decay
of g − Sg , we see ∥∥∥∥∆fi +

( 2
σ2 −

4m
σ3

)
fi

∥∥∥∥
L2(Σ)

≤ C

σ2+ε .

Thus, the fi are comparable to the first three non-constant L2-orthonormal
eigenfunctions gi of the Laplace – in particular the linear span lin{fi}i is
three-dimensional. In Euclidean space, the components Ni of the normal to
the sphere {r ≡ r} are eigenfunctions of the Laplace. Using the inequality (5)
bounding ν −N , we thus conclude∥∥∥∥∥∥νi−

∑
j

(ˆ
gj · νi dµ

)
gj

∥∥∥∥∥∥
H1(Σ)

≤ C

σε
.
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Thus, there is an isomorphism T : lin{νi}3i=1 → lin{fi}3i=1 with

‖T − idL2‖L(lin{νi}3
i=1;L2(Σ)) +

∥∥∥T−1 − idL2

∥∥∥
L(lin{fi}3

i=1;L2(Σ)) ≤
C

σmin{ε,δ} ,

where the norm on the left hand side denotes the operator norm between
these subspaces of L2 and L2. By Lemma 3.5 and (12), we conclude∣∣∣∣∣

ˆ
Σ
νi w dµ+ σ3

6m

ˆ
k(ν,∇ νi) + νi

(
J(ν)− trk

σ

)
dµ
∣∣∣∣∣

≤ Cσ1−min{ε,δ} ‖νi‖L2(Σ).

We compare νi with Ni and recall e∇Ni = 1/σ (ei −Ni) on the Euclidean
sphere {r ≡ r} with respect to the Euclidean metric eg . Using the constant
given by H , the integral asymptotically simplifies to

−σ3

6m

ˆ (k(ν, ei)
σ

+ νi

(
J(ν)− H

σ

))
dµ = σ2

6m

ˆ (
Π(ν, ei) + σ νi J(ν)

)
dµ,

i. e. ∣∣∣∣3 
Σ
νi w dµ− 1

8πm

ˆ (
Π(ν, ei) + σ νi J(ν)

)
dµ
∣∣∣∣ ≤ C

σmin{ε,δ} .
///

5. Calculating the coordinate centers

Now, we use our new understanding of the time evolution of the CMC spheres
and the Construction 3.8 to (asymptotically) calculate the Euclidean coordi-
nate center of a leaf of the CMC foliation.

Corollary 5.1. Let (M, g) be a C 2-asymptotically Schwarzschildean three-
dimensional Riemannian manifold of order 1 + ε> 1. Further denote by {σΣ}σ
the foliation of M near infinity by spheres of constant mean curvature σH ≡
−2/σ + 4m/σ2. There are constants C = C(m, ε, c) and σ0 = σ0(m, ε, c) such
that the Euclidean coordinate center σz of any leaf σΣ with σ > σ0 fulfills –
omitting the index σ –∣∣∣∣∣∣zi− 1

16πm

ˆ
S2
σ(0)

3∑
j=1

(
xi

(
∂ g jk
∂xj

−
∂ g jj
∂xk

)
−
(

g ij
xj

r
− g jj

xi
r

))
dH 2

∣∣∣∣∣∣ ≤ C

σε
,

where H 2 is the canonical measure of the Euclidean coordinate sphere S2
σ(0) ..=

r−1(σ).
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Proof. We use the artificial Lorentzian manifold (M̂, aĝ) as in Construction
3.8. We conclude that the exterior curvature of any artificial time-slice τM ..=
{τ} ×M is given by τk = 2(Sg − g) and the induced metric is τg . In particu-
lar, we can calculate the Euclidean coordinate centers σz = σ

1z of the leaves
σΣ = σ

1Σ of the CMC foliation {σΣ}σ near infinity of 1M with respect to the
‘real’ metric g = 1g , by looking at Theorem 4.6. Using the fact that in coordi-
nates σ

τΣ ≈ S2
σ(στz), we therefore obtain the (asymptotic) ordinary differential

equations

σ
0z = 0,

∣∣∣∣∣∂στz∂τ − 1
8πm

ˆ
S2
σ(στz)

(
τΠ(ν, ei) + σ νi J(ν)

)
dµ
∣∣∣∣∣ ≤ C

σε
.

Furthermore by Proposition 3.3, we see∣∣∣∣∣
ˆ

S2
σ(στz)

(
τΠ(ν, ei) + σ νi J(ν)

)
dµ−

ˆ
S2
σ(0)

(
τΠ(ν, ei) + σ νi J(ν)

)
dH 2

∣∣∣∣∣ ≤ C

σε
,

where H 2 is the canonical measure of the Euclidean coordinate sphere. By
taking into account the assumptions on g , we conclude the result. ///

Let us now quickly recall the definition of the ADM center of mass.

Definition 5.2. Let (M, g) be a C 2-asymptotically Schwarzschildean three-
dimensional Riemannian manifold of order 1 + ε with ε > 0. The coordinate
ADM center of mass zADM is defined to be

(zADM)i
..= 1

16πm

ˆ
S2

r (0)

3∑
j=1

(
xi

(
∂ g jk
∂xj

−
∂ g jj
∂xk

)
−
(

g ij
xj

r
− g jj

xi
r

))
dH 2,

where indices are lowered with the Euclidean metric and H 2 is the canonical
measure on the sphere.

Using Corollary 5.1 for the limit σ →∞, the equality of the coordinate
CMC center of mass and the coordinate ADM center of mass is a direct
implication of Corollary 5.1.

Corollary 5.3. Let (M, g) be a C 2-asymptotically Schwarzschildean three-
dimensional Riemannian manifold of order 1 + ε with ε > 0. If either the
coordinate ADM center zADM or the coordinate CMC center zCMC converge
then so does the other one and they coincide.
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