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Abstract. In 1996, Huisken-Yau proved that every three-dimensional Rie-
mannian manifold can be uniquely foliated near infinity by stable closed sur-
faces of constant mean curvature (CMC) if it is asymptotically equal to the
(spatial) Schwarzschild solution. Using their method, Rigger proved the same
theorem for Riemannian manifolds being asymptotically equal to the (spatial)
(Schwarzschild-)Anti-de Sitter solution. This was generalized to asymptoti-
cally hyperbolic manifolds by Neves-Tian, Chodosh, and the author at a later
stage. In this work, we prove the reverse implication as the author already
did in the Euclidean setting, i.e. any three-dimensional Riemannian manifold
is asymptotically hyperbolic if it (and only if) possesses a CMC-cover satis-
fying certain geometric curvature estimates, a uniqueness property, and each
surface has controlled instability. As toy application of these geometric charac-
terizations of asymptotically Euclidean and hyperbolic manifolds, we present
a method for replacing an asymptotically hyperbolic by an asymptotically Eu-
clidean end and apply this method to prove that the Hawking mass of the
CMC-surfaces is bounded by their limit being the total mass of the asymptot-
ically hyperbolic manifold, where equality holds only for the t=0-slice of the
(Schwarzschild-)Anti-de Sitter spacetime.

1. Introduction

In 1996, Huisken-Yau proved that manifolds which are asymptotic to the spatial
Schwarzschild metric with positive mass possesses a foliation by stable constant
mean curvature (CMC) hypersurfaces, [HY96]. They used this foliation as a defi-
nition for the center of mass of the manifold and also gave a coordinated version
of this center. Since then, this foliation proved to be a suitable tool for the study
of asymptotically Euclidean (i.e. asymptotically flat Riemannian) manifolds and
several generalizations of Huisken-Yau’s result were made, e.g. by Metzger, Huang,
Eichmair-Metzger, and the author, [Met07, Hua10, EM12, Ner15a]. In 2004, Rig-
ger used Huisken-Yau’s method—the mean curvature flow—to prove the existence
and uniqueness of such a foliation for manifolds asymptotic to the t=0-slice of the
(Schwarzschild-)Anti-de Sitter spacetime, [Rig04]. This result was generalized using
other methods to more general asymptotically hyperbolic manifolds by Neves-Tian,
Chodosh, and the author, [NT09, NT10, Cho14, Ner16].

In [Ner15b], the author proved that the existence of a CMC-foliation is not
only an implication of asymptotic flatness but a characterization of it, i.e. an ar-
bitrary Riemannian 3-manifold possesses a ‘suitable’ CMC-foliation if and only if
it is asymptotically Euclidean. In this article, we prove the equivalent theorem for
the hyperbolic setting or more precisely the missing implication: if a Riemannian
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3-manifold possesses a ‘suitable’ CMC-foliation, then it is asymptotically hyper-
bolic. As a toy application of these characterizations of asymptotically Euclidean
and hyperbolic manifolds, we show that we can replace any asymptotically hyper-
bolic end by an asymptotically Euclidean one. In particular in case of S ≥ −6, an
application of the inverse mean curvature flow implies that the (hyperbolic) Hawk-
ing mass of any sphere of constant mean curvature is bounded from above by the
total mass of the surrounding (asymptotically hyperbolic) manifold. Here, equality
holds if and only if the surrounding manifold is isometric to the [t=0]-slice of the
(Schwarzschild-)Anti-de Sitter spacetime.

1.1. The main results.
Theorem I (CMC-characterization of asymptotically hyperbolic manifolds)
Let $ ∈ ( 5

2 ; 3) and υ ≥ $+ 1
2 be constants and (M, g) be a Riemannian manifold.

(M, g) is C2
$,υ-asymptotically hyperbolic with1 timelike mass vector −~m if and only if

there exists a family {σΣ}σ>σ0 of hypersurfaces of M such that
(a) {σΣ}σ>σ0 is a W2,∞

$,υ -asymptotically round CMC-cover;
(b) {σΣ}σ>σ1 covers M outside a compact set K = K(σ1) for every σ1 > σ0;
(c) {σΣ}σ>σ0 is locally unique;
(d) {σΣ}σ>σ0 has uniformly timelike and bounded Ricci-mass.

Furthermore, the (coordinate-independent) hyperbolic Hawking mass of σΣ con-
verges to the total mass m ..= |−~m|R3,1 of (M, g) as σ →∞.

The definitions used here are given as Definitions 3.4, 3.6, 3.8, and 3.11 on
pages 4–6. The existence of such a round cover for C2

$,υ-asymptotically hyperbolic
manifold with $ ∈ ( 5

2 ; 3) and υ > 3 was proven by the author in [Ner16]. In
this article, we prove the reverse implication, i.e. that the existence of a suitable
CMC-foliation implies the existence of a C2

$,υ-asymptotically hyperbolic chart.
We do not prove that the Hawking mass along the foliation is monotone increas-

ing, but we prove the next best thing: It is bounded by the total mass and only in
the Schwarzschild-Anti de Sitter case it is equal to it.
Theorem II
Let $ ∈ ( 5

2 ; 3) be a constant and (M, g) be a C2
$-asymptotically hyperbolic manifold

with 0 ≤ e|x|(S +6) ∈ L1(M), where x is any C2
$-asymptotically hyperbolic coordinate

system2. The hyperbolic Hawking mass mh
H(σΣ) of each leaf σΣ of the CMC-foliation

with sufficiently large mean curvature radius is less than or equal to the total mass3

of (M, g), Here, equality holds for some large mean curvature radius if and only if M
is (outside of the corresponding CMC-leaf) isometric to the standard [t=0]-timeslice
(outside of a ball) of the Schwarzschild-Anti-de Sitter spacetime.

Remark 1.1. In contrast to the Euclidean setting, Theorem II is not necessarily true
if we replace {σΣ}σ with some other foliation of M, i.e. there are smooth (arbitrarily
round) hypersurfaces Σ within M having larger Hawking mass than the total mass
of M. This can be seen as a straightforward calculation proves that the mass vector

1Note that the mass vector −~m itself depends on the asymptotically hyperbolic coordinates
system, but the total mass m ..= −|−~m|R3,1 does not, and therefore it is a coordinate independent
property whether the mass vector is timelike or not, [CH03].

2More precisely e|x|(S + 6) has only to be integrable, where |x| is well-defined.
3with respect to any asymptotically hyperbolic coordinate system
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−~m(y) for any non-balanced asymptotically hyperbolic coordinate system y of M
satisfies∣∣mh

H
(
{|y| = r}

)∣∣2 r→∞−−−→
∣∣m0(y)

∣∣2 = −
∣∣−~m(y)

∣∣2
R3,1 +

∣∣∣(mi(y)
)3
i=1

∣∣∣2
R3

> −
∣∣−~m(y)

∣∣2
R3,1 .

Here, we used Neves-Tian’s definition of a balanced coordinate system, see [NT10]:
a coordinate system x of an asymptotically hyperbolic manifold is called balanced
if and only if −~m(x) = (m(x), 0, 0, 0).

Theorem II is actually a direct corollary of the monotony of the Hawking mass
under the inverse mean curvature flow and the following corollary of Theorem I and
[Ner15b]:
Corollary 1.2 (Replacing the asymptotic end)
Fix constants $ ∈ ( 5

2 ; 3) and υ ∈ [$ + 1
2 ; 2$].4 For every C2

$,υ-asymptotically hy-
perbolic manifold (M, g), there exists a metric fg on M with the following properties

• fg is C2
$−2,υ-asymptotically Euclidean;

• the CMC-foliations with respect to g and fg are identical;
• g |TσΣ2 = fg |TσΣ2 for every σ > σ0 and g = fg in M \

⋃
σ σΣ;

• f
σν = cosh(σ) g

σν for every σ > σ1 and the outer unit normals f
σν and σν of

σΣ with respect to fg and g , respectively;
• mh

H(σΣ) = mH(σΣ) for every σ > σ1;
• if gS ≥ −6, then fS |

σΣ ≥ 0 for every σ > σ1.
Here, σ0 denotes the infimum of the mean curvature radius of the canonical CMC-
foliation and σ1 > σ0 is arbitrary.

Note that the behavior of fS is also in
⋃σ1
σ>σ0 σ

Σ well-controlled—i.e. in the
region between the one where [ g = fg ] and the one where [fS ≥ 0]—, see the con-
struction (14) on page 25.

Acknowledgment. The author thanks Stephen McCormick and Katharina
Radermacher for helpful discussions on applications of Theorem II and the Alexan-
der von Humboldt Foundation for ongoing financial support via the Feodor Lynen
scholarship.

2. Structure of the paper

In Section 3, we give the basic definitions and explain the notations used in
this article. In particular, we define what W2,p

$,υ-asymptotically round spheres and
covers are. We prove in Section 4 that W2,p

$,υ-asymptotically round spheres satisfy
strict estimates on their extrinsic curvature and other regularity properties of these
objects. Then, we use them in Section 5 to conclude strict estimates on W2,p

$,υ-as-
ymptotically round covers and to show that such a cover always has a well-defined
mass. In Section 6, we then explain and present the proof of Theorem I. Finally,
we prove Theorem II and Corollary 1.2 in the last Section 7.

4υ may be even be in [$ ; 2$] if S ≥ −6.
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3. Assumptions and notation

Notation 3.1 (Notations for the most important tensors)
In order to study foliations (near infinity) of three-dimensional Riemannian man-
ifolds by two-dimensional spheres, we have to deal with different manifolds (of
different or the same dimension) and different metrics on these manifolds, simul-
taneously. To distinguish between them, all three-dimensional quantities like the
surrounding manifold (M, g), its Ricci and scalar curvature Ric and S and all other
derived quantities carry a bar, while all two-dimensional quantities like the CMC
leaf (Σ, g), its second fundamental form k, the trace-free part of its second funda-
mental form k◦ ..= k − 1

2 (trk) g , its Ricci, scalar, and mean curvature Ric, S , and
H ..= trk, its outer unit normal ν, and all other derived quantities do not.

As explained, we interpret the second fundamental form and the normal vector
of a hypersurface as quantities of the surface (and thus as two-dimensional). For
example, if σΣ is a hypersurface in M, then σν denotes its normal (and not σν).
The same is true for the ‘lapse function’ and the ‘shift vector’ of a hypersurfaces
arising as a leaf of a given deformation or foliation. Furthermore, we stress that the
sign convention used for the second fundamental form, i.e. k(X,Y ) = g(∇XY,ν)
for X,Y ∈ X(Σ), results in the negative mean curvature eH (S2

r) ≡ − 2
r for the

two-dimensional Euclidean sphere of radius r.
Notation 3.2 (Left indexes and accents of tensors)
If different two-dimensional manifolds or metrics are involved, then the lower left
index denotes the mean curvature index σ of the current leaf σΣ, i.e. the leaf with
mean curvature σH ≡ −2 cosh(σ)

sinh(σ) , or the radius r of a coordinate sphere S2
r(0).

Quantities carry the upper left index h , e, and Ω if they are calculated with respect
to the hyperbolic metric hg , the Euclidean metric eg , and the standard metric σΩ
of the Euclidean sphere S2

σ(0), correspondingly. Furthermore, we use the upper left
index r for quantities calculated with respect to the hyperbolic metric hg along a
specific (‘round’) embedding of the CMC-leafs to the hyperbolic space, see Section 6.
We abuse notation and suppress the left indexes, whenever it is clear from the
context which manifold and metric we refer to.

Notation 3.3 (Indexes)
We use upper case latin indices I and J for the two-dimensional range {2, 3}, the
lower case latin index i for the three-dimensional range {1, 2, 3}, and the greek index
α for the four-dimensional range {0, 1, 2, 3}. The Einstein summation convention
is used accordingly.

As there are different definitions of ‘asymptotically hyperbolic’ in the literature,
we now give the one used in this paper.
Definition 3.4 (C2

$,υ-asymptotically hyperbolic Riemannian manifolds)
Let $, υ > 0 be constants. A triple (M, g , x) is called (three-dimensional) C2

$,υ-
asymptotically hyperbolic Riemannian manifold if (M, g) is a three-dimensional
smooth Riemannian manifold and x : M \ L → R3 is a smooth chart of M out-
side a compact set L ⊆M such that there exists a constant c ≥ 0 with∣∣ g − hg

∣∣
hg +

∣∣∣h∇( g − hg
)∣∣∣

hg
+
∣∣∣Ric− hRic

∣∣∣
hg
≤ c e−$ |x|,

∣∣∣S − hS
∣∣∣ ≤ c e−υ |x|,
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where hg = dr2 +sinh(|x|)2 Ω and Ω denote the hyperbolic metric and the standard
metric of the Euclidean unit sphere S2, respectively. Here, these quantities are iden-
tified with their push-forward along x. Finally, (M, g , x) is called C2

$-asymptotically
hyperbolic if it is C2

$,$-asymptotically hyperbolic.

We often abuse notation and suppress the chart x.

Remark 3.5 (Boundedness of the scalar curvature). For everything, we do in this
article the assumption on the scalar curvature can also be reduced to

−c e−υ|x| ≤ S − hS , e|x|
(

S + hS
)
∈ L1(M),

see also Remarks 3.14, 4.7, 4.9, and 5.2. However, we then have to assume that
the mass of (M, g) is future pointing timelike instead of only assuming that it is
timelike, see Theorem I.

Definition 3.6 (Controlled instability)
Let Σ ↪→ (M, g) be a hypersurface within a three-dimensional Riemannian manifold
and let α ∈ R be a constant. If Σ has constant mean curvature, then it is called of
α-controlled instability if the smallest eigenvalue of the (negative) stability operator
−L is greater than (or equal to) α, i.e.ˆ

|∇f |2g dµ ≥
ˆ (
|k|2g + Ric(ν,ν) + α

)
(f − \f)2 dµ ∀ f ∈ H2(Σ),

where \f ..=
ffl
f dµ ..= |Σ|−1 ´

f dµ denotes the mean value of any function f ∈
H2(Σ). The surface Σ is called stable and strictly stable if it has α-controlled
instability for α = 0 and α > 0, respectively.

Definition 3.7 (Hyperbolic hawking mass, e.g. [Wan01])
If (Σ, g) is a hypersurface within a three-dimensional Riemannian manifold, then

mh
H(Σ) ..=

(
|Σ|
16π

) 1
2
(

1− 1
16π

ˆ
Σ

(
H 2 − 4

)
dµ
)

is called hyperbolic Hawking mass of Σ.

Definition 3.8 (Round spheres)
Let (M, g) be a three-dimensional Riemannian manifold and let $ > 0, η ∈ (0 ; 4],
p ∈ [1 ;∞], and c ≥ 0 be arbitrary constants.

A hypersurface Σ ↪→ (M, g) with constant mean curvature is called W2,p
$,υ(c, η)-

asymptotically round sphere of mean curvature radius σ if
(RS-1) Σ is diffeomorphic to the Euclidean sphere;
(RS-2) Σ has constant mean curvature with mean curvature radius σ, i.e. H ≡

−2 cosh(σ)
sinh(σ) ;

(RS-3)
∥∥|Ric + 2 g | g

∥∥
Lp (Σ) ≤ c e

−$σ |Σ|
1
p and ‖S + 6‖L1 (Σ) ≤ c e

−υσ |Σ|;
(RS-4) Σ has −(4− η) sinh(σ)−2 controlled instability;
(RS-5) one of the following assumptions is true

(RS-5a) Σ satisfies e−2σ |σΣ| ∈ (c−1 ; c);
(RS-5b) Σ has − 1

2 (4− η) sinh(σ)−2 controlled instability;
(RS-5c) Σ has c-bounded Hawking mass, i.e. |mh

H(Σ)| ∈ (c−1 ; c).
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The Ricci-mass −~m(Σ) = (mα(Σ))α ∈ R3,1 of such a surface is defined by

m0(Σ) ..= − |Σ|
16π 3

2
σG

0
, mi(Σ) ..= |Σ|

16
√

3π 3
2
σG

i ∀ i ∈ {1, 2, 3},

where σG
n
fn denotes the Fourier series of σG ..= (Ric(ν,ν) − 1

2 S − 1)|
σΣ and ν

is a unit normal of Σ, i.e. σG
n denotes the nth-coefficient of σG with respect to

the complete L2(σΣ)-orthogonal system {fn}∞n=0 of eigenfunctions of the (negative)
Laplace operator with corresponding eigenvalues λn satisfying λn+1 ≥ λn ≥ 0.
Remark 3.9 (The definition of Ricci-mass). Note that coordinate spheres Σ =
S2
r(0) ..= {|x| = r} in an asymptotically hyperbolic manifold with mass vector
−~m = (m0, . . . ,m3) satisfies

m0
(
S2
r(0)

)
= −1

8π

ˆ
S2
r(0)

rG sinh(r) dµ+ O
(
e−εσ

)
= −1

8π

ˆ (
Ric− 1

2S g − g
)(
ν,X

0)dµ+ O
(
e−εσ

)
= m0 + O

(
e−εσ

)
,

mi
(
S2
r(0)

)
= 1

8π

ˆ
S2
r(0)

rG
xi sinh(r)
|x|

dµ+ O
(
e−εσ

)
= 1

8π

ˆ (
Ric− 1

2S g − g
)(
ν,X

i
)

dµ+ O
(
e−εσ

)
= mi + O

(
e−εσ

)
,

where X
0 and X

1
, . . . X

3 are the radial vector field and the composition of the
translation (in the Euclidean standard directions) and the inversion map, i.e. the
basic conformal vector fields of the hyperbolic space, see [Her15] for more informa-
tion. This motivates our coordinate independent definition.
Remark 3.10 (On the mass assumptions of the spheres). Note that a posteriori
any round sphere has even O(e−3σ) controlled instability and satisfies e−2σ |σΣ| ∈
(C−1 ;C), i.e. a posteriori it satisfies at least (RS-5a) and (RS-5b). Thus, (RS-5c)
is the strongest of the assumptions in (RS-5). We will see that if the round sphere
has sufficiently large mean curvature radius σ and is an element of a round cover
(see below) with bounded and uniformly timelike Ricci-mass, then all assumptions
in (RS-5) are equivalent.
Definition 3.11 (Round covers)
Let (M, g) be a three-dimensional Riemannian manifold and let $ > 0, η ∈ (0 ; 4],
p ∈ [1 ;∞], and c ≥ 0 be arbitrary constants.

A family M ..= {σΣ}σ>σ0 of hypersurfaces of (M, g) is called W2,p(c, η)-asymp-
totically round CMC-cover if
(RC-1) each surface σΣ is a W2,p

$,υ(c, η)-asymptotically round sphere with mean
curvature H ≡ −2 cosh(σ)

sinh(σ) ,
(RC-2)

⋃
σ>σ1 σ

Σ covers M outside of a compact set K(σ1) ⊆ M for every σ1 ∈
(σ0 ;∞).

A W2,p(c, η)-asymptotically round CMC-cover M is called locally unique if
(RC-3) for every Σ ∈ M there exist q = q(M ,Σ) ∈ (2 ; p) and δ = δ(M ,Σ) > 0 such

that the following holds for every function f ∈W2,q(σΣ)
‖f‖W2,q(σΣ) < δ, H (graph f) ≡ const =⇒ graph f ∈ M .
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It has uniformly timelike Ricci-mass if
(RC-4) |−~m(σΣ)|R3,1 < −c−1 for every σ > σ0

and bounded Ricci-mass if
(RC-5) |−~m(σΣ)|R3,1 ∈ (−c ; c) for every σ > σ0.
Finally, the Ricci-mass −~m of a W2,p-asymptotically round cover is defined by −~m ..=
−~m(M ) ..= limσ

−~m(σΣ) ∈ R3,1 if this limit exist.

In the following, we abbreviate W2,p
$,$ by W2,p

$ .

Remark 3.12 (The assumptions on the mass). Recalling Remark 3.9 and [Ner16],
we see that the CMC-foliation of any C2

$,υ-asymptotically hyperbolic Riemannian
three-manifold with timelike mass vector −~m is W2,p(c, η)-asymptotically round for
some constant c and every p ∈ (1 ;∞) and η ≥ 0. Furthermore, the Ricci mass of
this foliation is (±|−~m|R3,1 , 0, 0, 0) for some sign ± ∈ {−1, 1}.

Note that the assumption that the Ricci-masses of the leaves of a W2,p-asymp-
totically round cover are bounded and uniformly timelike implies that the (absolute
value of the) Hawking mass is bounded from below, but it does a priori neither
imply that the Hawking masses are bounded from above nor that the Ricci-masses
converge, i.e. that the Ricci-mass of the cover is well-defined. However, a posteriori
both is true and even −~m = (m0, 0, 0, 0), see Proposition 5.1.5

Remark 3.13 (Locally unique covers are foliations). Note that a priori we do not
assume that the cover is a foliation, i.e. that the surfaces are disjoint. However, we
will later see that the elements of a locally unique cover with bounded and uniformly
timelike Ricci-mass are in fact pairwise disjoint and therefore a posteriori the cover
is a foliation.

Remark 3.14 (Boundedness of the scalar curvature). We can reduce the assumption
on the scalar curvature by only assuming integrability and one sided boundedness,
i.e. ∥∥∥(S + 6

)−∥∥∥
L1 (σΣ)

≤ c e−υσ |σΣ| , eσ
∥∥S + 6

∥∥
L1 (σΣ) ≤ c̃(σ) ∈ L1((σ0 ;∞)),

where ( · )− ..= min{0, · }, see also Remarks 3.5, 4.7, 4.9, and 5.2. However, we
then have to also assume that the Hawking mass (or equivalent the 0th-component
of the Ricci-mass) of every σΣ is non-negative.

Finally, we use the following partition of L2(Σ) (for any asymptotically round
sphere Σ) which was introduced and motivated in [Ner16, Sect. 4].
Definition 3.15 (Canonical partition of L2)
Let Σ be a W2,p

$,υ(c, η)-asymptotically round sphere of mean curvature radius σ.
Let gb be the L2(Σ)-orthogonal projection of a function g ∈ L2(Σ) on the linear
span of eigenfunctions of the (negative) Laplacian with eigenvalue λ satisfying |λ−
2 sinh(σ)−2 | ≤ 3

2 sinh(σ)−2, i.e.

gb ..=
∑{

fi

ˆ
Σ
g fi dµ

∣∣∣∣ 1
2 ≤ sinh(σ)2

λi ≤
7
2

}
∀ g ∈ L2(Σ),

5The convergence of the Ricci-mass is implied by Theorem I, as it implies that Ricci-masses
converge and then Proposition 5.1 proves this claim.
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where {fi}∞i=0 denotes a complete orthonormal system of L2(Σ) by eigenfunctions
fi of the (negative) Laplace operator with corresponding eigenvalue λi satisfying
0 ≤ λi ≤ λi+1. Finally, gd ..= g − gb denotes the rest of such a function g ∈ L2(Σ).
Elements of L2(Σ)b ..= {fb : f ∈ L2(Σ)} are called linearized boosts and those of
L2(Σ)d ..= {fd : f ∈ L2(Σ)} are called deformations.

4. Regularity of W2,p
$ -asymptotically round spheres

Lemma 4.1 (Boundedness of the Hawking mass implies boundedness of the area)
For each constant c > 0, there exist two constants σ0 = σ0(c) and C = C(c) with
the following property:

If Σ is a closed, oriented hypersurface of a three-dimensional Riemannian man-
ifold satisfying (RS-2) and (RS-5c) for some σ > σ0, then

|R− σ| ≤ Ce−σ, i.e.
∣∣∣|Σ| − 4π sinh(σ)2

∣∣∣ ≤ C eσ,
where R denotes the hyperbolic area radius, i.e. |Σ| = 4π sinh(R)2. In particular, Σ
satisfies (RS-5a).

Proof. As H 2 − 4 ≡ 4 sinh(σ)−2, we know

1
2 sinh(R)

∣∣∣∣∣1− sinh(R)2

sinh(σ)2

∣∣∣∣∣ =
∣∣mh

H
∣∣ ∈ (c−1 ; c

)
.

This implies

σ ≤ R =⇒ e2(R−σ) ≤ sinh(R)2

sinh(σ)2 ≤ 1 + C

sinh(R)

σ ≥ R =⇒ e2(R−σ) ≥ sinh(R)2

sinh(σ)2 ≥ 1− C

sinh(σ)

 =⇒ |R− σ| ≤ C e−σ. ///

Lemma 4.2 (Strictly controlled instability implies boundedness of the area)
For each c > 0, $ > 5

2 , and η ∈ (0 ; 4], there exist two constants σ0 = σ0(c,$, η)
and C = C(c,$, η) with the following property:

If Σ is a W2,p
$ -asymptotically round sphere satisfying (RS-5b) for some σ > σ0,

then Σ satisfies (RS-5a) for C instead of c, too.

Proof. This proof is equivalent to the begin of [Ner16, Proof of Thm 3.1]. We recall
it nevertheless for the readers convenience. We start as in [NT09, Lemma 4.1]
and use the test functions ϕi ..= xi ◦ ψ−1, where ψ : S2 → Σ is a conformal
parametrization of Σ with

´
ϕi dµ = 0. These were already used by Huisken-Yau

in [HY96, Prop. 5.3] and were based on an idea by Christodoulou-Yau, [CY88]. By
the controlled instability assumption, this implies

−8π
3 =

ˆ
S2
xi

Ω∆xi d Ωµ =
ˆ

Σ
ϕi ∆ϕi dµ ≤

ˆ ( 4− η
2 sinh(σ)2 − |k|

2
g − Ric(ν,ν)

)
ϕ2
i dµ
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for every i ∈ {1, 2, 3}, where we have used the conformal invariance of ∆f dµ. Now,
we recall that (

∑
i ϕ

2
i ) ◦ψ =

∑
i x

2
i ≡ 1 to get

8π ≥
ˆ ∣∣k◦ ∣∣2g + H 2 − 4

2 + 2 + Ric(ν,ν)− 4− η
2 sinh(σ)2 dµ

≥
∥∥k◦∥∥2

L2 (Σ) +
ˆ
η + Ce(2−$)σ

2 sinh(σ)2 dµ,

i.e.
η sinh(R)2 ≤ 16π sinh(σ)2 +C e(2−$)σ sinh(R)2

implying R ≤ σ+C, i.e. |Σ| ≤ Ce2σ. On the other hand, the Gauß-Bonnet theorem
and the Gauß equation combined with the assumptions on Ric give

8π =
ˆ

S dµ =
ˆ (

S − 2Ric(ν,ν)−
∣∣k◦ ∣∣2g + H 2

2 dµ
)

≤ C
ˆ
e−$σ dµ+

ˆ 2
sinh(σ)2 dµ ≤

(
8π + C e(2−$)σ

) sinh(R)2

sinh(σ)2

implying R ≥ σ − C, i.e. C−1e2σ ≤ |Σ|. ///

Corollary 4.3 (Round spheres have bounded area)
For each c > 0, $ > 5

2 , and η ∈ (0 ; 4], there exist two constants σ0 = σ0(c,$, η)
and C = C(c,$, η) with the following property:

If Σ is a W2,p
$ -asymptotically round sphere for some mean curvature radius σ >

σ0, then Σ satisfies (RS-5a) for C instead of c.

Now, let us cite two major regularity results—in the notation we introduced
above. We can apply these results due to the result in Corollary 4.3.
Lemma 4.4 ([Ner16, Prop. 3.5])
For all constants $ ∈ (2 ; 3], η ∈ (0 ; 4], c > 0, and p ∈ (2 ;∞), there exist two
constants σ0 = σ0($, η, c, p) and C = C($, η, c, p) with the following property:

If (Σ, g) is a W2,p
$,$(c, η)-asymptotically round sphere with σ > σ0, then there

exists a conformal parametrization ϕ : S2 → Σ with corresponding conformal factor
v ∈ H2(S2), i.e. ϕ∗ g = e2v sinh(σ)2 Ω, such that

‖v‖W2,p(S2,Ω) ≤ C e
(2−$)σ,

∥∥k◦∥∥W1,p(Σ) ≤ C e
(1+ 2

p−$)σ,

where Ω denotes the standard metric of the Euclidean unit sphere.

Remark 4.5. By the Gauß equation and the Gauß-Bonnet theorem, Lemma 4.4
implies that every W2,1

2+ε-asymptotically round sphere satisfies |mh
H(Σ)−m0(Σ)| ≤

C e−εσ.

Proposition 4.6 ([Ner16, Prop. 4.3])
For all constants $ ..= 5

2 + ε ∈ ( 5
2 ; 3], υ ≥ 3 + ε, η ∈ (0 ; 4], c > 0, p > 2, q ∈ (1 ; p]

with q <∞, there exist two constants σ0 = σ0(ε, η, c, p) and C = C(ε, η, c, p, q) with
the following property:

If (Σ, g) is a W2,p
$,υ(c, η)-asymptotically round sphere with σ > σ0, then (RS-5b)

holds for η arbitrary close to 4 (depending on σ0). More precisely L is invertible
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and if f ∈ H2(Σ) is an eigenfunction of −L with corresponding eigenvalue κ, then
either |κ| ≥ 3

2 sinh(σ)−2 or

(1)
∥∥∥ f d

∥∥∥
H2(Σ)

≤ C e−( 1
2 +ε)σ∥∥ f

∥∥
H2(Σ),

∣∣∣∣∣κ− 6m0(Σ)
sinh(σ)3

∣∣∣∣∣ ≤ C e−(3+ε)σ

and for all functions g, h ∈ H2(Σ) the inequality

(2)

∣∣∣∣∣
ˆ

Σ

(
Lgb)hb dµ+ 6m0(Σ)

sinh(σ)3

ˆ
Σ
gb hb dµ

∣∣∣∣∣ ≤ C e−(3+ε)σ ∥∥gb∥∥
L2 (Σ)

∥∥hb∥∥
L2 (Σ),

holds. Furthermore, the corresponding W2,p-inequalities∥∥gb∥∥
W2,q(Σ) ≤

(
sinh(σ)3

6
∣∣m0(Σ)

∣∣ + C e(3−ε)σ

)
‖Lg‖Lq (Σ),∥∥gd∥∥

W2,q(Σ) ≤ C e
2σ ‖Lg‖Lq (Σ),∥∥Hes◦s g

∥∥
Lq (Σ) ≤ C e

( 1
2−ε)σ ‖Lg‖Lq (Σ)

hold for every function g ∈W2,1(Σ).

Remark 4.7 (Assuming only one-sided boundedness of the scalar curvature). If we
only assuming one sided boundedness of S as it is explained in Remark 3.14, then (1)
and (2) have to be weakened to

(1’)
∥∥∥ f d

∥∥∥
H2(Σ)

≤ C e−( 1
2 +ε)σ∥∥ f

∥∥
H2(Σ), κ ≥ 6m0(Σ)

sinh(σ)3 + C e−(3+ε)σ,

and

(2’)
∣∣∣∣ˆ

Σ

(
Lgb)hb dµ

∣∣∣∣ ≤ 6m0(Σ)
sinh(σ)3

ˆ
Σ
gb hb dµ+ C e−(3+ε)σ ∥∥gb∥∥

L2 (Σ)

∥∥hb∥∥
L2 (Σ)

respectively, see [Ner16, Remark 4.4]. As we then also assume that the Hawk-
ing mass (or equivalent the 0th-component of the Ricci-mass) is positive, this still
implies that L is invertible.

Lemma 4.8 (Local estimates of the lapse function)
For all constants $ ..= 5

2 + ε ∈ ( 5
2 ; 3], υ ≥ 3 + ε, η ∈ (0 ; 4], c > 0, p > 2, q ∈ (1 ; p]

with q <∞, there exist two constants σ0 = σ0(ε, η, c, p) and C = C(ε, η, c, p, q) with
the following property:

If (Σ, g) is a W2,p
$,υ(c, η)-asymptotically round sphere with |mh

H(Σ)| > c and σ >
σ0, then there exist a constant δ0 > 0 and a C1-map Φ : (−δ0 ; δ0) × S2 with
Σ = Φ(0,S2) and such that δΣ ..= Φ(δ, S2) is a W2,p-hypersurface with constant
mean curvature δH ≡ −2 cosh(σ+δ)

sinh(σ+δ) for every δ ∈ (−δ0 ; δ0). In this setting, the lapse
function u ..= g(∂σΦ, ν)|Σ satisfies

(3)
∥∥ud − 1

∥∥
W2,q(Σ) ≤ C e

( 2
q−1−ε)σ,

∥∥∥∥∥ub −
√
|Σ|
3
mi

m0fi

∥∥∥∥∥
W3,q(Σ)

≤ C e(
2
q−ε)σ,

where (mα)3
α=0

..= −~m ..= −~m(Σ) and where f i are L2-orthonormal eigenfunctions of
the Laplace operator with eigenvalue λi ∈ (sinh(σ)−2 ; 3 sinh(σ)−2). In particular,
the corresponding W3,q(Σ)-estimates of ub hold. Furthermore, u is strictly positive
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if −~m(Σ) is controlled timelike, i.e. |−~m(Σ)|R3,1 < −c−1, and u changes sign if −~m(Σ)
is controlled spacelike, i.e. |−~m(Σ)|R3,1 > c−1.

Proof. Without loss of generality q = p ∈ (2 ;∞). We can assume that σ is so large
that we can apply Lemma 4.4 and Proposition 4.6. We know that the stability
operator

L : W2,q(Σ)→ Lq(Σ) : f 7→∆f +
(
|k|2g + Ric(ν,ν)

)
f

is the Fréchet derivative of the mean curvature map

H : W2,q(Σ)→ Lq(Σ) : f 7→ H (graph f)

at f = 0 (for every q > 2), where H ( graph f) denotes the mean curvature of the
graph of f which we interpret as function on Σ. By Proposition 4.6, the stability
operator is invertible if |mh

H| > c. Thus, the inverse function theorem implies that H
is bijective from a W2,q(Σ)-neighborhood of 0 ∈W2,q(Σ) to a Lq(Σ)-neighborhood
of H ∈ Lq(Σ). As the Hawking mass depends continuously on W2,q-deformation of
Σ, this proves the first claim.

Per Definition of Φ and δΣ, we know

Lu = ∂δH
∂δ

∣∣∣∣
δ=0
≡ 2

sinh(σ)2 .

Thus, Lemma 4.4 implies∣∣L(u− 1) + 2 + Ric(ν,ν)
∣∣ ≤ C e−(3+ε)σ.

Hence using Proposition 4.6, we get∥∥∥(u− 1)d
∥∥∥

W2,p(Σ)
≤ C e−(1+ε− 2

p )σ

—which is the first inequality in (3) as 1b ≡ 0. Choosing ui ∈ R with ub = ui fi for
the L2-orthogonal eigenfunctions fi of the Laplace operator having an eigenvalue
λi ∈ (sinh(σ)−2 ; 3 sinh(σ)−2), we see∣∣∣∣∣ui −

√
4π
3

sinh(σ)mi

σm0

∣∣∣∣∣
≤

∣∣∣∣∣
ˆ

(u− 1)f i dµ− sinh(σ)3

6m0

ˆ
L(u− 1)f i dµ

∣∣∣∣∣+ C e(1−ε)σ ≤ C e(1−ε)σ,

where −~m ..= −~m(Σ). This proves (3) and

(4)

∣∣∣∣∣ |−~m(Σ)|2R3,1

m0(Σ) − sinh(σ)
8π

ˆ
G(ν,ν)udµ

∣∣∣∣∣ ≤ C e−εσ.
In the setting of the Euclidean sphere, we have∥∥∥Ωf i

∥∥∥2

L2 (eS2)
= 4π

3

∥∥∥Ωf i
∥∥∥2

L∞ (eS2)
∀Ωf i ∈ L∞

(
S2) : Ω∆Ωf i = −2Ωf i

and therefore Lemma 4.4 implies that the same holds with respect to g up to a
lower order error term. Thus, we get∣∣∣∣∥∥ub∥∥2

L∞ (Σ) −
∣∣
σm

0∣∣−2
∣∣∣(σmi

)3
i=1

∣∣∣2
R3

∣∣∣∣ ≤ C e−εσ.
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By again comparing with the Euclidean setting, we see that sup (ub)+ is equal
to sup (ub)− (up to term vanashing with σ → ∞), where ( · )+ ..= max{ · , 0} and
( · )− ..= −min{ · , 0} denote the positive and negative part of a function. In particu-
lar, u changes sign if ‖ub‖L∞ (Σ) > 1+δ and does not change sign if ‖ub‖L∞ (Σ) < 1−δ,
where δ > 0 has to be independent of σ. ///

Remark 4.9 (Assuming only one-sided boundedness of the scalar curvature). If we
only assuming one sided boundedness of S as it is explained in Remark 3.14, then
(3) and (4) have to be weakened to

(3’)
∥∥ud − 1

∥∥
W2,q(Σ) ≤ C e

( 2
q−1−ε)σ,

∣∣ub∣∣ ≤ ∣∣∣∣∣
√
|Σ|
3
mi

m0fi

∣∣∣∣∣+ C e(
2
q−ε)σ,

and

(4’) sinh(σ)
8π

ˆ
G(ν,ν)udµ ≤

|−~m(Σ)|2R3,1

m0(Σ) + C e−εσ,

respectively, see Remark 4.7.

5. Regularity of W2,p
$ -asymptotically round covers

Proposition 5.1 (The Ricci mass is well-defined)
For all constants $ ≥ 5

2 + ε ∈ ( 5
2 ; 3], υ ≥ 3 + ε, η < 4, p > 2, and c ≥ 0, there exist

two constants σ0 = σ0(ε, p, η, c) and C = C(ε, p, η, c) with the following property:
Let M = {σΣ}σ>σ1 be a locally unique W2,p

$,υ(c, η)-asymptotically round foliation
with uniformly timelike Ricci-mass. If σ1 ≥ σ0, then |σm

h
H| − Ce−εσ is monotone

increasing in σ and

(5)

∣∣∣∣∣∂
(
σm

h
H
)2

∂σ
− 2

∣∣∣(σmi
)3
i=1

∣∣∣2
R3

∣∣∣∣∣ ≤ C e−εσ.
If M has furthermore bounded Ricci-mass, then m0(M ) is well-defined and non-
vanishing and the function σ → |(σmi)3

i=1|2R3 is integrable. In particular, the total
part |−~m(σΣ)|R3,1 of the Ricci-mass of the leaves converge if and only if the Ricci-
mass of the leaves converge, i.e. if −~m(M ) is well-defined, and in this setting −~m(M ) =
(m0(M ), 0, 0, 0).

Proof. Per assumption, we know∣∣mh
H(σΣ)

∣∣ ≥ ∣∣m0(σΣ)
∣∣− Ce−εσ ≥ −|−~m(σΣ)|R3,1 − Ce−εσ ≥

1
2c ∀σ > σ1

if σ1 is sufficiently large. Therefore, we can without loss of generality assume that
σ1 is so large that we can apply all the results so far on each leaf σΣ.

Fix any σ′ > σ1 and suppress the corresponding index σ′. By Lemma 4.8,
we know that there exists a map Φ : (σ′ − δ ;σ′ + δ) × S2 such that Φ(σ, S2) has
constant mean curvature σH ≡ −2 cosh(σ)

sinh(σ) , Σ = Φ(σ, S2), and that the lapse function
satisfies (3). By the uniqueness assumption this implies σΣ = Φ(σ, S2) for every
σ ∈ (σ′ − δ ;σ′ + δ). As σ was arbitrary, we can repeat this step and—by applying
diffeomorphisms to S2—we can glue those Φ to one smooth map Φ : (σ1 ;∞)×S2 →
M with σΣ = Φ(σ, S2).
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Now, we note that

∂ |σΣ|
∂σ

= −
ˆ

Hudµ, Lu = ∂σH
∂σ
≡ 2 sinh(σ)−2

,

where u ..= g(∂σΦ, ν) again denotes the lapse function. In particular, (4) implies∣∣∣∣∣ ∂∂σ |σΣ|
sinh(σ)2 +

8π|−~m|2R3,1

sinh(σ)m0

∣∣∣∣∣ ≤
∣∣∣∣∣
ˆ

−Hu

sinh(σ)2 +G(ν,ν)udµ− 2 |Σ|
sinh(σ)2

∣∣∣∣∣+ C e−(1+ε)

≤
∣∣∣∣ˆ (H 2

2 + Ric(ν,ν)
)
u−Ludµ

∣∣∣∣+ C e−(1+ε)σ.

As
´

∆udµ = 0 and |k◦ | ≤ C e2(1−$), this gives us

(6)

∣∣∣∣∣ ∂∂σ |σΣ|
sinh(σ)2 +

8π|−~m|2R3,1

sinh(σ)m0

∣∣∣∣∣ ≤ C e−(1+ε).

By the definition of the Hawking mass σm
h
H

..= mh
H(σΣ), we get∣∣∣∣∣ ∂k∂σk

∣∣∣∣
σ=σ′

(
|σΣ|

4π sinh(σ)2 −
(

1− 2 σm
h
H

sinh(σ)

))∣∣∣∣∣ ≤ C e(1−ε)σ ∀ k ∈ {0, 1}.

Thus, we have∣∣∣∣∣∂σmh
H

∂σ
−

(
σm

h
H − sinh(σ) ∂

∂σ

|σΣ|
8π sinh(σ)2

)∣∣∣∣∣ ≤ C e−εσ.
and (6) gives∣∣∣∣∂σmh

H
∂σ

−
(
σm

0)−1
∣∣∣(σmi

)3
i=1

∣∣∣2
R3

∣∣∣∣ =
∣∣∣∣∂σmh

H
∂σ

−
(
σm

0 +
|σ−~m|2R3,1

σm0

)∣∣∣∣ ≤ C e−εσ.
This implies that σ → |σm

h
H| −C e−εσ is monotone increasing and the combination

with |σm
h
H − σm

0| ≤ C e−εσ proves (5).
Now, let us assume that M has bounded Ricci-mass, but |σm

h
H| (and therefore

|σm0|) is unbounded. By the above monotonicity, |σm
h
H| has to converge to infinity.

By the boundedness of the Ricci-mass, we therefore know

2√
5
∣∣
σm

0∣∣ =
√

4
5 |σm

0|2 ≤
√
|σm0|2 − C ≤

√
|σm0|2 + |σ−~m|2R3,1 ≤

∣∣(
σm

i
)
i

∣∣
R3

for sufficiently large σ. Thus, (5) implies

∂
∣∣
σm

h
H
∣∣

∂σ
≥
∣∣(
σm

i
)
i

∣∣2
R3

|σm0|
− C ≥ 4

5
∣∣
σm

0∣∣− C ≥ 3
4
∣∣
σm

h
H
∣∣.

This proves |σm
h
H| ≥ e

2
3σ for sufficiently large σ which contradicts |σm

h
H| ≤ e

1
2σ

being an implication of |σ g − sinh(σ)2 Ω| ≤ C e( 3
2−ε)σ, see Corollary 4.3. Thus,

σm
h
H is bounded and by the above monotonicity it therefore converges. Thus,

m0 ..= limσ σm
0 is well-defined, non-vanishing, and finite. ///
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Remark 5.2 (Assuming only one-sided boundedness of the scalar curvature). If we
only assuming one sided boundedness of S as it is explained in Remark 3.14, then
we can not apply (4), but only (4’) and therefore (5) has to be weakened to

(5’)
∂
(
σm

h
H
)2

∂σ
≥ 2

∣∣∣(σmi
)3
i=1

∣∣∣2
R3
− C e−εσ.

However, the rest of the claims remain true.

The next step is to conclude a even better decay estimate on the second funda-
mental form as we established in Lemma 4.4.
Lemma 5.3 (Better decay rates of the second fundamental form)
For all constants $ ≥ 5

2 + ε ∈ ( 5
2 ; 3], υ ≥ 3 + ε, η < 4, p > 2, c ≥ 0, and q ∈ (2 ; p]

with q <∞, there exist two constants σ0 = σ0(ε, p, η, c) and C = C(ε, p, η, c, q) with
the following property:

Let M = {σΣ}σ>σ1 be a locally unique W2,p
$,υ(c, η)-asymptotically round foliation

with uniformly timelike Ricci-mass, where σ1 ≥ σ0. Then

(7)
∥∥k◦∥∥Lq (σΣ) +

∥∥∇k◦
∥∥

Lq (σΣ) ≤ C e
( 2
q−$)σ.

Remark 5.4. On the first glimpse, it seems to be an unnatural estimate as it implies
that the trace free part of the second fundamental form and its (σΣ-tangential) de-
rivative decay with the same decay rate. However, the author explained in [Ner16,
Rem. 3.7] why this is actually a natural property in the hyperbolic space. Fur-
thermore, the author proved the equivalent estimate for CMC-leaves in an a priori
asymptotically hyperbolic manifold in [Ner16, Thm 3.1] using a coordinate depend-
ing ansatz.

Proof. Without loss of generality, $ = 5
2 + ε, υ = 3 + ε,

⋃̇
σ>σ0σ

Σ = M, p =
q < ∞, and σ0 is so large, that we can apply Lemma 4.4 and Proposition 4.6
as well as Lemma 4.8 on every σΣ and Proposition 5.1 on M . By Lemma 4.8 and
Proposition 5.1 there exists a smooth map Φ : (σ0 ;∞)×S2 →M with Φ(σ, S2) = σΣ
for every σ and for each such diffeomorphism the lapse function σu is everywhere
positive.

A direct calculation proves

∂k◦

∂σ
= ∂k
∂σ
− 1

2

(
∂H
∂σ

)
g − 1

2H
∂ g
∂σ

= u

(
Ric− 1

2S g − 2k◦ � k
)

+ Hessu

− 1
2

(
∆u+

(
|k|2g + Ric(ν,ν)

)
u
)

g + uH k

= u

(
Ric + 1

2Ric(ν,ν) g − 1
2S g − 2k◦ � k◦

)
x+ Hes◦su,

where we identified tensors with their pullback along Φ and used the Gauß equation.
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In particular, we have

1
q

∂
∣∣k◦ ∣∣q
∂σ

= 1
2
∣∣k◦ ∣∣q−2 ∂

∣∣k◦ ∣∣2
∂σ

=
∣∣k◦ ∣∣q−2(

u tr
(
k◦ � Luνk

◦)+ u tr
(
k� k◦ � k◦

))
=
∣∣k◦ ∣∣q−2tr

(
k◦ �

(
u
(
Ric + 2 g

)
+ Hes◦su

))
+ 1

2Hu
∣∣k◦ ∣∣q

for every q ≥ 2, where we have used tr(k◦ � g) = trk◦ ≡ 0 and tr(k◦ � k◦ �k◦) ≡ 0. The
latter is true as the dimension is two.6 By comparing ( · )d with its analog on eS2,
we know ‖Hes◦sub‖Lp (Σ) ≤ C e

−( 5
2−

2
p+ε)σ, see Proposition 4.6. Therefore the Hölder

inequality and ∂
∂σ dµ = −H dµ imply∣∣∣∣ ∂∂σ∥∥k◦∥∥pLp (σΣ)

∣∣∣∣ ≤ 2
ˆ (
|u|
∣∣Ric + 2 g

∣∣+
∣∣Hes◦su

∣∣)∣∣k◦ ∣∣p−1 dµ+
(p

2 − 1
)ˆ

Hu
∣∣k◦ ∣∣p dµ

≤ C e(
2
p−$)σ∥∥k◦∥∥p−1

Lp (Σ)

where we have used p > 2, u ≥ 0, and H < 0. By the chain rule, we know
∂σ‖k

◦‖pLp (Σ) = p‖k◦‖p−1
Lp (Σ)∂σ‖k

◦‖Lp (Σ) and integration therefore proves∥∥k◦∥∥Lp (Σ) ≤ C e
( 2
p−$)σ.

This implies (7) as the estimate on h∇k◦ is already known by Lemma 4.4. ///

Now, we use our estimates on the second fundamental form to prove that the
metrics of the CMC-leaves approach the round metric.
Lemma 5.5 (Better decay estimates on the metric)
For all constants $ ≥ 5

2 + ε ∈ ( 5
2 ; 3], υ ≥ 3 + ε, η < 4, p > 2, c ≥ 0, and q ∈ (2 ; p]

with q < ∞, there exist two constants σ0 = σ0($, υ, η, c) and C = C($, υ, η, c, q)
with the following property:

Let M = {σΣ}σ>σ1 be a locally unique W2,p
$,υ(c, η)-asymptotically round foliation

with uniformly timelike Ricci-mass, where σ1 ≥ σ0. There exists a diffeomorphism
Φ : (σ1 ;∞)× S2 →M \K as in Lemma 4.8 with ∂σΦ = uν ans

σ g ′ → Ω in W2,p(S2), ∥∥∥∥∥∂
(
σ g ′
)

∂σ
−H (1− u)σ g ′

∥∥∥∥∥
W1,q(S2,Ω)

≤ C e−$σ,

where σ g ′ ..= sinh(σ)−2
σΦ∗σ g and σΦ ..= Φ(σ, · ).

Proof. Again, we assume without loss of generality $ = 5
2 +ε, υ = 3+ε,

⋃̇
σ>σ0σ

Σ =
M, p = q, and σ0 is so large, that we can apply all the results proven so far on
every σΣ and M . In particular, Lemma 4.8 and Proposition 5.1 imply that the
surfaces are pairwise disjoint. Thus, we can define a global vector field X such
that X|σΣ = uν, where u is as in Lemma 4.8 for any parametrization Φ. Fix some
arbitrary ς > σ0 and some arbitrary parametrization ςψ : S2 → ςΣ and denote by
γp : (σ0 ;∞)→M the integral curve to X starting in ςψ(p) = γp(ς). Per definition

6More precisely, k◦ is only non-vanishing on TσΣ and this space is two-dimensional. And in two
dimensions every odd power of a tracefree operator is tracefree.
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γp(σ) ∈ σΣ. Thus, Φ : (σ0 ;∞)× S2 →M : (σ, p) 7→ γp(σ) is a diffeomorphism as in
Lemma 4.8 and satisfies ∂σΦ = uν.

We note that

Luν

(
sinh(σ)−2 g

)
= 1− u

sinh(σ)2 H g + 2 sinh(σ)−2 k◦

and therefore ∥∥∥∥∥∂
(
σ g ′
)

∂σ
−H (1− u)σ g ′

∥∥∥∥∥
W1,p(Σ,σ g ′)

≤ Ce−$σ,

where σ g ′ ..= sinh(σ)−2
σ g denotes the rescaled metric. On the left hand side,

the norm with respect to σ g ′ ≈ Ω is used and not the one with respect to σ g ≈
sinh(σ)2 Ω which gives the additional factor sinh(σ)2. As ‖u − 1‖W2,p(σΣ) is inte-
grable, this proves that σ g ′ converges in W1,p(S2) to a metric ∞ g on S2. Using

σS ′ = −Ω∆
(Ωtr σ g ′

)
+ Ωdiv Ωdiv σ g ′ + P

σ g ′

(
Ω∇σ g ′,Ω∇σ g ′

)
,

we see that the scalar curvature ∞S ′ of ∞ g ′ is well-defined in W−1, p
p−1 (S2) and the

W−1, p
p−1 (S2)-limit of σS ′. As

‖σS ′ − 2‖Lp (S2) ≤ C e
(2−$)σ σ→∞−−−−→ 0,

this implies that ∞S ′ ≡ 2 in Lp(S2) and therefore ∞ g is—up to reparametrization—
the round metric, see for example [Ner15b, Thm A.1]. By changing the initial data
(s, ϕs) (see construction of Φ) to (s, ϕs ◦ψ), we can assume ψ = id |S2 . By [Ner15b,
Thm A.1], this implies furthermore σ g ′ σ→∞−−−−→ Ω in W2,p(S2). ///

Remark 5.6. The above proves that the diffeomorphism Φ : (σ0 ;∞)×S2 →M with
∂σΦ = uν is uniquely determined by its limit value limσΦ(σ, · ) which can (in a
well-defined sense) be interpreted as diffeomorphism of S2. In particular if we think
of σΣ as almost-round spheres in H3, it does not seem to be surprising that the
‘initial’ value problem

∂Φ
∂σ

= uν, Φ(σ, · ) σ→∞−−−−→ ϕ

has a unique solution—where ϕ : S2 → S2 is an arbitrary diffeomorphism. However,
this is a crucial step in the proof of the main theorem. Furthermore, it is a ‘CMC-
version’ of the coordinate result that the change from one asymptotically hyperbolic
chart to another is (asymptotically) an isometry of the hyperbolic space which is
characterized by an conformal map of the sphere at infinity, see [CH03].

6. Proof of Theorem I

We first explain the idea of the proof of Theorem I. Then, we explain the idea
of each single step in more detail before finally proving Theorem I.
Overview of the proof of Theorem I: In the first step, we fix a large radius ς
and construct a C0

$−2,υ-asymptotically hyperbolic chart of the interior of ςΣ (outside
of a compact set) by mapping each CMC-leaf to a geodesic sphere in the hyperbolic
space, see Figure 1 on page 18. In the second step, we repeat the construction of
the first step but modify the construction a little bit to get a C0

$,υ- and C1
$−1,υ-as-

ymptotically hyperbolic chart of the interior of ςΣ (outside of a compact set), see
Figures 2 and 3 on pages 19 and 20. We then prove several sharp estimates on the
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difference between the image of every CMC-leaf along the first and second chart.
In the third step, we prove that we can take the limit as ς →∞ to get two global
charts of M (outside of a compact set) and that all proven inequalities remain true.
Finally in the fourth step, we use the regularity of the Ricci curvature to conclude
that the constructed chart is in fact C2

$,υ-asymptotically hyperbolic.
To simplify notation, we suppress the dependency on ς in the first two steps and

identify σΣ with {σ} × S2 using Lemma 5.5.
Overview of the first two steps: To construct the mentioned charts in the first
two steps, we fix a nice parametrization ςϕ : hS2

ς (ς~z) → ςΣ of the (large) CMC-
leaf ςΣ, see Lemma 5.5. We then construct the chart of the interior of ςΣ by
‘integrating’ a chosen function along σ, i.e. for the first and second step choose
a solution Φ : (σ0 ; ς) × S2 → H

3 to ∂σΦ = f hν and Φ(ς, · ) = ςϕ
−1, where the

function f depends on the step and is defined using the real lapse function u.
The first step: In the first step, we only look at the boosting part of u and call
the above solution rΦ, i.e. f is here the boosting part σu

r
σb of the lapse function u

with respect to the metric r
σ g being the pullback along rΦ(σ, · ) of the one induced

on rΦ(σ, S2) by hg , see Figure 1 on the next page.
As the initial data rΦ(ς, · ) = ςϕ

−1 is a chosen round (hyperbolic) sphere S2
ς (ς~z)

and the boosting functions on round spheres correspond to boosts of the sphere, see
Lemma A.1, this implies that rΦ maps every σΣ to a round sphere hS2

σ(σ~z) in the
hyperbolic space. This explains the upper-index r being short for ‘round’. Now, we
can prove that the metric σ g of σΣ is quite close to r

σ g . This finishes the first step.
Note that the error between g(∂σ, ∂σ) = g(uν,u,ν) = u2 and its counterpart

hg(∂σ rΦ, ∂σ rΦ) = (σu
r
σb)2 is of the same order as σu

d, i.e. decays only as e(2−$)σ

and therefore insufficiently fast. Furthermore, we do not have any control on the
derivative of this error. Thus, we only constructed a C0

$−2,υ-asymptotically hyper-
bolic chart.
The second step: In the second step, we choose the full lapse function f = u
as derivative of Φ, see the construction explained in the ‘overview of the first two
steps’ above and Figure 2 on page 19. In particular, this implies that the part of the
metric g orthogonal to σΣ and the one of the pullback of hg along Φ are identical
which solves the mentioned main problem of the construction in step one.

Now, we compare Φ and rΦ to conclude that Φ(σΣ) is a graph above rΦ(σΣ) =
hS2
σ(σ~z), i.e. there exists a function σξ ∈ W2,p(rΦ(σΣ)) such that σS ..= exp(ξ rν)

is a bijection from rΦ(σΣ) to Φ(σΣ), where rν is the outer unit normal of rΦ(σΣ)
with respect to hg , see Figure 3 on page 20. Furthermore, we can show that Φ(σΣ)
has (with respect to hg) almost constant mean curvature, where the error decays
as σ → ∞ surprisingly fast—at least it is on the first glimpse surprising. Using
[Ner16, Thm A.2], this will give us very sharp estimates on the graph function ξ
and the second fundamental form of Φ(σΣ) ↪→ H

3. Then we prove that this leads
to equally good estimates on the graph map S (see above)—note that S ◦ rΦ and
Φ differ by a diffeomorphism of Φ(σΣ), see Figure 3 on page 20. Now, the results
of step one imply that the metric σ g of σΣ is quite close to the pullback h

σ g along
Φ(σ, · ) of the metric induced on Φ(σΣ) by hg . An integration of the mentioned
‘very sharp’ control on the second fundamental form, then implies the necessary,
even stronger estimates g − hg = O(e−$σ) and h∇ g = O(e(1−$)σ) on the error of
the metrics. This finishes the second step.
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ςϕ
−1(p) = rΦ(ς, p)

ςϕ
−1(p′) = rΦ(ς, p′)

rΦ(σ, p)

rΦ(σ, p′)

rΦ(s, p)

rΦ(s, p′)

ςW ςE

sW sE

Φ(s, ϕ(ςW )) Φ(s, ϕ(ςE))

ς

σ s

: rΦ(ςΣ) = hS2
ς (ς~z) : rΦ(σΣ) = hS2

ς (σ~z) : rΦ(sΣ) = hS2
s(s~z)

: ∂σ rΦ = (1 +u
rb) rν : ∂σσ~z

Construction: Start with a non-isometric embedding ςϕ−1 of ςΣ to a hyperbolic sphere
hS2
ς (ς~z), i.e. the outer (red) sphere denotes ϕ−1(ςΣ) = rΦ(ςΣ). Now, choose rΦ with

rΦ(ς, · ) = ςϕ
−1 and ∂σ

rΦ = u
rbrν, where urb and rν denote the boosting part of

the (rΦ-pushforward of the) lapse function u with respect to the metric induced on
rΦ( · , S2) by hg and the outer unit normal with respect to hg . This leads to rΦ(ςΣ)
(the middle, dashed, blue sphere) and from there we get Φ(sΣ) (the green one).
Note: Even if ςΣ and sΣ are exactly round, i.e. have constant Gauß curvature, and
ςϕ is an isometry, the map rΦ(s, ϕ( · )) of sΣ = {s} × S2 to hS2

σ(s~z) ↪→ H
3 can still

be non-trivial as we ‘boosted’ its coordinates. This can easily be seen in the picture
by looking at rΦ(sΣ) (the inner, green sphere): We see that its ‘northern hemisphere’
(the upper part of rΦ(sΣ) bounded by sW and sE) is by far smaller than the rΦ-image
(bounded by rΦ(s, ϕ(ςW )) and rΦ(s, ϕ(ςE))) of the northern hemisphere of rΦ(rΣ).
More precisely, rΦ(s, · ) : S2 → hS2

s(s~z) is a conformal map but (in most cases) non-
trivial.
Note: As we only want to describe the idea, we simplify the images by drawing
an Euclidean setting, e.g. we use coordinate spheres instead of the coordination of
hyperbolic spheres. Furthermore, the arrows actually do not picture ∂σΦ = rbu, but
its non-infinitesimal version, i.e. hexp−1

Φ(ς, · )(Φ(σ, · )) etc. The same is true for the
following pictures.

Figure 1. rΦ = ς,rΦ-images of the CMC-leaves and the lapse function

The third step: Now, let us now introduce the ς-dependency in the notation
and write ς,rΦ, ςΦ, and ς

σ~z for the quantities rΦ, Φ, and σ~z explained above. In the
third step, we first prove that the center ς

σ~z of a fixed surfaces σΣ converges to some
center point ∞σ~z as ς → ∞ if we choose simple initial data ςϕ : S2

ς (0) → ςΣ for the
charts rΦ and Φ.

Then, we use this to choose the ‘better’ initial data ςϕ : S2
ς (∞ς~z) → ςΣ for rΦ

and conclude that then the center points ς
σ~z are independent of the chosen large

initial mean curvature radius ς. Therefore, the two round charts ς,rΦ and ς′,rΦ to
two initial mean curvature radii ς and ς ′ differ only by an one-parameter family of
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ςϕ
−1(p) = Φ(ς, p)

ςϕ
−1(p′) = Φ(ς, p′)

Φ(σ, p)

Φ(σ, p′)

Φ(s, p)

Φ(s, p′)

ςϕ
−1(p) = Φ(ς, p)

ς

: Φ(ςΣ) ⊆ H3 : Φ(σΣ) ⊆ H3 : Φ(sΣ) ⊆ H3

: ∂σΦ = u hν

Construction: Start with a non-isometric embedding ςϕ−1 of ςΣ to a hyperbolic sphere
hS2
ς (ς~z), i.e. the outer (red) sphere denotes ϕ−1(ςΣ) = Φ(ςΣ). Now, choose Φ with

Φ(ς, · ) = ςϕ
−1 and ∂σΦ = uhν, where hν denotes the outer unit normal with respect

to hg and where u is identified with its pushforward along Φ. This leads to Φ(ςΣ) (the
middle, blue sphere) and from there we get Φ(sΣ) (the small, dashed, green one).

Figure 2. Φ-images of the CMC-leaves and the lap6se function

reparametrizations of S2. Removing rotations, we can prove that we can take the
limit of ς,rΦ(σ, · ) as ς →∞.

By the estimates on the graph function (see step two), a simple compactness
argument proves that ςnΦ(σ, · ) converges for some sequence ςn → ∞ and a fixed
σ. Per construction of ςΦ this proves that it converges for every σ proving the
existence of a second (better) global chart.
The forth step: Finally, we use the assumed decay behavior of Ric − hRic =
O(e−$σ) and the already proven ones g − hg = O(e−$σ) and h∇ g = O(e(1−$)σ) to
conclude h∆( g− hg) = O(e−$σ). The regularity of the Laplace operator now proves
the theorem.

Proof of Theorem I. To shorten notation, we define the following error terms

me(σ) ..= C
∣∣∣(σmi

)3
i=1

∣∣∣
R3

+ C e−
ε
2σ, Me(σ) ..=

ˆ ∞
σ

m(s) ds+ C e−
ε
2σ,

where the constants C will change from line to line and depend on $, υ, |−~m|, and η,
but not on ς. We note that we already know

‖u− 1‖L∞ (σΣ) ≤ me(σ), me ∈ L1((σ0 ;∞)
)
, Me(σ) σ→∞−−−−→ 0.

Furthermore, we note that a posteriori me(σ) (and therefore Me(σ)) decays like
e−εσ as σ−~m converges at this order, see [Her15].
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ς

σ s

ς

ς

σ s

ς

rΦ(ς, p) = Φ(ς, p)

rΦ(σ, p)

rΦ(s, p)

Φ(σ, p)

Φ(s, p)

σS(p)

sS(p)

: Φ(ςΣ) = hS2
ς (ς~z) : Φ(σΣ) : Φ(sΣ)

: rΦ(ςΣ) = hS2
ς (ς~z) : rΦ(σΣ) = hS2

ς (σ~z) : rΦ(sΣ) = hS2
s(s~z)

: ∂σ rΦ = (1 +u
rb) rν : ∂σΦ = u hν : graph function ξ

Construction: Redo the two constructions done in Figure 1 on page 18 and in Figure 2
on the preceding page. From rΦ(σΣ) and rΦ(sΣ), a geodesic in direction h

σν (or h
sν)

will after some distance intersect Φ(σΣ) (or Φ(sΣ)) which gives us the graph function
ξ.
Note: Φ(s,S2) is the graph of sS above rΦ(s, S2), but Φ(s, · ) and sS ◦ rΦ(s, · ) can
differ by a non-trivial diffeomorphism of Φ(s, S2) as shown in the picture—and identical
for σ instead of s.

Figure 3. Φ- and rΦ-images of the CMC-leaves and the lapse functions

Let (ς, ςϕ, ς~z) be some finite initial data, i.e. ς > σ0, ςϕ : S2
ς (ς~z)→ ςΣ, and ς~z are

some (large) mean curvature radius, a parametrization of the corresponding leaf
as in Lemma 4.4, and some point in the hyperbolicspace. Everything will depend
on the chosen finite initial data, but to simplify notation (at least a little bit), we
suppress this dependency in the following.

Proof of Theorem I, Step 1 (The round map): As first step, we map each leaf to
an exact geodesic sphere in the hyperbolic space by only looking at the boosting
part of the lapse function. As we will later construct a chart mapping each leaf to
a deformation of these spheres and need to use both at the same time, we use the
upperindex r for the former one: Let rΦ : (σ0 ;∞) × S2 → H

3 denote the unique
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smooth map with

∂ rΦ
∂σ

=
(

1 +
(
σu ◦ rσΦ−1)rσb) r

σν,
r
ςΦ = ςϕ

−1,

where r
σΦ : S2 → rΦ(σ, S2), r

σν, and ( · )
r
σb denote the diffeomorphism r

σΦ ..= rΦ(σ, · ),
the outer unit normal of rσΦ(S2), and the boosting part of a function with respect to
the metric induced on r

σΦ(S2) by the surrounding hyperbolic metric. By Lemma A.1,
we know r

σΦ(σΣ) = hS2
σ(σ~z) for some σ~z ∈ H3 and every σ ∈ (σ1 ;∞).

Now, let us prove that the metric r
σ g ..= r

σΦ∗hg is quite close to σ g . We assume
therefore that for some fixed constants d > 0 and p > 2 the radius σd1 ∈ [σ0 ; ς] is
minimal and σd2 ∈ [ς ;∞) is maximal such that

(8)
∥∥
σ g − r

σ g
∥∥

W1,p(σΣ) ≤ d e
( 2
p−

1
2−ε)σ + c e

2
pσ−( 1

2 +ε)ς ∀σ ∈
(
σd1 ;σd2

)
,

where c denotes twice the constant C from Lemma 4.4. Note that the continuity
of rΦ implies that the same is true for σ = σd1 and σ = σd2 if σd1 6= σ0 and σd2 6=∞,
respectively. Furthermore, it implies that σd2 > ς > σd1 for every d > 0. We again
suppress the index ς and σ ∈ [σd1 ;σd2 ] with σ0 < σ <∞.

In particular, we know∥∥∥urb − ub
∥∥∥

W2,p(Σ)
≤ C

(
(d+ 1) e(

2
p−

1
2−ε)σ + e

2
pσ−( 1

2 +ε)ς
)
me(σ),

where we used ‖u−1‖W2,p(Σ) ≤ me(σ) and 1hb ≡ 0 for every metric h . By Lemma 5.3,
we furthermore know∥∥∥∥k− 1

2
rH g

∥∥∥∥
Lp (Σ)

+ ‖r∇k‖Lp (Σ) ≤ C e(
2
p−$)σ,

where we used rH ≡ H for the mean curvature rH of hS2
σ(σ~z). As rΦ(σ, S2) is a

geodesic sphere, we furthermore know rk◦ ≡ 0. Combined this gives∥∥∥∥∂ r
σ g ′

∂σ
−
∂ σ g ′

∂σ

∥∥∥∥
W1,p(σΣ)

≤ (dme(σ) + C) e(
2
p−

5
2−ε)σ +me(σ)e(

2
p−2)σ−( 1

2 +ε)ς ,

where r
σ g ′ ..= sinh(σ)−2 r

σ g and σ g ′ ..= sinh(σ)−2
σ g again denote the rescaled met-

rics. Thus, an integration proves

∥∥
σ g ′ − r

σ g ′
∥∥

W1,p(σΣ) ≤

 (dMe(σ) + C0) e(
2
p−

5
2−ε)σ + ce(

2
p−2)σ−( 1

2 +ε)ς : σ < ς

(dMe(ς) + C0) e(
2
p−

5
2−ε)σ + ce(

2
p−2)σ−( 1

2 +ε)ς : σ > ς

for some constant C0 independent of ς and d, where we used that for σ = ς the
inequality (8) is true for 0 and c

2 instead of d and c, respectively.
For d = 4C0 and assuming that σ0 is so large that Me(σ) < 1

4 for every σ > σ0,
this proves∥∥
σ g − r

σ g
∥∥

W1,p(σΣ) ≤ 2C0 e
( 2
p−

1
2−ε)σ + c e

2
pσ−( 1

2 +ε)ς ∀σ ∈
(
σ4C0

1 ;σ4C0
2

)
, d ≥ 4C0

where we recall that C0 is independent of ς. In partcular, σ2C0
1 ≤ σ4C0

1 and σ2C0
2 ≥

σ4C0
2 . However by the continuity of rΦ, we know σ4C0

1 < σ2C0
1 and σ4C0

2 > σ2C0
2

or σ2C0
1 = σ0 and σ2C0

2 = ∞, respectively see (8). Thus, we have σ4C0
1 = σ0 and
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σ4C0
2 =∞. Combined this proves the existence of some constants σ0 and C which

are independent of ς and satisfy

(9)
∥∥
σ g − r

σ g
∥∥

W1,p(σΣ) ≤ C e
( 2
p−

1
2−ε)σ + C e

2
pσ−( 1

2 +ε)ς ∀σ ∈ (σ0 ;∞)

Proof of Theorem I, Step 2 (The real, finite parametrization): Let ςΦ : (σ0 ; ς]×S2 →
H

3 be the unique injective smooth map with ∂σ
ςΦ = uν and ςΦ(ς, · ) = ςϕ

−1. We
denote by ς,h

σ g , ς,hσk etc. the pullback of the metric, second fundamental form, etc.
of ςΦ(σ, S2) ↪→ (H3, hg) along ςΦ(σ, · ). Again, we suppress the index ς in the
following.

Fix some constants p > 2 and d > 0 and let σd1 ∈ (σ0 ; ς] be the minimal
mean curvature radius such that for every σ ∈ (σd1 ; ς] there exists a function σξ ∈
W2,p(S2

σ(σ~z)) such that Σ = graph σξ and

(10)
∥∥hexp

(
σξ ν

)
◦ rσΦ− σΦ

∥∥
W2,p(hS2

σ(~z)) ≤ de
( 2
p−

1
2−ε)σ + c e−( 1

2 +ε)ς+ 2
pσ,

where c the constant C from Lemma 4.4. Exactly as in the first step, (10) holds
for all σ up to ς, i.e. σd1 = σ0 for some ς-independent constant d, if there is a ς-
independent constant d with the following property: if (10) holds for all σ ∈ (σd′1 ; ς)
and some d′ ∈ (0 ; 2d), then (10) holds for all σ ∈ (σd′1 ; ς) and the given d, too.

As first step, we note that (9) and (10) combined imply∥∥
σ g − h

σ g
∥∥

W1,p(σΣ) +
∥∥ r
σ g − h

σ g
∥∥

W1,p(σΣ) ≤ C(d+ 1) e(
2
p−

1
2−ε)σ + ce

2
pσ−( 1

2 +ε)ς ,

‖ν − ∂
σr‖W1,p(Φ(Σ)) ≤ Ce(

2
p−1)σ

(
de−( 1

2 +ε)σ + c e−( 1
2 +ε)ς

)
for σ ∈ (σd1 ; ς], where ∂σr ..= h∇(hdist(σ~z, · )) denotes the radial vectorfield to the
center point σ~z. Therefore,∥∥∥∥∂σξ∂σ

∥∥∥∥
W1,p(σΣ)

≤ C
∥∥∥urd − 1

∥∥∥
W1,p(σΣ)

+ C
∥∥∥urb∥∥∥

W1,∞(σΣ)
‖∂r − ν‖W1,p(σΣ)

≤
(
dme(σ) + C

)
e(

2
p−

1
2−ε)σ +me(σ) e−( 1

2 +ε)ς+ 2
pσ.

Therefore, an integration gives∥∥hexp
(
ξ ν
)
◦ rσΦ− σΦ

∥∥
W1,p(hS2

σ(~z))(11)

≤ e
2
pσ
(

(dMe(σ) + C)e−( 1
2 +ε)σ + e−( 1

2 +ε)ςMe(σ)
)
.

Note that we here control the graph function only up to the first (and not second)
derivative.

Furthermore, (10) implies∥∥∥∥∥h∆(u− 1) + 2(u− 1)
sinh(σ)2

∥∥∥∥∥
Lp (Σ)

≤ (dme(σ) + C)e(
2
p−

5
2−ε)σ +me(σ) e−( 1

2 +ε)ς .

and∥∥∥(hH 2 −H 2
)

(u− 1)
∥∥∥

Lq (Σ)
≤ (dme(σ) + C)e(

2
q−

5
2−ε)σ +me(σ) e−2σ−( 1

2 +ε)ς .

Combined this gives∥∥∥hL(u− 1)
∥∥∥

Lq (Σ)
≤ (dme(σ) + C)e(

2
q−

5
2−ε)σ +me(σ) e−2σ−( 1

2 +ε)ς .
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In particular, we have∥∥∥∥∥∂hH
∂σ
−

hH 2 − 4
2

∥∥∥∥∥
Lp (Σ)

≤ (dme(σ) + C)e(
2
p−

5
2−ε)σ +me(σ) e−2σ−( 1

2 +ε)ς

and per definition h
ςH ≡ −2 cosh(ς)

sinh(ς) . Solving this ordinary differential (in-)equality,
we get∥∥∥∥hH + 2cosh(σ)

sinh(σ)

∥∥∥∥
Lp (σΣ)

≤ e(
2
p−2)σ

(
(dMe(σ) + C)e−( 1

2 +ε)σ +Me(σ)e−( 1
2 +ε)ς

)
for every σ ∈ (σd1 ; ς], i.e. if d is large, then the mean curvature is closer to a
constant as we a priori assumed. As in [Ner16, Proof of Thm A.2, Step 2]—
using (10)—, this implies that there exists a function σξ

′ ∈ C∞(hS2
σ(σ~z) with r∆σξ

′ =
sinh(σ)−2 (1− e2σξ

′) such that

‖σξ − σξ
′‖W2,p(hS2

σ(σ~z)) ≤ e
2
pσ
(

(dMe(σ) + C)e−( 1
2 +ε)σ +Me(σ)e−( 1

2 +ε)ς
)

for every σ ∈ (σd1 ; ς]. In combination with (11), the regularity of the Laplace
operator gives

‖σξ′‖W2,p(hS2
σ(σ~z)) ≤ C ‖σξ

′‖W1,p(hS2
σ(σ~z))

≤ e(
2
p−2)σ

(
(dMe(σ) + C)e−( 1

2 +ε)σ +Me(σ)e−( 1
2 +ε)ς

)
for all σ ∈ (σd1 ; ς]. All in all, this proves

(12)
∥∥hexp

(
ξ ν
)
◦ rσΦ− σΦ

∥∥
W2,p(hS2

σ(~z)) ≤
(
d

4 + C

)
e(

2
p−

1
2−ε)σ + c e

2
pσ−( 1

2 +ε)ς

for these σ if σ0 is sufficiently large. As explained above (12) is true for all σ ∈ (σ0 ; ς]
and d = C (for the constant C in (12)) independent of ς.

Proof of Theorem I, Step 3 (Taking the limit): We see that (13) implies that M
is C0

$,υ- and C1
$−1,υ-asymptotically hyperbolic if we can take the limit ς → ∞,

i.e. if ςΦ : (σ0 ;σ1) × S2 → H
3 converges for every fixed σ1 to some limit map

∞Φ : (σ0 ;σ1) × S2 → H
3. Per construction of Φ, this is true if ς

σΦ : σΣ → H
3

converges for some fixed s to some limit map ∞σΦ : σΣ → H
3. By (10) and the

compactness of the Sobolev embeddings, this is true as C1-map for a subsequence
of ς →∞ if ς,rσΦ converges as ς →∞. As (10) remains true in this limit, the proves
the claim if a subsequence of ς,rΦ converges as ς →∞. Thus, we only have to prove
that ς,r

σΦ : σΣ→ H3 converges for one fixed σ > σ0 as ς →∞.
As first step, we prove that its image ς,r

σΦ(σΣ) is ς-independent. A straightfor-
ward computation shows

∂

∂s

∣∣∣∣
s=σ

(hdist( ςσ~z, ςs~z)
)

=
∥∥∥(u ◦ rΦ−1)rb∥∥∥

L∞ (Σ)
≤ ‖u− 1‖L∞ (Σ) ≤ me(σ).

In particular, if we choose the one-parameter family (ς, ςϕ, ςς~z = 0) of finite initial
data and look at the corresponding ς

σΦ : σΣ
∼→ S2

σ( ςσ~z), then ς
σ~z converges with ς →

∞ to some ∞σ~z ∈ H3. Thus, if we look at the alternative initial data (ς, ςϕ, ςς~z ..= ∞σ~z),
then the centers σ~z ..= ς

σ~z are independent of ς and satisfy σ~z → 0 as σ →∞. This
proves the first claim.
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Now, we see that in the Poincaré disc model of the hyperbolic space∣∣∣∣∂ ς,rΦ
∂σ

∣∣∣∣
eg

= 1
4
(
1− |ς,rΦ|2

)2∣∣∣∣∂ ς,rΦ
∂σ

∣∣∣∣
hg
≤ me(σ)

and therefore σ,r
ςΦ : S2 → H

3 converges to some ςψ : S2 → eS2
1(0) for σ → ∞

and the metric sinh(σ)−2 ς
σ g converges to a metric of constant Gauß curvature.

Therefore, we can apply a diffeomorphism ςψ : S2 → S2 such that if we replace
the initial data (ς, ςϕ, ς~z) with (ς, ςϕ ◦ ςψ−1, ς~z), then sinh(σ)−2 ς

σ g converges to the
standard metric of the Euclidean sphere—by Lemma 4.8 and Proposition 5.1, (8)
remains true. Applying a rotation, we can furthermore assume that the limit ςψ is
independent of ς. Per construction of rΦ, this proves that ς,r

σΦ converges as ς →∞
for every σ > σ0. As explained, this proves that ςΦ converges to a chart of

⋃
σ σΣ.

Proof of Theorem I, Step 4 (The asymptotic decay rate): By Lemma 5.3 and (12),
we know ∥∥k◦∥∥Lp (Σ) +

∥∥∥hH −H
∥∥∥

Lp (Σ)
+
∥∥∥hk◦
∥∥∥

Lp (Σ)
≤ C e(

2
p−$)σ.

As ∂σ h
σ g = −2uσk, an integration and the combination of (9) and (12) prove∥∥

σ g − h
σ g
∥∥

Lp (Σ) ≤ C e
( 2
p−$)σ,∥∥∥h∇

(
σ g − h

σ g
)∥∥∥

Lp (σΣ)
≤ C e(

2
p−

3
2−ε)σ

 ∀σ ∈ (σ0 ;∞).

Furthermore, hg(∂σςΦ, ∂σςΦ) = u2 = hg(∂σ, ∂σ) and we therefore have provenˆ (
e(

1
2 +ε′)|x|∣∣hg − g

∣∣
hg + e(

3
2 +ε′)|x|

∣∣∣h∇ g
∣∣∣

hg

)p
e−2|x| dµ ≤ Cε′ ∀ ε′ ∈ (0 ; ε)

In particular, |Ric− hRic| g ≤ Ce−( 5
2 +ε)σ impliesˆ (

e(
5
2 +ε′)|x|

(∣∣∣h∆ g
∣∣∣

hg
+
∣∣hg − g

∣∣
hg

))p
e−2|x| dµ ≤ Cε′ ∀ ε′ ∈ (0 ; ε).

Thus, the regularity of the Laplace operator givesˆ (
e(

5
2 +ε′)|x|

(∣∣hg − g
∣∣

hg +
∣∣∣h∇ g

∣∣∣
hg

+
∣∣∣h∇h∇ g

∣∣∣
hg

))p
e−2|x| dµ ≤ C.

Using the Sobolev inequality and reapplying the pointwise inequality |Ric−hRic| g ≤
Ce−( 5

2 +ε)|x|, we finally get
(13)

sup
Im Φ

{
e$|x|

(∣∣Φ∗ g − hg
∣∣

hg +
∣∣∣h∇(Φ∗ g

)∣∣∣
hg

+
∣∣∣Φ∗Ric− hRic

∣∣∣)+ eυ|x|
∣∣S + 6

∣∣} ≤ C.
Note that we cannot get pointwise estimates on h∇h∇(Φ∗ g).

Here, |S + 6| has to be replaced by |(S + 6)−| if we only assumed lower bounds
on S + 6, see Remarks 3.5, 3.14, 4.7, 4.9, and 5.2. ///

Remark 6.1 (The Euclidean setting). On the first glimpse, it may look like we can
apply the same proof in the Euclidean setting and can therefore replace the proof
done in [Ner15b]. However, the proof presented above crucial depends on the fact
that ς,rΦ converges as ς goes to infinity which makes it necessary that ς

σ~z converges
as ς → ∞. As explained, this is the case if (and only if) the σ-derivative of ς

σ~z is
integrable. However, this is equivalent to convergence of the so called CMC-center
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of mass. In the hyperbolic setting, this is always true as the CMC-center of mass
is always well-defined, see [CCS15, Ner16], but in the Euclidean setting this is not
always true, see [CN14, Ner15a]. This explains why the author did in the Euclidean
setting not choose the chart construction ‘by integration along the lapse function
and fixing the chart at infinity’.

Equivalently, we can not apply the Euclidean construction in the hyperbolic
setting as it heavily relies on the linear structure of the Euclidean space which is
not given in the hyperbolic space—as can be seen by comparing translations with
their hyperbolic counterparts being boosts.

7. Replacing the asymptotic end

As toy application of the above construction, we replace the hyperbolic end of
an asymptotically hyperbolic manifold with an Euclidean one.

Proof of Corollary 1.2. Let M ..= {σΣ}σ>σ0 be the CMC-foliation of M, u be the
lapse function of M , and

ϕ(σ) ..= 6 cosh(σ)2

sinh(σ)2
ψ2(σ)− 1
ψ(σ)2 − 4

uψ2

(
ψ(σ)2 − 1
sinh(σ)2 −

ψ′(σ) cosh(σ)
ψ(σ) sinh(σ)

)
,

where ψ ∈ C1((0 ;∞)) is an arbitrary monotone increasing function such that
ψ|(0 ;σ′1) ≡ 1 and ψ(σ) = cosh(σ) for every σ ∈ (σ1 ;∞) for some arbitrary σ1 >

σ′1 > σ0.
Writing the metric in its components orthogonal to the foliation and tangential

to it, we know
g = u2 dσ2 + σ g on TM|

σΣ ∀σ > σ0,

where the ‘radial’ function σ is defined by σ|σΣ ..= σ for every σ > σ0 and the lapse
function u can be written as u = |dσ|−1. Now, we define the new metric

(14) fg ..= ψ(σ)2 dσ2 + σ g on TM|
σΣ ∀σ > σ0

and get

(15) f
σk = −1

2 fσu
L f
σX

fg = ψ(σ)−1 −1
2σu

L
σX g = ψ(σ)−1

σk,

where fX ..= f
σu

f
σν = σu σν =.. X and where f

σu ..= cosh(σ) σu denotes the lapse
function of {ςΣ}ς on σΣ with respect to fg and where LXT denotes the Lie derivative
of a tensor T in direction of a vector field X. In particular, {σΣ}σ is a CMC-foliation
with respect to fg , too, where the ‘new’ mean curvature satisfies

f
σH ..= fH (σΣ) = ψ(σ)−1

σH ≡ −2 cosh(σ)
ψ(σ) sinh(σ) =.. −2

ς

Note that the metric f
σ g = σ g does not change for any of the CMC-leaves. This

proves that the Hawking mass of any surfaces with respect to fg is equal to its
hyperbolic Hawking mass with respect to g . From now on, we suppress the index
σ and write ψ, cosh, and sinh instead of ψ(σ), cosh(σ), and sinh(σ), respectively.

The Codazzi equation and (15) imply
fRic

(
fν, ·

)
= div

(
fH fg − fk

)
= ψ−1 div

(
H g − k

)
= ψ−1 Ric(ν, · )
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as 1-form on any leaf of the foliation, where fν and ν denote the out unit normal
of Σ with respect to fg and g , respectively. In particular, this proves the decay
behavior for Ric(ν, · ) we aimed for.

Equation (15) furthermore implies

∂ fk
∂σ

= 1
ψ

∂ k
∂σ
− ψ′

ψ2 k, ∂ fH
∂σ

= 1
ψ

∂H
∂σ
− ψ′

ψ2 H

and by characterization of the stability operator, we know

1
fu

∂ fH
∂σ
− fRic

(
fν, fν

)
−
∣∣∣fk∣∣∣2

g
= ∆fu

fu
= ∆u

u
= 1
u

∂H
∂σ
− Ric(ν,ν)− |k|2g .

Thus, (15) and 2 ∂σH = H 2 − 4 imply

fRic
(
fν, fν

)
= Ric(ν,ν)− 1

u

ψ2 − 1
ψ2

∂H
∂σ
− Hψ′

uψ3 + ψ2 − 1
ψ2

H 2

2 + ψ2 − 1
ψ2

∣∣k◦ ∣∣2g
= Ric(ν,ν) + 2 ψ

2 − 1
ψ2

cosh2

sinh2 + ψ2 − 1
ψ2

∣∣k◦ ∣∣2g
− 2
uψ2

(
ψ2 − 1
sinh2 −

ψ′ cosh
ψ sinh

)
.

We note that for ψ = cosh, i.e. for large σ, this simplifies to

fRic
(
fν, fν

)
= Ric(ν,ν) + 2 + sinh2

cosh2
∣∣k◦ ∣∣2g .

In particular, this proves ∣∣∣fRic
(
fν, fν

)∣∣∣ ≤ C sinh(σ)−$

and therefore we have the correct decay behavior for fRic(fν, fν), too.
On TΣ2, we have

Ric− Hess u
u

= Ric + 1
2H 2 g − 2k◦ � k◦ − 1

2u
∂H
∂σ

g − 1
u

∂k◦

∂σ

(and equivalent for f · ) and therefore a calculation as for fRic(fν, fν) gives

fRic = Ric + 2 ψ
2 − 1
ψ2

cosh2

sinh2 g − 1
uψ2

(
ψ2 − 1
sinh2 −

ψ′ cosh
ψ sinh

)
g

− ψ2 − 1
ψ2

(
2 k◦ � k◦ + 1

u

∂k◦

∂σ

)
− ψ′

uψ3k◦ .

In particular, for ψ = cosh

fRic = Ric + 2 g − sinh2

cosh2

(
2 k◦ � k◦ + 1

u

∂k◦

∂σ
+ k◦

u cosh sinh

)
which implies the decay behavior of fRic|TΣ2 we aimed for. All in all this proves
the decay behavior for fRic.

By the above, we know

fS = S + 6 ψ
2 − 1
ψ2

cosh2

sinh2 −
4

uψ2

(
ψ2 − 1
sinh2 −

ψ′ cosh
ψ sinh

)
+ ψ2 − 1

ψ2

∣∣k◦ ∣∣2g
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where we used tr( ∂
∂σk◦) = −∂ gIJ

∂σ k◦IJ = −2u
∣∣k◦ ∣∣2g . Again for ψ = cosh, this gives

fS = S + 6 + sinh2

cosh2
∣∣k◦ ∣∣2g ≥ S + 6

which gives the necessary decay estimate on fS , too. By [Ner15b], this proves all
claims. ///

Proof of Theorem II. Fix any σ > σ1 and choose a function ψ ∈ C1((0 ;∞)) as in
Corollary 1.2 with ψ(s) = cosh(s) for every s > σ1+σ

2 . By Corollary 1.2, we can
transform g to an asymptotically Euclidean metric fg such that the hyperbolic
Hawking mass of Σ = σΣ with respect to g is the same as the Hawking mass of it
with respect to fg . By the Gauß equation and [Her15], we know

mADM
(
M, fg

) σ→∞←−−−− mH
(
σΣ, fg

)
= mh

H
(
σΣ, g

) σ→∞−−−−→ m
(
M, g

)
= |−~m|R3,1 .

Now, let (σΣ(t))t denote the inverse mean curvature flow on one of these leaves
σΣ, see [HI01].7 As the Hawking mass does not decrease under the inverse mean
curvature flow and converges to the ADM-mass, we therefore know

|−~m|R3,1 = mADM
(
M, fg

) t→∞←−−− mH
(
σΣ(t), fg

)
≥ mH

(
σΣ, fg

)
= mh

H
(
σΣ, g

)
.

This proves the first part of the claim.
Ifmh

H(σΣ) = m for one σ, then (by the above) the Hawking mass is constant along
the inverse mean curvature flow starting at σΣ and therefore (M, fg) is outside of σΣ
identical to the Schwarzschild solution, see [HI01]. By [Ner15a], this proves sΣ =
S2
r(s)(0) implying sS ≡ const(s), fsk

◦ ≡ 0, fRic(ν,ν)|sΣ ≡ const(s), fRic(fsν, · )|T sΣ ≡
0, and fRic|T sΣ2 = const(s) f

s g for every s ≥ σ. Revisiting the above equations for
fRic etc., this proves the claim. ///

Appendix A. Boosting a sphere

As boosts are isometries of the hyperbolic space, it is quite obvious that if we
have a one-parameter family tΦ : H3 → H

3 of boosts of the hyperbolic space
with 0Φ = idH3 , then it maps hg -geodesic spheres to hg -geodesic spheres (of the
same radius), i.e. tΦ(hS2

σ(0~z)) = hS2(t~z). In particular, t,hH ..= hH (tΦ(hS2
σ(0~z))) is a

t-independent constant and therefore

0 ≡ ∂ t,hH
∂t

= Lhg
(
t,hν,

∂ tΦ
∂t

)
= ∆hg

(
t,hν,

∂ tΦ
∂t

)
+
(

Ric(ν,ν) +
∣∣tk∣∣2g)hg

(
t,hν,

∂ tΦ
∂t

)
= ∆hg

(
t,hν,

∂ tΦ
∂t

)
+ 2

sinh(σ)2
hg
(
t,hν,

∂ tΦ
∂t

)
,

i.e. hg(t,hν, ∂
tΦ
∂t ) is an eigenfunction of the (negative) Laplace operator with eigen-

value 2 sinh(σ)−2.
In the proof of the main theorem, we need the exact reverse implication, i.e.

if tΦ|S2 is a one parameter family of embeddings of S2 to the hyperbolic space
such that at each time the lapse function is an eigenfunction of the (negative)
Laplace operator with eigenvalue 8π

∣∣tΦ(S2)
∣∣−1 and 0Φ(S2) is a geodesic sphere,

then tΦ(S2) is always a sphere. Although this result is not new and the proof is

7Although it is not necessary for the argument, we note that these surfaces are so regular and
large that the inverse mean curvature flow remains smooth up to infinity.
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quite straightforward, we give it for the sake of completeness. To adept to the
setting of the main theorem, we allow the spheres to also be rescaled along tΦ.
Lemma A.1 (Deformations which are boostings)
Let T > 0 be a constant and Φ : [0 ;T ] × S2 → H

3 : (t, p) 7→ Φ(t, p) be a smooth
deformation of a geodesic sphere which does not collapse. If the lapse function is
the combination of rescalings and linearized boosts for all deformation indexes t,
then Φ(t,S2) is a geodesic sphere for all deformation indexes t.

This means if Φ is smooth, Φ(0,S2) = hS2
r(~z) for some r > 0 and ~z ∈ H3,

Φ( · ,S2) does not collapse to a single point, and the lapse function h
tu ..= hg(∂tΦ, h

tν)
satisfies

∀ t ∈ [0 ;T ] h
t∆ tu = − 8π

h|Φ(t, S2)|

(
h
tu−

 
tud h

tµ

)
,

then

∀ t ∈ [0 ;T ] ∃ t~z ∈ H3, r(t) ..= r +
ˆ t

0

 
h
tud h

tµds Φ
(
t,S2) = hS2

r(t)(t~z).

Here, h
t∆, h

tν, and h
tµ denote the Laplace operator, the outer unit normal, and the

volume measure of Φ(t, S2) ↪→ H3, respectively.

Proof. Let us first assume that r(t) ..= r +
´ t

0
ffl
tud tµ > 0 for every t ∈ [0 ;T ].

Using the definition of the stability operator, we know
∂ h
tH
∂t

= 1
2

(
h
tH 2 − 4 + 2

∣∣∣htk◦ ∣∣∣2h
t g

)
h
tu−

8π
h|Φ(t, S2)|

h
tu.

Furthermore, Φ(t,S2) is a extrinsic round sphere, i.e. k◦ ≡ 0, if and only if h
tH ≡

−2 cosh(R)
sinh(R) is constant for some R > 0 and then h

∣∣Φ(t,S2)
∣∣ = 4π sinh(R)2, see [Bre13].

Therefore, if h
tH ≡ −2 cosh(r(t))

sinh(r(t)) for some t ∈ [0 ;T ], then

∂ h
tH
∂t
≡ 2 sinh(r(t))−2

 
tud h

tµ = ∂

∂t

(
−2cosh(r(t))

sinh(r(t))

)
,

for this t. With h
0H ≡ −2 cosh(r(0))

sinh(r(0)) , this implies that h
tH ≡ −2 cosh(r(t))

sinh(r(t)) for all
t ∈ [0 ;T ]. Again by [Bre13], this proves the claim.

Now, assume that T ′ ∈ (0 ;T ] is minimal with r(T ′) = 0. By the above,
Φ(t,S2) = hS2

r(t)(t~z) for some t~z for every t < T ′. Furthermore, r(t) → 0 for
t→ T ′ and therefore the diameter of Φ(t, S2) goes to 0 as t→ T ′ which contradicts
the assumption that Φ is non-collapsing. ///
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